#17
|
||||
|
||||
Quote:
The comparison of a modified PI coil at the same reality distances as the IR LED that Esteban described will also show that the power traveling to the search coil will change when the coil is moved in the detectable range of the coil. (This PI search coil is at the same distance, or reasonably similar distance as the IR LED Esteban tested if you have a sensitive PI search coil). Quote:
Esteban posted the information of how to do it, and I re-posted it in an easy to understand form. In fact, the dynamics inside the IR LED circuitry that Esteban described sounds strikingly similar to the dynamics inside a typical PI detector. All that is changed is the IR does not have a timing scheme to lock in on an expected counter emf signal from the target. He is only watching for a change in the overall power or average amplitude at the IR LED power leads. Apparently the property of a long time buried object that causes the transmit wave form to vary has not been identified, nor has circuitry been built to optimize the capture of the effect. If I wanted to experiment with IR detection, I may choose a PI experimental project board such as Carl's hammerhead PI that allows a lot of adjustments to be made. This would give me the same square wave that is needed, but with adjustable widths, and lots of room for adjustable timing to look at any part of the pulse cycle from the rise to the fall and beyond. Perhaps this would be a good way to study how the IR reacts when different long time buried targets are in range. The new example Esteban is now giving will confuse his earlier posts, because he is now talking about a different method of using a receiver rather than simply monitoring the transmitted power as he previously stated. In his new example, Esteban is stating that the change in the transmitted power going into the single IR LED can also be detected by using a separate independent receiver to listen to the transmitted 400 Hz carrier sent by the transmitter. This is his way of monitoring the IR Tx power without connecting a probe to the wires inside or using the comparator circuit I earlier described. A small hand-held radio receiver can be converted for use in the field instead of carrying an oscilloscope or building a comparator and beeping section inside the IR LED detector. Best wishes, J_P |
Thread Tools | |
Display Modes | |
|
|