PDA

View Full Version : Real clone Alonso-PD


Pages : [1] 2 3

ANDREAS
01-13-2014, 10:07 PM
Hi all and Happy new year
Many members knows few years ago i build a clone Alonso-PD
This old "amateur clone" i use many-many mods for find the best balance between all stage.
But is not enough for me. Last months i start again experiments. My "target is... I try work with the same method use by Alonso for calibration omega-coils and feritte all together with standard schematic publish here from qiaozhi without any extras.
I find this method and i build a "real alonso-PD clone" with all parts.
My prototype now can detect a very-very small magnet-piece 2 meters distance very easy and a micro transmitter 433MHZ more than 50 meters distance.
My clone has not false signals from South-north magnetics lines and with calibration knob i can calibrate machine very easy in search-area
In my test-area work perfect, but i need make tests with unknown area and ofcourse video's with unknown targets
This knob for calibration and very small mods (low-bat section, power supply section) are the only extra's
The truth is that the calibration is too difficult and now i understand why there were failures to construct a truly clone
Here some pics my prototype
Heltkit section and feritte section work together without extra selection switch. Output signal from feritte coils is very-very low and feritte section now, work without overload signal.
Next days if i have free time i publish here more infos and i start video's with prototype
I want to thank a forum member here ( very good electronic engeneer ) , because, with his help and testing , I managed to find all the problems encountered
best regards

folharin
01-13-2014, 10:28 PM
andreas excellent job. you are using ferrite and omega coil together? can see the regulator calibration for the ferrite, it changes the position of the ferrite coil?

Geo
01-14-2014, 03:27 AM
Hi all and Happy new year
Many members knows few years ago i build a clone Alonso-PD
This old "amateur clone" i use many-many mods for find the best balance between all stage.
But is not enough for me. Last months i start again experiments. My "target is... I try work with the same method use by Alonso for calibration omega-coils and feritte all together with standard schematic publish here from qiaozhi without any extras.
I find this method and i build a "real alonso-PD clone" with all parts.
My prototype now can detect a very-very small magnet-piece 2 meters distance very easy and a micro transmitter 433MHZ more than 50 meters distance.
My clone has not false signals from South-north magnetics lines and with calibration knob i can calibrate machine very easy in search-area
In my test-area work perfect, but i need make tests with unknown area and ofcourse video's with unknown targets
This knob for calibration and very small mods (low-bat section, power supply section) are the only extra's
The truth is that the calibration is too difficult and now i understand why there were failures to construct a truly clone
Here some pics my prototype
Heltkit section and feritte section work together without extra selection switch. Output signal from feritte coils is very-very low and feritte section now, work without overload signal.
Next days if i have free time i publish here more infos and i start video's with prototype
I want to thank a forum member here ( very good electronic engeneer ) , because, with his help and testing , I managed to find all the problems encountered
best regards


still you fiddle with this??:lol:

aft_72005
01-14-2014, 07:53 AM
Hi Andreas
And happy new year
Congratulation. Seeing nice work , I hope more success for you .:)
Best regards

Nicolas
01-14-2014, 02:53 PM
Alonso Scheme for PD is the best here. Thank you to all who have actually worked on and do some modification and updating. such as Qiaozhi Eteban and Morgan and other.

Good luck my friend Andreas. and I hope for you a good result in all the world.
the transmitteur and receiver 433MHZ and the right choice my friend. well you advance in this field. 433 MHz is used in the detection by the magnetometer.

Look this picture details and link

www.parallaxinc.com (http://www.parallaxinc.com)

http://www.kounooz.com/up/do.php?img=1735 (http://www.kounooz.com/up/)

http://www.kounooz.com/up/do.php?img=1736 (http://www.kounooz.com/up/)

If you need help for higtech you know my email.

Qiaozhi
01-14-2014, 10:00 PM
Hi all and Happy new year
Many members knows few years ago i build a clone Alonso-PD
This old "amateur clone" i use many-many mods for find the best balance between all stage.
But is not enough for me. Last months i start again experiments. My "target is... I try work with the same method use by Alonso for calibration omega-coils and feritte all together with standard schematic publish here from qiaozhi without any extras.
I find this method and i build a "real alonso-PD clone" with all parts.
My prototype now can detect a very-very small magnet-piece 2 meters distance very easy and a micro transmitter 433MHZ more than 50 meters distance.
My clone has not false signals from South-north magnetics lines and with calibration knob i can calibrate machine very easy in search-area
In my test-area work perfect, but i need make tests with unknown area and ofcourse video's with unknown targets
This knob for calibration and very small mods (low-bat section, power supply section) are the only extra's
The truth is that the calibration is too difficult and now i understand why there were failures to construct a truly clone
Here some pics my prototype
Heltkit section and feritte section work together without extra selection switch. Output signal from feritte coils is very-very low and feritte section now, work without overload signal.
Next days if i have free time i publish here more infos and i start video's with prototype
I want to thank a forum member here ( very good electronic engeneer ) , because, with his help and testing , I managed to find all the problems encountered
best regards
Your coil looks higher up than the original Alonso PD, and the ferrite appears to be placed in the null line (as described in Chapter 14 of ITMD). Is this correct?

Geo
01-15-2014, 07:06 AM
With ferrite "out" of coil is more easy to null the signal of passive receiver. But original Alonso;s PD is different.

ANDREAS
01-15-2014, 07:10 AM
Your coil looks higher up than the original Alonso PD, and the ferrite appears to be placed in the null line (as described in Chapter 14 of ITMD). Is this correct?
I use scale via photo ( for example attachment pic). In this case i have false dimensions +/-2-3 mm. After study some photo's inside PD-Alonso, before start build omega-coils etc, i am sure for results and real dimensions using my PD.
...and the ferrite appears to be placed in the null line (as described in Chapter 14 of ITMD)
I have not your book, but feritte is not placed in the null line.
Please remember my old message, we have ONLY a "magic place". In this place, output feritte-coils has only 0,1-3mv output signal. For this results, i use a micrometric moving system and ofcourse need fine null omega together (move -null omega and again). This point is very difficult. We need repeating tests, before protection this place
Regards

Qiaozhi
01-15-2014, 10:14 AM
Please remember my old message, we have ONLY a "magic place". In this place, output feritte-coils has only 0,1-3mv output signal. For this results, i use a micrometric moving system and ofcourse need fine null omega together (move -null omega and again). This point is very difficult. We need repeating tests, before protection this place
Does your ferrite coil have two cores with a gap (as per the original Alonso PD) or is it just one complete core?

ANDREAS
01-15-2014, 01:13 PM
Does your ferrite coil have two cores with a gap (as per the original Alonso PD) or is it just one complete core?
It's same about results, the gap is easier for calibration, but
the gap produce sometimes false signals. My opinion.
Never we have see a real photo, about feritte (gap or not). I think "the gap" is false infos for stoped some members build it or present a myth
I think "original feritte" work with complete core. I use complete core, because has stability out signal
Second i believe never members open the original coil in feritte. A x-ray photo yes, but destroy the place and open never
I have this sense, because.. if you have a unit and work , you don't touch :nono: somethink and stop work.
The interest for all is this "magic point" is +/- 0.1mm. Tell me Quiaozhi, can you find this point with your hands? Personally i cannot. In this case my clone with micrometric regulator i think is better original
Conclusion. Members that say they know or have opened or know exactly how is the original, i think say "guess - tales" and they publish bla-bla and dreams.
If they knows really , few years ago, they start build and sell units. This is only real true.
regards

Qiaozhi
01-15-2014, 01:56 PM
The interest for all is this "magic point" is +/- 0.1mm. Tell me Quiaozhi, can you find this point with your hands? Personally i cannot.
I was also unable to find the "magic point" by hand. The TOTeM unit uses a single ferrite core that is placed in the upper null line of the TX coil. This is easy to find by hand, and can be nulled to only a few mV.

If the original Alonso PD has a split core, then I suspect the ferrite nearest the TX coil is acting similar to the nulling coil in a concentric arrangement. Since it is not driven by the TX oscillator, and relies only on voltage induced into the coil, this would explain why it is very difficult to find the balance point.

ANDREAS
01-15-2014, 02:29 PM
I was also unable to find the "magic point" by hand. The TOTeM unit uses a single ferrite core that is placed in the upper null line of the TX coil. This is easy to find by hand, and can be nulled to only a few mV.

If the original Alonso PD has a split core, then I suspect the ferrite nearest the TX coil is acting similar to the nulling coil in a concentric arrangement. Since it is not driven by the TX oscillator, and relies only on voltage induced into the coil, this would explain why it is very difficult to find the balance point.
About totem is easy, the transmitter is very low power. I don't i build complet with transmitter, only i build receiver. Alonso PD has a strong transmitter and feritte core is very near. For all places we have 50-100mv output coils feritte, ofcourse overload feritte-receiver

folharin
01-15-2014, 02:53 PM
see what esteban said:
I forgot! See in blue circle the sand. Pistol also is used as normal MD for to found the item in the sparzed sand or hole!http://www.longrangelocators.com/forums/attachment.php?attachmentid=10749&stc=1&d=1262613997

folharin
01-15-2014, 02:56 PM
bobina omega é md normal ,não encontra objetos longe
only part ferrite is lrl

Nicolas
01-15-2014, 07:24 PM
http://www.youtube.com/watch?v=aQlraoG1sCw

http://www.youtube.com/watch?v=uda9gjUEGgg

ANDREAS
01-15-2014, 09:01 PM
bobina omega é md normal ,não encontra objetos longe
only part ferrite is lrl
You have not exactly right. Need the part of MD receiver. But it is very unstable and soon i replace this stage. I see after experiments need a balance between MD receive and feritte receiver for best results
I make tests only MD section or only transmitter with ferrite, but I do not like the results.
regards

Funfinder
01-19-2014, 06:26 AM
> this "magic point" is +/- 0.1mm. Tell me Quiaozhi, can you find this point with your hands? Personally i cannot. In this case my clone with micrometric regulator

This whole ultrasensitivity adjustment way described here is for laboratory only.
Its useless because if the voltage will drop from 17,995v to just 17,985v it will be already out of balance again.

Same with temperature, moisture, electronic parts and especially harsh treasure hunting
conditions like weather, electro-smog and many other factors.

Under super stable conditions you also can built an usual metal detector
that is extremly sensitive. But at real treasure-hunting everything is anything else than super-stable.


btw. it would be much more clever to fix and construct the part with the 2 coils first on a extremly solid basis (melt it into plastic or resin etc.) and afterwards you find your needed zero or whatever EM-field window for the ferrite-coil by electronical adjustable components like variable capacitors, mini-coils or whatever. If this point is so critical and easy to bring out of "center" you must work with a programmed microcontroller which controls and readjusts the needed values automatically.

A lot measurement with a 10meter rope works perfekt, but only if there is no wind at all.

ANDREAS
01-19-2014, 01:18 PM
Funfinder wrote
This whole ultrasensitivity adjustment way described here is for laboratory only.
Its useless because if the voltage will drop from 17,995v to just 17,985v it will be already out of balance again.
You are confused. We have drop or not if unit don't work lab this is correct. In this case i have put a microcalibration pot for setup again. Please study my pics. On panel i have a calibration pot for it. If you cannot understand me my method, don't worry
Funfinder wrote
it would be much more clever to fix and construct the part with the 2 coils first on a extremly solid basis (melt it into plastic or resin etc.) and afterwards you find your needed zero or whatever EM-field window for the ferrite-coil by electronical adjustable components like variable capacitors, mini-coils or whatever. If this point is so critical and easy to bring out of "center" you must work with a programmed microcontroller which controls and readjusts the needed values automatically.
I have not time for explain more. But you must be sure, if put a microcontroller this clone don't work
Funfider i build this clone for personal study and use. For me is a "pratform" for understanding method use by Alonso (if he.... build this machine). I am not interest search or find more about "Brasil method" detection for long range.
I am not interesting for sceptics if... this unit work etc etc or not
I am only happy, because after few years, i publish the first real clone.
Later if i finish my study with this unit i send this unit gift... a good friend mexico. Maybe if he want publish results with this myth. You knows, this is not my choice
For me is only a personal test for find method calibration.
My "cup" is many-many members says ".. i build it", but i am sure now, on they dreams ofcourse build it
regards

Qiaozhi
01-19-2014, 03:00 PM
For me is only a personal test for find method calibration.

TOTeM was constructed for similar reasons. I wanted to understand why other members were convinced the Alonso PD could detect targets at distances greater than a conventional metal detector. Then there was the technical issue concerning the ferrite coil balancing. In the end it turned out to be a very entertaining project, and the results were interesting enough to include in the book (ITMD).

On many occasions skeptics are accused of having no personal experience with LRLs, so this was also an opportunity to push that accusation to one side. All the information concerning TOTeM is provided in ITMD, and nothing is hidden or made purposely confusing. Other members here have built TOTeM, and one has even created a PCB to replace the original stripboard layout. It's an intriguing device to use in the field, and often you can appear to be following a "signal line". However, I leave it up to each experimenter to arrive at their own conclusions, and to modify the design as they wish. :nerd:

ANDREAS
01-19-2014, 04:45 PM
TOTeM was constructed for similar reasons. I wanted to understand why other members were convinced the Alonso PD could detect targets at distances greater than a conventional metal detector. Then there was the technical issue concerning the ferrite coil balancing. In the end it turned out to be a very entertaining project, and the results were interesting enough to include in the book (ITMD).

On many occasions skeptics are accused of having no personal experience with LRLs, so this was also an opportunity to push that accusation to one side. All the information concerning TOTeM is provided in ITMD, and nothing is hidden or made purposely confusing. Other members here have built TOTeM, and one has even created a PCB to replace the original stripboard layout. It's an intriguing device to use in the field, and often you can appear to be following a "signal line". However, I leave it up to each experimenter to arrive at their own conclusions, and to modify the design as they wish. :nerd:
Qiaozhi If TOTeM can detect a very small magnet 5mmX5mm 2 meters distance you are a "right way" . I find this tip after many experiments with small luck.
Few months ago, i build a greek-project name english-PD. I see the same results a small magnet detect 5 meters distance and a very small 433mhz transmitter very easy detect 50 meters distance.
We have the same results. Strange is .. if we have perfect calibration and detect only small piece magnet, units cannot detect magnetics lines from earth.
I try understand more about ferrites with coils. Maybe i find a theory for this, but is not time explain more
regards

Qiaozhi
01-19-2014, 05:38 PM
Qiaozhi If TOTeM can detect a very small magnet 5mmX5mm 2 meters distance you are a "right way" . I find this tip after many experiments with small luck.
Is this a neodymium magnet that you used?

Few months ago, i build a greek-project name english-PD. I see the same results a small magnet detect 5 meters distance and a very small 433mhz transmitter very easy detect 50 meters distance.
Do you have a link to this "English-PD", or perhaps you can post the information here?

We have the same results. Strange is .. if we have perfect calibration and detect only small piece magnet, units cannot detect magnetics lines from earth.
Yes ... interesting observation.

ANDREAS
01-19-2014, 07:54 PM
Is this a neodymium magnet that you used?
No! This is a very simple small- black magnet from a chenese- toy.


Do you have a link to this "English-PD", or perhaps you can post the information here? This is a old cscope (maybe 950) with full modifications and a pink or purple ferrite length 20cm. This unit detect only gold fresh-buried-old on air... etc,without problem very easy. Later maybe i publish some infos about this very interesting modification, because here is a thread for clone alonso-pd
For me interesting is we have two units working with same philoshophy
regards

Geo
01-19-2014, 08:23 PM
Is this a neodymium magnet that you used?


Do you have a link to this "English-PD", or perhaps you can post the information here?


Yes ... interesting observation.


Hi Qiaozhi.
Look the thread "STRANGE..." at RS forum

ANDREAS
01-19-2014, 08:56 PM
Here is the better design PCB for this PD.
Later i publish full schematic (is same posting by Qiaozhi) and a pdf file PCB for all members wants build it for experiments. My mods are very small for stability.
If i have free time, i make some video's for look all members why i say "this is a real clone"
regards

Fred
01-19-2014, 09:49 PM
Thanks Andreas for sharing and posting this information, and continuing with constructive elements and experiments.
This is finally neutral and technical information, whatever are the results they will be useful and interesting. :)

Qiaozhi
01-19-2014, 11:02 PM
Thanks Andreas for sharing and posting this information, and continuing with constructive elements and experiments.
This is finally neutral and technical information, whatever are the results they will be useful and interesting. :)
Yes, I agree. This detection of a small magnet at 2m is intriguing, and a video showing this in operation would be most interesting.

Qiaozhi
01-19-2014, 11:13 PM
Hi Qiaozhi.
Look the thread "STRANGE..." at RS forum
Thanks Geo, It looks like this might be the same device. If Andreas can post some information, we should be able to check.

Geo
01-20-2014, 07:02 AM
It is TR950D by Cscope.

nelson
01-20-2014, 04:11 PM
Congratulations Andreas for this new project
I hope you can find how this realy works.
Best regards
Nelson



Hi all and Happy new year
Many members knows few years ago i build a clone Alonso-PD
This old "amateur clone" i use many-many mods for find the best balance between all stage.
But is not enough for me. Last months i start again experiments. My "target is... I try work with the same method use by Alonso for calibration omega-coils and feritte all together with standard schematic publish here from qiaozhi without any extras.
I find this method and i build a "real alonso-PD clone" with all parts.
My prototype now can detect a very-very small magnet-piece 2 meters distance very easy and a micro transmitter 433MHZ more than 50 meters distance.
My clone has not false signals from South-north magnetics lines and with calibration knob i can calibrate machine very easy in search-area
In my test-area work perfect, but i need make tests with unknown area and ofcourse video's with unknown targets
This knob for calibration and very small mods (low-bat section, power supply section) are the only extra's
The truth is that the calibration is too difficult and now i understand why there were failures to construct a truly clone
Here some pics my prototype
Heltkit section and feritte section work together without extra selection switch. Output signal from feritte coils is very-very low and feritte section now, work without overload signal.
Next days if i have free time i publish here more infos and i start video's with prototype
I want to thank a forum member here ( very good electronic engeneer ) , because, with his help and testing , I managed to find all the problems encountered
best regards

ANDREAS
01-22-2014, 10:28 AM
Full schematic without transmitter (later i publish transmitter sch+pcb)
As you can see ,this is original schematic publish by Qiaozhi with very small modifications
regards

Funfinder
01-22-2014, 02:30 PM
All this tinkering, discovering, helping together here concerning electronical issues is ok.

As long as the info doesn't leads us "real results wanting" persons away from the serious track. I self built and tested one of those Zahori circuits which mainly are based on electrostatic so afterwards I knew with this stuff you can find electricity lines or rubbed air-ballons from a good distance but no treasures.

I like tinkering but it was still a waste of time and ressources - just because some people here suggested this "could work".


And the same it might be with the ToTeM or the Alonso Clone....

btw. I am not a "skeptic" which condemns everything completly. First some persons here thought I would be a LRL-believer and now some may think I am a skeptic. I am also nothing in the middle, I am a realist who controls everything exactly, compares how much truth a story really could contain and I work with very fair warrants.

This world or better the own personal life will always be full of decisions and judgments of what it is good for me or others and whats not. It is not just to make their lifes hard if doctors, judges or even politicians have to study first. Complex and sophisticated things need alot background- or special-knowledge otherwise people will fail with good work or correct results.


Shure, I could start to experiment with those circuits, too, but why I should find out completly the same as we know already?
And what we know is not really convincing if it comes to real treasure-hunting.

If we see the whole thing as a development-process then it's useless to test the same stuff over and over again. But the motivation to contribute to this kind of "not really promising stuff" would return if there should popup really promising results.


Do you know what is CW? It is "continuous wave". Do you know SSB? Its Single Side Band.
Why do I ask? Because with special ham amateur radio transceivers you can hear ultrashort bandwidths of just a few Hertz thousands miles away.

It is no big deal to create ultra-sensitive detectors - its pretty simple today.
But those must work for the intended purpose.


This micro-adjustment stuff shows already clearly that we have a very ultra-sensitive receiver of some sort. And of course ultra-sensitive detectors react on minimal EM-field chances, be it a magnet or a 1.5v spark 5 meters away.

Just the question is:
For what it is really ultra-sensitive and under what stability conditions?

This here is a forum about metal detection an not radio-station-LRL-detection.
It is not about the Hubble telescope which is ultra-sensitive for super far away stars.

So the question is: How useful is this kind of supersensitive-detector for metal?
For metal buried under ground, otherwise we may find it with some field-glasses, too. ;)

Or in other words:
Its wasted time to experiment with ultra sensitive radio-receivers if those are not good for metal-detection.

I'm pretty shure the ToTeM or Alonso is some kind of BFO which only reacts on metal or magnets because the coil-activity or inductivity is extremly very slightly changing (on a level of just a part of 1 Hz, it could be even just the shape of the wave-form which gets slightly disturbed or interrupted for some time), even passivly if a huge metal object already interacts with some long-wave frequency. Thats also the reason why those both coils have to be so extremly well adjusted.
To make it more clearly:

Those kinds of detectors may listen at the 50.000 Hz area but they could see the difference of 50.000,012 and 50.000,025 Hz at a certain frequency (the 50KHz was just an example).

btw. first it would be really important if you know on what kind of detection-principle this stuff is based before you experiment with it. I guess I gave you now the answer, so you know with what kind of supersensitive detection circuit you are dealing and now you can find a way to modify it until it's really useful for treasure-detection.


Perhaps it would be better to start with ultra-sensitive BFOs directly - making "tabula rasa" (clear table) and not messing with such "pre-ready-made" circuits which contain alots of disturbing and unneeded content.

And if you need a handholdable metal-detector better buy a Garrett Ace 250 including snipercoil an mount both on a just 30cm long pole.

As long as those "longer range detection" doesn't work reliable and on a clear level concerning on what kind of influence it really reacts, this 2in1 circuit is just hindering important improvements.

You also should input the schematics into some circuit simulating software so you may see under which kind of EM-influence the coils etc. will react on what level or intensity.


Or do we wanna have this whole riddle-guessing going on and on for years and years?


For the moment all those ToTeM-, Alonso- or PDK detectors seems to me like bad AM-Radios which will receive all kind of household-disturbances, too, because they are not shielded and designed the right way for only receiving what they should receive or detect!

But perhaps you're already on the right track and by clearing things up and improving stuff on the right area we finally get some reliable "more distance metal detection".

And without the possibility of receiving intense and highly directional buried metal signals - without radio-activity almost impossible, especially if those targets are very small - some kind of highly sensitive or for a certain area specialized detector would be an absolutly must!

Dell Winders
01-22-2014, 06:26 PM
Funfinder, I agree with your assessment. As a Professional Treasure Hunter/Salvor When I first started testing and encouraging development of Frequency Discrimination methods in 1980 there was adequate hobbyist metal detectors on the market that would detect coins & jewelry at shallow depths. Not much was available for the Professional Treasure Hunter,or Salvor, so we would make modifications, or try to come up with innovative solutions of our own. This is when the Frequency Discrimination from a distance to detect deep buried Treasure Trove was born and implemented.

My interests is in detecting large Treasure Troves buried deep underground or under water where conventional Metal detectors lack the depth penetration to reach the targets I am seeking. Although technologically primitive by today's standards, the first MFD's I used throughout the 1980's were fully electronic, both transmit & receive. I was fortunate to have enough inventors interested to provide me models to Field, and comparison test. My intent and purpose for Frequency Discrimination was never for detecting small ,shallow depth targets, it never has been, and is not now. So I have no pony in this race for LRL shallow depth detection except to point out the Skeptic Con game the owners of this forum are playing on it's contributors and viewers.

I applaud those who are making an effort to discover, and share with others a viable method to make a workable, shallow depth, discriminating LRL, that has universal appeal to hobby metal detectorist. It's a huge market, but will not be won without a fight from those with a vested interest in the lucrative Metal Detector industry

It is understandable that those EE's & Techs embedded in the system that earn a substantial income from the hobbyist Metal detector industry would be concerned about the increased interest and growth of a concept they don't understand in a competing industry.

With all best wishes, Dell

WM6
01-22-2014, 07:18 PM
It is understandable that those EE's & Techs embedded in the system that earn a substantial income from the hobbyist Metal detector industry would be concerned about the increased interest and growth of a concept they don't understand in a competing industry.



Or vice versa.

Nicolas
01-22-2014, 11:20 PM
Hi Andreas you can use this PD without ferrite or change it by transmitter 433Mhz is better. I improve it.

Qiaozhi
01-22-2014, 11:28 PM
This is when the Frequency Discrimination from a distance to detect deep buried Treasure Trove was born and implemented.
Build your own MFD using these instructions -> http://www.geotech1.com/cgi-bin/pages/common/index.pl?page=lrl&file=/projects/mfd1/index.dat
Guaranteed to equal or exceed the performance of any other MFD available.

It is understandable that those EE's & Techs embedded in the system that earn a substantial income from the hobbyist Metal detector industry would be concerned about the increased interest and growth of a concept they don't understand in a competing industry.
The fact is, we understand the LRL concept as well as the manufacturers who know what they're doing. The self-deceived LRL sellers ... well, we're way ahead.
In fact, we're so scared that LRLs will take over the market and make conventional metal detectors obsolete, that we operate a website dedicated to LRLs, and even freely publish designs such as the one above. :lol:

Dell Winders
01-22-2014, 11:33 PM
Yes, I remember very clearly when Carl started that Con, to try to put me out of business. Dell

Nicolas
01-22-2014, 11:39 PM
Yes, I remember very clearly when Carl started that Con, to try to put me out of business. Dell

Why ???? :angry::angry::angry::angry::angry:

ANDREAS
01-23-2014, 06:01 AM
Hi Andreas you can use this PD without ferrite or change it by transmitter 433Mhz is better. I improve it.
Hi Nicolas
No! The bad news is ... I can not present what exactly detecting.
In the original PD the engineer knew very well exactly and they used transmitter. The old engineer (maybe Alonso) don't care, if the receiver is good helthkit, but the whole all in all
I hope if a member can build it, he can understand me well
regards

ANDREAS
01-23-2014, 06:54 AM
Here is the best PCB design for clone, bottom and silscreen sides.
regards

ANDREAS
01-23-2014, 07:04 AM
For Qiaozhi
This is pic a real clone english-PD.

Sneshko
01-23-2014, 09:18 AM
Here is the best PCB design for clone, bottom and silscreen sides.
regards

Dear Andreas!
Thank you for sharing with us your effort!
Regards and all the best!
Sneshko

ANDREAS
01-23-2014, 01:03 PM
Dear Andreas!
Thank you for sharing with us your effort!
Regards and all the best!
Sneshko
Sneshko Don't thank me. My gift is only a PCB, because some members here knows all, but they cannot draw a PCB. About schematic has not secrets.. this is classic with small mods. The big problem is that too difficult to configure. In the future I accept thanked by members can make this so difficult regulating . I fervently hope.
regards

Goldmaxx
01-23-2014, 07:28 PM
Hello Andreas

Bravo and congratulations to this beautiful project. :thumb:
I want to learn more about PDs and will try to build your PD project.
As a first project I built the TOTeM PD. Unfortunately I have a little problems with false signals in the north - south direction and contrary the same.
Your clone AlonsoPD will be my second project and hope something more to learn about PDs.
Maybe I can thereby transfer some mods in my TOTeM PD.

Thank you for sharing your knowledge with us.

Best Regards
Goldmaxx

Nicolas
01-23-2014, 08:29 PM
Sneshko Don't thank me. My gift is only a PCB, because some members here knows all, but they cannot draw a PCB. About schematic has not secrets.. this is classic with small mods. The big problem is that too difficult to configure. In the future I accept thanked by members can make this so difficult regulating . I fervently hope.
regards


Hi Andreas

Please check the Two Transistor it's proper?

The Correct: NPN transistors require a positive base signal to energize (forward bias).

ANDREAS
01-23-2014, 08:51 PM
Hi Andreas

Please check the Two Transistor it's proper?
Hi Nikolas
This is correct.
Original PD has D4,D6 diodes 1N4148. I replace with two NPN transistor work "as diode" if unconnect base
With this tip we have more temperature stability , because NPN protection inside plastic case and we have the same result.
R22 use for stability pot
C4 use tantalium. If you have not connect serial + - - + two electrolytic capacitors 22uF
U4 use only 78L05, because Lseries has more power supply out stability
Cx remove.. is not important
Led2 use a hight bright yellow LED is better for this stage
If you have not R6,R6A=680K you can replace 1M

Other tip. If you have note D2,D3=1N60 you can replace with RED LED!!!!!!!
Yes my friend, a poor Red Led (no high bright) work as diode perfect if frequency is < 3MHZ
regards

Nicolas
01-24-2014, 03:31 AM
Hi Nikolas
This is correct.
Original PD has D4,D6 diodes 1N4148. I replace with two NPN transistor work "as diode" if unconnect base
With this tip we have more temperature stability , because NPN protection inside plastic case and we have the same result.
R22 use for stability pot
C4 use tantalium. If you have not connect serial + - - + two electrolytic capacitors 22uF
U4 use only 78L05, because Lseries has more power supply out stability
Cx remove.. is not important
Led2 use a hight bright yellow LED is better for this stage
If you have not R6,R6A=680K you can replace 1M

Other tip. If you have note D2,D3=1N60 you can replace with RED LED!!!!!!!
Yes my friend, a poor Red Led (no high bright) work as diode perfect if frequency is < 3MHZ
regards


Thank you dear Andreas for this details and tips

We will try to do it if I find the time.

I await your response to my email. Thou hast promised when you return from your trip

ANDREAS
01-24-2014, 03:18 PM
Thank you Nicolas
I think today we finish with schematics and PCB
Here is transmitter without modification

Nicolas
01-24-2014, 09:12 PM
Thank you Nicolas
I think today we finish with schematics and PCB
Here is transmitter without modification

Hi andreas thanks
But I cant understand these connection

J1 = ?
Trans = ?
JF = ?
P1 = Sens= ?

please explain good these connection because I think J1 is supply 18V is not for transmitter

ANDREAS
01-25-2014, 07:15 AM
Hi andreas thanks
But I cant understand these connection

J1 = ?
Trans = ?
JF = ?
P1 = Sens= ?

please explain good these connection because I think J1 is supply 18V is not for transmitter
J1= 2X9V Alkaline
Trans= power supply connector for transmitter
JF = connector feritte - coil
PI= 47K multiturn pontesiometer

Nicolas
01-25-2014, 08:36 AM
J1= 2X9V Alkaline
Trans= power supply connector for transmitter
JF = connector feritte - coil
PI= 47K multiturn pontesiometer

Hi Andreas
Then J1 in Pcb for transmitter is connect to Trans +9V :rolleyes: and not in J1 for supply 18V dc it's for battery.:nono:

That is your error. I cant understand the two name for J1. sorry

Thanks

ANDREAS
01-25-2014, 11:10 AM
Hi Andreas
Then J1 in Pcb for transmitter is connect to Trans +9V :rolleyes: and not in J1 for supply 18V dc it's for battery.:nono:

That is your error. I cant understand the two name for J1. sorry

Thanks
Hi Nicolas
Is very clean
JI (on PCB) is for connection batteries (two serial 9V=18V)
Trans (on pcb) is for connection +/-9V transmitter
Later i publish all connection with a diagram
regards

ayoni03
01-30-2014, 07:36 AM
Dear Andreas!
Thank you for sharing ..
Regards and all the best!:)

iron1944
01-30-2014, 01:11 PM
Mr. ANDREAS.
Can you help me?
How to do MV Alonso TX coil?
What will be the diameter of the coil, the coil wire diameter and number of laps will happen?
Thank you.

ANDREAS
01-30-2014, 01:52 PM
Hi all
Next step is omega-coils
attachment PDF
Note1: Original schematic publish Qiaozhi has for Tx coils 12+5+3+12. If you seePDF my omega has 12+3+5+12turns. This is correct.
We need high peaks RF transmitter with low-level modulation signal for better calibration
If we work with 12+5+3+12 turns TX coil you have 100% modulation signal 400-800HZ
with 12+3+5+12 modulation signal has level 45%
Note2:The dimensions are critical , if you want a properly nulling
regards

LRLMAN
01-30-2014, 09:43 PM
Hi Andreas here the image of my omega coil and i have much images of my prototype but I need some help to finish this project I have done many tests with many types of omegas and ferrite coils but I can not achieve to detect a coin at 50 cms as morgan says so I would like might help a little, I think I'm just a bit close to it and I could make the PD detected a magnet at a distance but I need even more distance also able to detect the two components of the phenomena electric and magnetic components.

Here is a picture of the omega coil according to the ohmic resistance pointing by Morgan, I think I'm wrong on some things but I think the whole secret is in the type of turns of the ferrite and the omega maybe i think i am near of make work the Pd alonso.

LRLMAN
01-30-2014, 10:02 PM
HERE OTHER IMAGES

Nicolas
01-30-2014, 11:53 PM
I think your problem dear wiliams are the location of your coils
Firstly you do not have the zero point between the coil they are almost in the same axis we must shift
second one must have a good calibration at the coil with ferrite. it must be adjustable and mobile

LRLMAN
01-31-2014, 01:17 AM
I do not understand what you mean with that william or axis of the coils.
and you observe a position at which the ferrites are with respect to each device omegas?:???:

I think this is the correct position as established by alonso pd.

SALUDOS.

Nicolas
01-31-2014, 05:05 AM
I do not understand what you mean with that william or axis of the coils.
and you observe a position at which the ferrites are with respect to each device omegas?:???:

I think this is the correct position as established by alonso pd.

SALUDOS.


Hi, I mean with >>>>> Wiliams Tim Williams, but I did not write that wrong sorry

I do not think dear Tim becaufe the magnetic chapms are parallel
mean overlap. So to have a zero points must be moved one of them
is the omega coil low ferrite or down as I have represented on your photo

Look Pd Totem that is 100% correct
and this picture by andreas

and ferrite adjustable for calibration

LRLMAN
01-31-2014, 05:58 AM
Are you sure?

let me experiment this again though I've done before and when separated much the ferrite antenna from the omega nothing magic happens, but I'll try again with omega coil did in a different way.

But I would also like the opinion of Andreas or someone else

For the confusion.... don't worry

I send you greetings and a strong hug

LRLMAN.

Nicolas
01-31-2014, 07:07 AM
Are you sure?

let me experiment this again though I've done before and when separated much the ferrite antenna from the omega nothing magic happens, but I'll try again with omega coil did in a different way.

But I would also like the opinion of Andreas or someone else

For the confusion.... don't worry

I send you greetings and a strong hug

LRLMAN.

Yes dear I agree with you

However, Andreas already mentioned before in this topic see his talk here with Qiaohzi
since comments # 6 and later

I sent you an email before and I'm still waiting for your reply

you saw your inbox?? or you've ignored

I want to remind you again

Qiaozhi
01-31-2014, 10:28 AM
Are you sure?

let me experiment this again though I've done before and when separated much the ferrite antenna from the omega nothing magic happens, but I'll try again with omega coil did in a different way.

But I would also like the opinion of Andreas or someone else

For the confusion.... don't worry

I send you greetings and a strong hug

LRLMAN.
What Nicolas is saying is that you have the ferrite in a position where it cannot be nulled. TOTeM has the ferrite placed in the null line of the TX coil, as described in ITMD Chapter 14. This null is quite easy to find, but Andreas says there is another null position which requires micro-adjustments to find. Whether this second null position has any benefits over the first, is something you would need to figure out.

hung
01-31-2014, 11:17 AM
Ozzy, how come you expect your atari to work since your PD tentative was a complete failure and you know that? Do you think all members here are idiots or just the ones that you want to fool into buying your book?
Your desperate commercial gimmick to your book is pathetic.
Revise you schematic and honestly tell it that thing can possibly work as LRL for gold or whatever buried metal?
Besides, ask that dude who bravely took the chances to build it, if he found anything to date besides random noises?

Gotta go. See ya on tour with your 'black sabath'.:D

Nicolas
01-31-2014, 02:32 PM
What Nicolas is saying is that you have the ferrite in a position where it cannot be nulled. TOTeM has the ferrite placed in the null line of the TX coil, as described in ITMD Chapter 14. This null is quite easy to find, but Andreas says there is another null position which requires micro-adjustments to find. Whether this second null position has any benefits over the first, is something you would need to figure out.

Strongly agree
very sure he will understand, making experience
It is not Nicolas Tesla :lol::lol::lol:

http://en.wikipedia.org/wiki/Nikola_Tesla

Nicolas
01-31-2014, 02:41 PM
Ozzy,
Besides, ask that dude who bravely took the chances to build it, if he found anything to date besides random noises?

Gotta go. See ya on tour with your 'black sabath'.:D


'black sabath'.:D
black sabbath
Black boot :lol::lol::lol::lol: :rolleyes::angry:
http://www.youtube.com/watch?v=No6gec4DNuE

Qiaozhi
01-31-2014, 04:15 PM
Ozzy, how come you expect your atari to work since your PD tentative was a complete failure and you know that? Do you think all members here are idiots or just the ones that you want to fool into buying your book?
Hung - how can you comment on a subject you know nothing about?

Your desperate commercial gimmick to your book is pathetic. Anyway, even if you order one, we'll cancel your order. As we would hate you to actually learn something. :lol:

Revise you schematic and honestly tell it that thing can possibly work as LRL for gold or whatever buried metal?
As it says in the book: "Unlike the original PD, the TOTeM project is easily replicated with a little care and attention. It easily passes all the laboratory-based tests used by LRL experimenters, and certainly appears to react in the same way as the device in the internet videos. Whether it will lead you to treasure or not is maybe another story, but at least you will have the opportunity to explore the pseudo-scientific world of long range locators for yourself, and make up your own mind on the matter."

There is nothing misleading in the chapter, or any false claims. It is what it is ... an experimental pistol detector ... and you make of it whatever you like. Just remember - here there be dragons!


Besides, ask that dude who bravely took the chances to build it, if he found anything to date besides random noises?
Do you have to be brave to build an LRL?

I believe he enjoyed the experience and is still experimenting with the unit. Anyway, he has as much chance of finding something useful with TOTeM, as with any other electronic LRL (including Mineoro or your own Heath Robinson efforts).
http://en.wikipedia.org/wiki/Heath_Robinson

An Ozzy Osbourne quote - from I am Ozzy (which somehow seems apt):
“They said I would never write this book.
Well, f**k ’em – ’cos here it is.
All I have to do now is remember something...
Bollocks. I can’t remember anything.”

LRLMAN
01-31-2014, 06:29 PM
Ozzy, how come you expect your atari to work since your PD tentative was a complete failure and you know that? Do you think all members here are idiots or just the ones that you want to fool into buying your book?
Your desperate commercial gimmick to your book is pathetic.
Revise you schematic and honestly tell it that thing can possibly work as LRL for gold or whatever buried metal?
Besides, ask that dude who bravely took the chances to build it, if he found anything to date besides random noises?

Gotta go. See ya on tour with your 'black sabath'.:D

Hi Mr. Hung, I would like to know your opinion on the exact position of the ferrrita regarding omega coil as I know you did the PD with much success, why do you not helpme a little with this project.

I also have a problem with green led, this does not turn, I do not know if the pcb is something wrong or has led the polarities reversed.

in the device of 6 pcb from alonso, I have dificults to increasing distance detection of a coin with switch in central position working ferrite-omega

but the PD of a single pcb as the Greek Forum, the problem to detect the coins to more distance is less with a distance of a 22 cms with good iron discrimination.

I have a videos i send to qiaozhi or someone else for upload.

Greetings Dr. Hung

ANDREAS
01-31-2014, 07:06 PM
Please relax. We have time, step by step we can see all false infos present here from......, about this PD. For example extreme detection a coin. If healthkit receiver work with stability etc etc.
I publish this thread, because i believe is time open a myth and publish here the real possibilities.

Fred
01-31-2014, 07:22 PM
Hi Mr. Hung, I would like to know your opinion on the exact position of the ferrrita regarding omega coil as I know you did the PD with much success, why do you not helpme a little with this project.

:lol: Funny post.

Actually I do have an idea to where Dr Hung would place the ferrite.

Qiaozhi
01-31-2014, 07:45 PM
:lol: Funny post.

Actually I do have an idea to where Dr Hung would place the ferrite.
I'm not sure it would be well balanced in that position. :oh:

Qiaozhi
01-31-2014, 07:46 PM
Please relax. We have time, step by step we can see all false infos present here from......, about this PD. For example extreme detection a coin. If healthkit receiver work with stability etc etc.
I publish this thread, because i believe is time open a myth and publish here the real possibilities.
Very good. :thumb:

Fred
01-31-2014, 08:57 PM
Please relax. We have time, step by step we can see all false infos present here from......, about this PD. For example extreme detection a coin. If healthkit receiver work with stability etc etc.
I publish this thread, because i believe is time open a myth and publish here the real possibilities.

Thanks Andreas. To find the normal detection as a regular "enhanced " detector, on the edge of stability, will be interesting too.

I'm not sure it would be well balanced in that position. :oh:

:lol::lol:

LRLMAN
01-31-2014, 09:42 PM
Please relax. We have time, step by step we can see all false infos present here from......, about this PD. For example extreme detection a coin. If healthkit receiver work with stability etc etc.
I publish this thread, because i believe is time open a myth and publish here the real possibilities.


I like that Andreas

I really liked what you said is important to know all the details of this machine to see if in fact if it works or not, I need to finish this project.

I also want to tell you that I have been testing with the PD that which have a single pcb and I detected very erratic way an object buried beneath a planter at a distance of 10 mts, about it i checked the place with a normal metals detector on the spot where the buried object is that the object appears to be large.

LRLMAN.

LRLMAN
02-01-2014, 01:01 AM
Ok Andreas and friends,

Where do we start? for the list of the components of each pcb? or the preparation and calibration of the ferrite, or for the preparation and calibration of omega antenna?

Want to do it here....... or in RS?

Please comment.

LRLMAN

ANDREAS
02-01-2014, 08:50 AM
Ok Andreas and friends,

Where do we start? for the list of the components of each pcb? or the preparation and calibration of the ferrite, or for the preparation and calibration of omega antenna?

Want to do it here....... or in RS?

Please comment.

LRLMAN
I can present here place feritte with dimensions between omega place.
Anyone can confirm the maximum signal receiving feritte-coil in this place .
I will try to make videos to show that the signal actually becomes zero.
You can see that the position is not :nono: "TOTeM has the ferrite placed in the null line of the TX ...", as reported by Qiaozhi.
If we put feritte in the null line of TX, we have not stimulate omega coil via feritte. In this case we have not on condition regulate all together.
As you know i am not RSforum member, because old time i have many attack from "guru's members knows all :lol:" and they don't publish more infos, because they believe, with own informations i can build a commercial project.
This is a joke for me, then i delete me from RS
The true is, this members never build it, because, if they build it members start a commercial project.
In this case the best choice for me is publish here all infos about PD and your RS forum you can have help, by guru's for more infos about nulling and calibration feritte together with omega coils.
If you have not help in RS forum ( i am sure for it), i can start again.
regards

folharin
02-01-2014, 11:04 PM
Friend lrl man.you found object connected omega coil and ferrite or only omega coil?

LRLMAN
02-02-2014, 03:47 AM
This sounds good to me andreas we need to start with this and see what happens.

I've seen the videos that you have exposed in your youtube channel about your PD and you can detect some objects and all this is very interesting, I see a video clearly showing the detection of a small magnet and I like a little since my PD also detect a magnet but just to low distance.

Greetings.

LRLMAN.

LRLMAN
02-02-2014, 04:09 AM
:lol: Funny post.

Actually I do have an idea to where Dr Hung would place the ferrite.

Hello Fred,

Where you think that Dr. Hung would place the ferrite regarding omega coil???? which type of ferrite? because I believe that he was used a different ferrite that was used by Alonso in hes proyect, because the ferrite Alonso used was two flat ferrites and the used by Hung was rounds.

LRLMAN.

LRLMAN
02-02-2014, 04:26 AM
Friend lrl man.you found object connected omega coil and ferrite or only omega coil?

I found some spots and one of them is a metal, i don't know what kind of metal it is, but also was detected by a normal metal detector, this is a big object because was detected by a garrett metal detector with a multipliers for depth Garrett Grand Master Hunter CX II

As I said, I can not know what kind of metal is because it is located below a large round planter and I can not destroy it.

And the PD, must be connected the ferrite-omega together.

The only position of omega working how a metal detector.

LRLMAN.

ANDREAS
02-02-2014, 08:22 AM
And the PD, must be connected the ferrite-omega together.

The only position of omega working how a metal detector.

LRLMAN.
No!!! helthkit receiver is important. Later i replace receiver-helthkit with a very-stability new receiver, because, the original helthkit receiver is unstable:frown:.

ANDREAS
02-03-2014, 05:11 PM
Dimensions between feritte - omega coil.
As you can see feritte is not in the null line of the TX. With experiment you can see feritte-coil has without nulling output signal 150-200mVpp minimum
Regards

Qiaozhi
02-03-2014, 07:45 PM
Dimensions between feritte - omega coil.
As you can see feritte is not in the null line of the TX. With experiment you can see feritte-coil has without nulling output signal 150-200mVpp minimum
Regards
Are you saying there is another null point at that location, or is the ferrite being nulled by a separate coil?

ANDREAS
02-03-2014, 08:37 PM
Are you saying there is another null point at that location, or is the ferrite being nulled by a separate coil?
I work with your schematic. Attachment pic.
For specific feritte, I use turns in the Plan. I believe they need depending on the magnetic permeability of each feritte we must be experiment with turns. For my clone i use a chinese feritte from AMradio orthogonal 100mm. Yes with microcalibration horizontal axis actually finds a "dead hole" with zero signal. About y axis, i think we need small luck:rolleyes:
Now if we find the dead point and put a 4n7 capacitor pararell with L7 we can see omega coil need caps= 1n+6n8 and receiver coil need 1n+1n8 for best resonate all together in xxxKHZ
Upon verification of capacitors that have the same values as the original plan, we are confident that we have created a clone, working with exactly the same values ​​parts.
I repeat again, the big problem is find this "dead point". I believe Alonso knows exactly the frequency and made arrangements in the Act. I have this opinion, because the location has put feritte (real PD) is ....with hot glue.In this case, maybe he knows near zero-point area and he find the best with practice
regards

Nicolas
02-03-2014, 08:47 PM
I work with your schematic. Attachment pic.
For specific feritte, I use turns in the Plan. I believe they need depending on the magnetic permeability of each feritte we must be experiment with turns. For my clone i use a chinese feritte from AMradio orthogonal 100mm. Yes with microcalibration horizontal axis actually finds a "dead hole" with zero signal. About y axis, i think we need small luck:rolleyes:
Now if we find the dead point and put a 4n7 capacitor pararell with L7 we can see omega coil need caps= 1n+6n8 and receiver coil need 1n+1n8 for best resonate all together in xxxKHZ
Upon verification of capacitors that have the same values as the original plan, we are confident that we have created a clone, working with exactly the same values ​​parts.
I repeat again, the big problem is find this "dead point". I believe Alonso knows exactly the frequency and made arrangements in the Act. I have this opinion, because the location has put feritte (real PD) is ....with hot glue.In this case, maybe he knows near zero-point area and he find the best with practice
regards

Dimensions between feritte - omega coil.
As you can see feritte is not in the null line of the TX. With experiment you can see feritte-coil has without nulling output signal 150-200mVpp minimum
Regards
http://www.longrangelocators.com/forums/attachment.php?attachmentid=18781&stc=1&d=1391447412



Good response Andreas this is the trust and real.
You are the best

ANDREAS
02-03-2014, 09:32 PM
Sorry for my false.
I see again schematic publish here #30. I write R50=39K:frown:, please replace R50=390k. Original schematic use R50=470K. I find is better work all together with 390K value
regards

Fred
02-04-2014, 03:40 AM
Hello Fred,

Where you think that Dr. Hung would place the ferrite regarding omega coil???? which type of ferrite? because I believe that he was used a different ferrite that was used by Alonso in hes proyect, because the ferrite Alonso used was two flat ferrites and the used by Hung was rounds.

LRLMAN.

Well, i think Hung has no clue whatsoever to where to put any ferrite, same as for any technical matter, so my idea about it is non-technical as well and is (perhaps) a secret place.
So to keep it technical, I can say he would probably put it on top of a calculator, or attached to a piece of string and "feel" it pointing to the golden ring or statues he planted nearby.
Nothing useful as you can see...

Fred
02-04-2014, 03:45 AM
I work with your schematic. Attachment pic.
For specific feritte, I use turns in the Plan. I believe they need depending on the magnetic permeability of each feritte we must be experiment with turns.

Hi, Andreas,
what do you think about the final principle of it ?
The way you explain it, it look like you are building a very compact kind of two-boxes detector, finding an extremely tiny null, very close to the Tx loop.
Do you think it could be? And that a detector in such a configuration has something special?

Nicolas
02-04-2014, 04:16 AM
Hi, Andreas,
what do you think about the final principle of it ?
The way you explain it, it look like you are building a very compact kind of two-boxes detector, finding an extremely tiny null, very close to the Tx loop.
Do you think it could be? And that a detector in such a configuration has something special?


Only to tire people's hands. for both boxes nothing special. and only for gold. ansi we do not know what prices are
I think this is unitul unless it is at least a long range. So it becomes a bit special as traditional.
I'm with you Fred about this quetion

ANDREAS
02-04-2014, 06:47 AM
Hi, Andreas,
what do you think about the final principle of it ?
The way you explain it, it look like you are building a very compact kind of two-boxes detector, finding an extremely tiny null, very close to the Tx loop.
Do you think it could be? And that a detector in such a configuration has something special?
Hi Fred
Yes this unit has something special. With this special null, unit detect very easy magnetic piece. My first experiments, unit detect very easy aluminium piece 6 meters distance, 30cm depth (i don't know how old is this alu-piece) and the strange for me.. if detect magnetic-piece unit stop detect magnetic lines from earth.
Joke is ... with perfect calibration all together coils-housing detect one euro ONLY 12CM DISTANCE.
I remember some members say here.. unit can detect a coin 20,30,40..cm distance. Maybe detect capacitor-phenomenon via hands and believes detect coin, because if don't make fine calibration produce this capacitor phenomenon.
For me this unit has many interest points and work same method other unit "name englishPDfor gold"
I try find free time and fine weather for external tests
regards

GOLDEN LILLY
02-04-2014, 07:58 AM
Hi Andreas,

Between PD and the Crypton, which is better in terms of range of detection?

Regards...

ANDREAS
02-04-2014, 09:47 AM
Hi Andreas,

Between PD and the Crypton, which is better in terms of range of detection?

Regards...
Hi aulook
we have two units with different philosophy. I cannot find something same, only alarm circuit is same
My opinion. Many -many engineers try build alonsoPD withouts results. Only a greek engineer build a PD (name magicPD), but he use only receiver helthkit with a big ferrite (without feritte-coils) and maybe have small results.
Few months ago, i build an other myth (name englishPD) with perfect results. In this case i use a special feritte, because englishPD the secret is the special feritte.
Now i can see AlonsoPD and english PD has same philoshophy (method detection).
If i understand well ..what happen inside , for me is possible 30% build a PD only for gold.
I have a personall theory, but sometimes i have not answers for my questions.. who knows!
I know only one now, this extreme units need special CAD labs for produce same results. In this case i understand well now, why amateurs cannot build, but only with luck sometimes build a real unit.
regards

Fred
02-04-2014, 02:31 PM
Thanks Andreas.
As I said before, and by your observations, it also looks like the PD could work on the fluxgate magnetometer principle...
Some said that the magnetometer effect should be nulled out to "work" properly.
However, the main question remains: What is "working" ...

1878418785








Hi Fred
Yes this unit has something special. With this special null, unit detect very easy magnetic piece. My first experiments, unit detect very easy aluminium piece 6 meters distance, 30cm depth (i don't know how old is this alu-piece) and the strange for me.. if detect magnetic-piece unit stop detect magnetic lines from earth.
Joke is ... with perfect calibration all together coils-housing detect one euro ONLY 12CM DISTANCE.
I remember some members say here.. unit can detect a coin 20,30,40..cm distance. Maybe detect capacitor-phenomenon via hands and believes detect coin, because if don't make fine calibration produce this capacitor phenomenon.
For me this unit has many interest points and work same method other unit "name englishPDfor gold"
I try find free time and fine weather for external tests
regards

Goldmaxx
02-04-2014, 09:10 PM
I know only one now, this extreme units need special CAD labs for produce same results. In this case i understand well now,
why amateurs cannot build, but only with luck sometimes build a real unit.
regards


Hello Andreas
I like your project and would like to add something.
I'm no electronics expert, but with CAD its not a probem and can help you.
If it is helpful, I can construct you a 3D model with exact data of the Clone AlonsoPD with all what you need and place at to disposal here in the forum.
So it could be everyone watch, or measure it himself.

What do you think, that would be a helpful?

Best Regards
Goldmaxx

ANDREAS
02-05-2014, 12:23 PM
Hi Goldmaxx
I like your project and would like to add something.
This is not my project , i build only a real clone
I'm no electronics expert, but with CAD its not a probem and can help you.
Thank you very much about your help. I have not problem with CAD, because it's my job, the problem (not for me), but others members is.. they have not machines work via CAD for build materials
If it is helpful, I can construct you a 3D model with exact data of the Clone AlonsoPD with all what you need and place at to disposal here in the forum.
So it could be everyone watch, or measure it himself.
In this case i think you need a cdr file (corel) by me and with this file you can make a 3D model for. I think this 3D model can be helpful more members
regards

Goldmaxx
02-05-2014, 03:03 PM
Hi Andreas

Thank you for the quick response.
I can construct 3D CAD model and create a 3D pdf file from this model.
A 3D pdf can anyone who has the adobe reader (latest version) installed open and watch it.
You can rotate the model, zoom, represent parts in show or noshow and the most important, measure the parts and distances.
I think it is helpful for anyone here in the forum.


In this case i think you need a cdr file (corel) by me and with this file you can make a 3D model for. I think this 3D model can be helpful more members
regards

Yes, to create a 3D model, I need cdr files or drawings with dimensions from you.
If it is helpful, and it's okay for you, I will send you my email, so can you send me the data.

At that time, I've made for the Totem casing one.
I post it here again, and you can test it.

If you open it, first click with the left mouse button on the image to activate it and then you can rotate it with the left mouse button and zoom with the right, or scroll wheel.
At the top of the screen is the toolbar, you'll find all the tools to measure, make cuts and everything else.

Have fun with it.

Regards
Goldmaxx

LRLMAN
02-06-2014, 01:41 AM
Hi Fred
Yes this unit has something special. With this special null, unit detect very easy magnetic piece. My first experiments, unit detect very easy aluminium piece 6 meters distance, 30cm depth (i don't know how old is this alu-piece) and the strange for me.. if detect magnetic-piece unit stop detect magnetic lines from earth.
Joke is ... with perfect calibration all together coils-housing detect one euro ONLY 12CM DISTANCE.
I remember some members say here.. unit can detect a coin 20,30,40..cm distance. Maybe detect capacitor-phenomenon via hands and believes detect coin, because if don't make fine calibration produce this capacitor phenomenon.
For me this unit has many interest points and work same method other unit "name englishPDfor gold"
I try find free time and fine weather for external tests
regards

Andreas, how many centimeters has a 1 euro coin?

one of the two units that I have built, only detected a silver coin of 3.5 cm diameter to 15 or 18 cm away from the coil in the single mode omega.

This unit is it only has a PCB because the 6 PCB alonso unit can't detects more distance for the coin.

LRLMAN
02-06-2014, 02:23 AM
Andreas, how many centimeters has a 1 euro coin?

one of the two units that I have built, only detected a silver coin of 3.5 cm diameter to 15 or 18 cm away from the coil in the single mode omega.

This unit is it only has a PCB because the 6 PCB alonso unit can't detects more distance for the coin.


This is the type of the coin, that I say is the biggest on image in the left side

LRLMAN
02-06-2014, 02:26 AM
This is the image:

LRLMAN
02-06-2014, 05:12 AM
Andreas, Another thing, the omega coil that I did, have the followings sizes :


TX: 8.5 cm diameter with his small center of the omega have 4 cm diameter
magnet wire of 0.30 mm (0.29 mm here in mexico) with series 9+6+5+9 turns.

RX: 4 cm diameter, with magnet wire 0.20mm with 26+26 turns.


The turns that I put to the TX and RX antennas, was because morgan gave the values ​​measured in ohms and only with those amounts of turns and the measures of wire magnet i could get that values, I could never get those ohmic values ​​with the type of magnet wire and amounts of turns that morgan said.

Dave J.
02-06-2014, 06:05 AM
Back in the 1980's I build a bipolar pulse induction metal detector that worked fine with an air core searchcoil. I replaced it with a ferrite rod "probe" type searchcoil and was surprised to discover that it had become very sensitive to earth field-- I'd inadvertently constructed a fluxgate magnetometer.

--Dave J.

ANDREAS
02-06-2014, 06:39 AM
Andreas, how many centimeters has a 1 euro coin?

one of the two units that I have built, only detected a silver coin of 3.5 cm diameter to 15 or 18 cm away from the coil in the single mode omega.

This unit is it only has a PCB because the 6 PCB alonso unit can't detects more distance for the coin.
If we have perfect regulation all together max detection one euro coin is 10-12cm distance

ANDREAS
02-06-2014, 06:46 AM
Andreas, Another thing, the omega coil that I did, have the followings sizes :


TX: 8.5 cm diameter with his small center of the omega have 4 cm diameter
magnet wire of 0.30 mm (0.29 mm here in mexico) with series 9+6+5+9 turns.

RX: 4 cm diameter, with magnet wire 0.20mm with 26+26 turns.


The turns that I put to the TX and RX antennas, was because morgan gave the values ​​measured in ohms and only with those amounts of turns and the measures of wire magnet i could get that values, I could never get those ohmic values ​​with the type of magnet wire and amounts of turns that morgan said.
The turns coils on feritte depends on the magnetic permeability of feritte.
Need for experiments or more luck
About omega coil , this is a helthkit, my opinion need replace with a better stability schematic. I don't like it

ANDREAS
02-06-2014, 06:49 AM
Back in the 1980's I build a bipolar pulse induction metal detector that worked fine with an air core searchcoil. I replaced it with a ferrite rod "probe" type searchcoil and was surprised to discover that it had become very sensitive to earth field-- I'd inadvertently constructed a fluxgate magnetometer.

--Dave J.
Hi Dave J.
Maybe you are correct, but is not exactly this. As i say few posts ago, i have a personall theory, but i have not answers for all my questions
Regards

LRLMAN
02-06-2014, 07:45 AM
Hi all
Next step is omega-coils
attachment PDF
Note1: Original schematic publish Qiaozhi has for Tx coils 12+5+3+12. If you seePDF my omega has 12+3+5+12turns. This is correct.
We need high peaks RF transmitter with low-level modulation signal for better calibration
If we work with 12+5+3+12 turns TX coil you have 100% modulation signal 400-800HZ
with 12+3+5+12 modulation signal has level 45%
Note2:The dimensions are critical , if you want a properly nulling
regards

Andreas, i have some doubts and confusions, I have a question about this drawing that you present here are the measurements of the small coil that goes inside the omega TX; in this picture I see a TX and if I'm seeing good, it appears that within the circle is the RX coil to 35 mm?

So where is the small circle of omega TX coil and what measures should have this regarding the large coil TX?

also should measure 35 mm in diameter?

because if so then from where the 27.56 mm distance?

Dave J.
02-06-2014, 07:47 AM
The circuit block diagram of a bipolar PI is just about the same as that of the typical fluxgate.

LRLMAN
02-06-2014, 08:06 AM
The turns coils on feritte depends on the magnetic permeability of feritte.
Need for experiments or more luck
About omega coil , this is a helthkit, my opinion need replace with a better stability schematic. I don't like it


Ok Andreas then you are saying here that the type of omega inside morgan present of the head PD Alonso should be replaced by another type of TX and RX coils? may be for 2 doble OO?

Like as showed Esteban in an ancient thread or such as you did in your prototype that worked better?

like next images:

Or change the schematic and components???

LRLMAN
02-06-2014, 08:25 AM
Andreas,

I also have doubts about the position of the ferrites with respect to the direction where this points in cloned prototypes, if you look.... all ferrites are always pointing to the wires that going in the direction to the TX and RX omega coil,

electronically has something to do this for a good detection of this device?

see next image:

ANDREAS
02-06-2014, 01:53 PM
Andreas, i have some doubts and confusions, I have a question about this drawing that you present here are the measurements of the small coil that goes inside the omega TX; in this picture I see a TX and if I'm seeing good, it appears that within the circle is the RX coil to 35 mm?

So where is the small circle of omega TX coil and what measures should have this regarding the large coil TX?

also should measure 35 mm in diameter?

because if so then from where the 27.56 mm distance?
Attachment pdf file.
Red lines is turns wires. Up for omega coil and down for receiver coil
Black lines is forms-driver for coils
regrads

Nicolas
02-06-2014, 11:34 PM
If I good understand Andreas mean this

the RX is in center of TX? If not correct me

LRLMAN
02-07-2014, 03:23 AM
Hi Andreas Sorry for so many questions about, but the questions are many to finish this PD properly and to see if it work or not,.. if not then stop this project.

although the idea is to start make a different omega which that I have
to advance in this PD.

I have some more questions about the omega image:

LRLMAN
02-07-2014, 03:27 AM
I think all these questions are very important for making a perfect omega with some accuracy in order to give the PD a high performance.

ANDREAS
02-07-2014, 08:13 PM
Today (nw i am out my base), i export a PDFfile scale 1:1 via CAD. You need only print this and you have real dimensions for omega coil and Rx coil
regards

LRLMAN
02-08-2014, 12:21 AM
Today (nw i am out my base), i export a PDFfile scale 1:1 via CAD. You need only print this and you have real dimensions for omega coil and Rx coil
regards

Hey Andreas that sounds much better,

Yesterday I connected to PD an Omega coil equal that which morgan exposed in RS for his device but not detected little more distance than the omega I did, only 12 or 15 cms distance for coin similar diameter to 1 Euro

OMEGA MORGAN: TX: 5-2-2-5 and RX: 14+14 or 30+30 all magnet wire was to 0.15mm

handling this wire is very difficult, this is very thin

ANDREAS
02-08-2014, 03:39 PM
Hey Andreas that sounds much better,

Yesterday I connected to PD an Omega coil equal that which morgan exposed in RS for his device but not detected little more distance than the omega I did, only 12 or 15 cms distance for coin similar diameter to 1 Euro

OMEGA MORGAN: TX: 5-2-2-5 and RX: 14+14 or 30+30 all magnet wire was to 0.15mm

handling this wire is very difficult, this is very thin
Attachment PDF files. Print this and you have real dimensions about coils
About magnet wire don't need is a myth. Simple coil-wire is enough.
On information in the RS forum you believe there is truth;
I don't think. I'm sure Morgan and his friends, he gave affairs and opinions, just because .... don't know or they don't build this PD by members (Especially for my person, fear units production:lol:). I think they knows only the operating frequency of the original PD and I say this, because, using the same frequency in PDK
Regards

ayoni03
02-08-2014, 04:15 PM
Hi Andreas Sorry for so many questions about AlonsoPD.
Can you explain please how to connected omega tx coil for transmiter. Transmitter board on the 3 pole for Omega coil ,this is 5 pole 12+3+5+12 :frown:
Best regards..

Nicolas
02-08-2014, 07:07 PM
Hi Andreas Sorry for so many questions about AlonsoPD.
Can you explain please how to connected omega tx coil for transmiter. Transmitter board on the 3 pole for Omega coil ,this is 5 pole 12+3+5+12 :frown:
Best regards..

I think same this

ayoni03
02-09-2014, 03:32 PM
Hi Nicolas ,
Thank you very much for reply...İt is same vlf detector..maybe..
All the best....:)

reza vir
02-10-2014, 08:22 AM
Thanks ANDREAS and Friends :)

folharin
02-11-2014, 12:37 AM
1881518816


frequency l1[uh] L1 L2

40KHZ-100KHZ 60MH 4500TURNS 45turns
150khz-450khz 4mh 550turns 20turns
1mhz=3mhz 100uh 65turns 7turns

Goldmaxx
02-11-2014, 08:31 PM
Hi Andreas
I wanted start to produce the PCBs and have a question for the transmitter PCB.

In the schematic, is a resistor R7 drawn, but on the PCB is it not available.
Is that right?

Best Regards

http://www.longrangelocators.com/forums/ JekjFAAAgAElEQVR4nOydaXQc1Zn3b3X1opaAZM6ZnDNf5sPMm cmcmTcG72u2ycxwkglbAiEJScA2CAgQcLzbgGEIewzewQHDsBl jbMy+2wYv8oqNsPEm2bJl2ZZtWUu3eu+quu+Hf+qZR9WSMOqWW pKf3wedVnd1dW333v99tqu0IAiCUGgcx+H/KkEQvi7Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far0dYVmW1jqbzeKvbdu2bVuW5ThOIpHQWtu2rbWOxWL0uiPS6 TS2yWQyWut4PI79Y5/0E/SjgiAIhUIEiiDkS7FabydEo1HtygutdSaTcRyntbVVa51IJNLp NFp+Op3GR+2STCaxB0iQZDJJu4JeoZ/AzwmCIBQQESiCkC/Far0dASECPZHNZrPZbDqdhoUjnU7DcKK1jkQiZ7O3bDYLk4l27 TGWZaXTaeyZfgg/KgiCUChEoAhCvhSr9XYC/C/k2dGuC4YcOniTxEe7ZDIZbG9ZViKRgNXEcRzsCi/oh4p1poIg9FdEoAhCvhSr9XaEZVmwbQAcpM/nMwxDKRUKhXw+n1LK7/d3fl6lpaV4EQ6HTdMMBAKGYQSDQXydnziETjHOVRCEfosIFEHI l2K13s4h04hSCoEjeB+GENu26+rqgsGg1rqjGJR4PK6UCgaDgU CALCgtLS2IQVFKUfhtEU9TEIT+iggUQciXYrXejshkMsjW0Vqn 02k6wkQigfcdx8lms8OGDev84O+///6lS5e2trYqpU6cOIE90KdKKQrCJfkiCIJQKESgCEK+FKv1dk4m k0mlUlprpVQymURThzTBi2PHjpmmyZ1BHmpra23bjkajhmFUVV XhTewqmUzixFOplEgTQRC6AxEogpAvxWq9VIaEKpGQtyWbzTqO Y9u24zimaXLLB8JmsXFJSUkqleLZyPzr69evV0r5/f5AIAAnEVczhmFotwfx9COCIAj5IwJFEPKlWK0XJJNJy7JSqRT ybig9R2tt23Zra6tpmtrVHLFYjNdVU0pRAg7UiWVZmUwGn/r9/traWq57eCwLFyiSxSMIQsERgSII+VKs1ptMJrliaG5uxotsNgu 7CKkQcsTArKK1tixLKeX3+xEna9s21U0hOwqydQzD8Pv9+BTBs/hUBIogCN2KCBRByJditV7Ctm2Em/AqsdrN/lVKkTqhIFmqZRKLxaBasA2ZXlDeDduQcYWXPBGBIghCtyICRRD ypbitN5FIkNmDDCSRSIRKu4ZCIYgMiBj4fTQrXkLfIi1C9hJkE dN3NesyRKAIgtCtiEARhHwpYutNp9OQDqj6mkqlYrFYRUWFduu gZDIZwzBSqRRFs0Kd7N+/f8WKFRUVFVAk5NbhpU2qq6tXrVq1Zs0afBSLxRKJhAgUQRB6Bh EogpAvxWq9UBVUFtbv92utH3zwQdM0sc5OKpWyLCsYDJKAwEI8 n332mVLqZz/7WTAYXLJkiXZDaLENNt61a5dS6qqrrvL7/Y8//jhkUEdZPCJQBEEoOCJQBCFfith6W1pa8DqZTKKoSV1dnVIK4SZ QMEop5BvTt+67774bb7wxHo+vX78eOT6a1ZNFHvL8+fPLy8uTy eTGjRsDgQAWCOR1Y0WgCILQrYhAEYR8KVbr1W4DpmwdvOPz+Xh iMFUx0a4naNGiRSNHjqyqqpo7d+7IkSOxMeJO4BhKpVIvvPDCk CFD6uvrFy1aNGjQIOwNGgWvpQ6KIAjdiggUQciXYrXebDZbX19//PhxrTUMJ1pry7J8Pp/WOhaLQXngX81SiCORyBVXXGEYxo9+9KO1a9ciQoVSdSBBGhsbr 7jiCpzgJ598woNngVhQBEHoVkSgCEK+FLH17t27Vynl9/vD4TCECK1ajG1Qkz6TyZA6aW5uJtdPY2Mj1xbwBFmWRdYUpVQ8 Htcs5UdcPIIg9AwiUAQhX4rVehGyeuTIEcdx8JeydfBpa2srPD 7arXCPnGToiXA4TCsb41OqeR+LxfBaKZVKpVA9xbZt2kCLQBEE oZsRgSII+VKs1ptOp/lCfY7jRKNR7WoRqlwSCoVoaR7aOJVK4chhWaE6KLwUWyKRwDb0 KyJQBEHoMUSgCEK+FKv1ApS0R/6w1ppW0oF9JR6PI2aWSq6hDopt26FQKJlMkjTBt6jmPfZgGAZU Szqd5gEoWgSKIAjdjAgUQciXYrXeTCZDBWTpL4wcvG69UsojI5 LJZCKR8Pv9sLXAd0P6gza2bVspRQXvtdRBEQShBxGBIgj5UtzW y2NHENDKq8E6jmMYBr1DobIIgNUsbUcz/UErHmMpQfIWYT94LQJFEIRuRQSKIORLsVpvR0BGkGoxTdPv9+N QTdNUSpWUlCilgsGgUgqFaDvC7/dTWhD+0vtU4Q3FUUSjCIJQWESgCEK+FKv1dkQymSTjCtYlxvuQ EZlMBrG0hmHwoNd2UUqRNQUShJtbqECt4zieCBVBEIQ8EYEiCP lSrNbbCZAg2WyWsnIgIEhSpNNplMbv3PKBVGSKn0U9FdoV9k8/JwiCUEBEoAhCvhSr9XYE9ASVpacEH7ygmrDKTTPuaD+UZpzNZv FdCkahvZEviQq4CYIgFAQRKIKQL8VqvR1BjhusZqy1jsViVBwW VdcsyyopKYlEIp1bUPx+PxVBSSaTsLgkk0moE8uySLJ8pbdIEA ThayECRRDypVittxOi0SjqxmqtaaXAxsZGfMpXOUYNt3bRWiMS NpVKoXqKdmNQaO2eRCJBBeIEQRAKiAgUQciXYrXejoBVA7aTTC aDmFkoCe2aVWhNwU5AoTbtChry5mBXyWSSMpZ1W++PIAhC/ohAEYR8KVbr7Qiq0sazf2ktHrzQ7irHnceOGIaB2irQHzC30Fe wf0Sx8KL7giAI+SMCRRDypVittwvwmrOwjgCPjQSkUqlgMEhRt GIjEQShJxGBIgj5UqzW2wUogkS3FSitra28pCziYbUbp4L3YTi ReieCIPQMIlAEIV+K1Xq7QLsCBVokFoshsgShtVrr1tZWxVY81 jn9hSAIQvchAkUQ8qVYrbcLtCtQEDObyWSojBvyh2nFY1pQUEr aC4LQY4hAEYR8KVbr7QIduXj4UsZYU1BrnclkcHZU6g0Bs4IgC D2ACBRByJditd4u0K5AgY0kk8mkUql0Oh2Px1tbWxEtGwgEYFx JJpONjY1UDUUQBKG7EYEiCPlSrNbbBTqyoOBNvK+UCoVCdHahU Mjv9+OdAwcOSC6PIAg9gwgUQciXYrXeLtBJDAp9ZNv2hAkTXnj hBb7xM888M3XqVNRBKdrRC4JwLiECRRDypVittwt0VAfFtm1au MeyrIaGhtGjR1dVVeHf/fv3jxkz5syZM2I+EQShxxCBIgj5UqzW2wXataDAaoLXlmUhYPa tt94aO3asbduJROKKK654/fXX8S3J4hEEoWcQgSII+VKs1tsFOopBge2E0om11tlsdvLkycu XL3/mmWdmzJihtU6n0xSnIgiC0N2IQBGEfClW6+0CHVlQIE1okZ1MJ mNZ1tGjR8Ph8IABA+rq6vCVWCxGle8FQRC6FREogpAvxWq9XaC TSrL4iGq1QbIsXbr0nXfe0VrzQviCIAg9gAgUQciXYrXeLtCRB UUzgcLXJUbhk0wmk81m0+l0KpUSF48gCD2DCBRByJditd4u0FE MCuwleD+bzWLxHQSjNDQ0YBuKU+n5wxYE4RxEBIog5EuxWm8X6 KgOCt6nSvY80AQGlWw2KwvxCILQk4hAEYR8KVbr7QId1UERBEH obYhAEYR8KVbr7QKdlLoXBEHoVYhAEYR8KVbr7QIiUARB6CuIQ BGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQBEHoK4hAEYR8KVb r7QIiUARB6CuIQBGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQB EHoK4hAEYR8KVbr7QJSB0UQhL6CCBRByJditd4uIBYUQRD6CiJ QBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBRBEPoKIlAEIV+K1 Xq7gAgUQRD6CiJQBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBR BEPoKIlAEIV+K1Xq7gAgUQRD6CiJQBCFfitV6u4DUQREEoa8gA kUQ8qVYrbcLiAVFEIS+gggUQciXYrXeLiACRRCEvoIIFEHIl2K 13i4gAkUQhL6CCBRByJditd4uIAJFEIS+gggUQciXYrXeLiACR RCEvoIIFEHIl2K13i4gAkUQhL6CCBRByJditd4uIAJFEIS+ggg UQciXYrXeLiB1UARBEAThHKEvCRSxoAiCIAjCOYIIFEEQBEEQe h0iUARBEARB6HWIQBEEQRAEodchAkUQBEEQhF6HCBRBEARBEHo dIlAEQRAEQeh19CWBorVOJBJ4gQou8Xic/mazWSqUYllWJpPBlplMJpvNcnEjCIIgCEIvp88IFNu2oTkcx0m lUoFAAJojk8ngI8dxIF/wvtY6nU7jK5ZlaVEngiAIgtB36DMCBXYREhmGYSSTSVItra2t2 Ab/wqZi23Y2m9VaJ5NJx3Ecx0mn00U7AUEQBEEQzpo+I1BgBYnFYl rrdDpdVlZG70OdkBzBlnhNiiSVShXjqAVBEARB6Ap9RqBAcGit I5HIa6+9ppRav349GVTS6bTjONFoFO+QZwdixbbtdDptWRbtRB AEQRCE3kyfEShw8cydO3fgwIELFy5sbm7WWqdSKcTAkqWkubn5 2LFjtm1blpVKperq6rRrR0kmk0U8fkEQBEEQzp4+I1C01rFY7P XXX7/iiituu+22AwcOwGuD5B3btpVSpmmGQiGlVDAY1Fpfd911paWlm UwGthOJQREEQRCEvkKfESjwziDQZP369b/4xS8mTpy4d+9e7cbAlpSUZDKZVCq1Zs0apZTjOKtXrzYMg7w8R T4BQRAEQRDOmj4jULSrTizLgrNm3bp1sKbs2rXLsiyllFLKMAy l1LFjx2AsUUpBoFBZFHh/bNsmj48EpghCR5B7lKyPFMsFkyRaFt6hViYUEPRg9IL/S6/PETzlrHjtCZ7jKRScjq6tbdv4iEqUFZY+I1BisZinnEljY+PCh QtN01y+fLnW2ufznThxYsSIEbt27ULMrGVZfr8fG8Mf1NraytN 5UENFBIogdATUPF7TeICWiGR+7bpZRZ10E9TjoadKpVJkTuYCB ZUUinKEPQCdKU4TXbfWOh6Pk0bRbqCh2MsLjuPieZ9EMw2jhb3 4fUagaK0zmUxLS4vW+vTp0/PmzVNKPf7448ePH9daZ7NZ0zTT6XR1dfWwYcMqKyu11jCrIIUn lUpRndlMJoPnmCZ/olEEoV3QakiC2C7omNLpNCYD2FiS+bsDy7LoIlNPhcC7c2okRj eumTLGrB2pEpr158U7xnMFrldILILCXv8+I1DwLDY3N8+fP98w jAULFpw4cYI+hRbRWqfT6Ugksm/fPtu2/X6/aZp81Z5MJoNKKrZtp1IpyJR+PO0QhDyhCod8so5xgoy6ra2t55 qvoSjYto1rnnWBfYv3YE4/hU4QKoQmnNFoFM5HTET78RUoLvwBw/yEnkC6I3x5mUI9831GoDiOk81mx48f///+3//74IMPNHPB4rk8cOCAUioQCCAGZfPmzYhKCQaDkUiEIlRuvfVWh y3ZIx2rIHQOpu8YCG3bDofDPp8P6XI0OiLV3xGtX2jIf4Fra1k WlcnGxfeMH/0V6qs9/TY5eujfc8qqVBRIo5Bnh9yOkCwF/K0+I1C0q5E3btz4i1/84r/+67+2bt2q2VqABw4cqKio0Fq/+eabSqnPPvvs8OHDmUzGNM3q6upgMJjNZltbW5VSdDU182gW88 QEobcCKyMZS5LJJDykSJTTWn/66adoTW+++SY8sEJhwYjLC2TzYdhxfT0U/t8voZPV7owUXTc+5avDptPp4h5qP4bbVPAOxSbT38LK5T4jUPg jGI/Ht23bdskll1x22WXr16/XWkOjXHDBBbCU7Nq16/Dhw6ZpBoNBpdTJkyd9Pl9paalhGNdff73WGiZrlEjR4rYUhI45 c+aMZquFazfkS2udSqWWLFlSXl7+0EMP3XzzzfCfCgWE0qMct9 qTYRjwXJum6ff7fT6fYRg+nw8vVD/F5/PhhWEYhmEEg0GcL04Z1wEblJSUFO0o+y+41D4GXXzTNFtbW23m aizgeNpnBApUcyaT4QnDy5Yt+6d/+qeZM2ei6c6ZMyebzR4/ftxxHKVURUVFNBqNRCJaa9M0x44dO3bs2DNnzvBQPqmSIgidw2 dIFCerlNJukuEvf/nLb3/727TQhFBYqLu3LAsRdTD60n0517ovPmoqV5HQp+K171bIfEJhK Lj4lN9XWHdEnxEoWutEIkFtsqamZtq0aYMHD165cmUqlUqn08q 1OeMBNQyDr8ijlEqlUuPHjx87diz2xjtTeaaFcxxeyIRiMDsZ+ ZQbk7506dLrr7/+0UcfHTduHL6Ob+Hr/B2ha/Ceino5ckxj5tZjNmDPjI4Cj+j9njkSHAAeQngZ6JD4krGaXRly U7Yb+9kL8ZwRQW2K/H3tfh0nSGXAaCdUgZ223LNnz6uvvrps2bLbbrvt7rvvnjt37qp Vq3bv3o25vW6v/Ax2i1BlPJN8GlNA+pJAwZWtrKycNGnSRRdd9MYbb8RiMZpJwOb JLYEImMWcA49yIpFYtWqVZu2KbqEgnONQgJvNCp90RDgcxtC4d u1avHjrrbfq6+vp6xgPKMOiSOfUH6BO3zMYUHonDTY97KqmWBA asbhA6dbhnwQKl9HozOkdLMemXbECt37v1yWAt0G8wLlQAh1ed GKu4IHVeIdHsFqW1dTU9PTTTw8aNEgpVVZWppSaNWvW7bffPmz YMPLgzJ8/f/fu3dqN7MEvkjrROc/kuStQHMdJJpO33nrrP/7jP65cuTKZTFJ4TmtrKz180WiUvhKPx6nkZTKZxGvEe/PEBAlAEQTuR0ilUvF4HFrfOAswJSgpKUGCj1IqHA6bpgn/NDe/C12gXYHS2NiotVZK+f1+cnnw190H3fFAIICBjar52ax2XM8IFO 0a/JDF+e6772q3Ytbvfve7WbNmISqgrKwsEAjw6asnkKI3Ew6H6a9 mTRUSoXMLCjezIUQMl2vVqlXDhw9XSs2aNWvjxo3Hjh2jXaFqQ GVl5ZIlSzDJnzdvnsfuwpPLlAgU7V67Xbt2TZgwYdSoUa+99lp rayspErpeJJ/bdYlhY4pGJsuVzPAEgWbkra2t2u39nQ5Adg+ld2o334dKZtFHP p9P2ldBcBzHMAzqr1SOIumZsRaZB36/n37uG9/4BvWlPSxQ+EN7//33YzStr6+/6KKLAoHAhg0btNYIUkFivK8tvVadQNn7/X7cYvwluU/R6J0sMcEtbdrVKJZlJRKJmTNnmqZ55513ouq6dtez4+WO0ul0L BZraWn5y1/+4vf7v/e97x04cEBrjYAK+nURKH+F26b27NmjlDp48CAuBxm78KTGYjGH lT3WbvAKZWzz7tKzvIUgnLNgdCETLi202S42q4CC75I5HaEn5H 1QSomRMn8wBsBhTXF1Pp8Pc1xyZ/fM8EnRqYFAAD9dLIFCP4RCYXPmzFFKfetb3xo0aFAkEkmlUolE wjAM0iimaSISoNdKEwJCUCn1zW9+E9JEKUXZc/RIdNRI+XSCtolEIjfddJNSasWKFXQlcTG5NxaTf9pVZWXlhRde OGbMmIMHD2InmhkFlAgUgNqvuIKGYcTjccfNxiaNwuvG8OWjst ksIno85ZClAoogaKbRoTxisVggEOjc8kG9JEWvYx5GBbWwuvh5 550nFpT8wRjg8/m0e7OU64DrGc8OoHHd7/djBEVxh2IJFJphIvrks88+gxYZN24cxtFsNkslxfGiT6gTUpyU ykvHTKE/uBQ8/z/3gaGJBK7PbbfdZhjGzp07sQ0FPOi2JgB6AWNqJpOpr68fPHjws GHDGhoatBvQo0Wg5IIpGr9PdHVwDxCdR+9ApmBKR7Xteb0j6T0 FgUcXAtVp7Ai6J76EKYl+dGoUjtD5foSzBCMNJtC4UxQkpNk6j j1JJpM5//zzMZrS+NTzFhQKx16+fDkqXX344YdKqYsuuqi+vj6bzUKylJaW YizndN8R5gm3i6BlKebigcGyc8M/P0Hcl2XLlhmG8eGHHyI6k+d/4elKp9PUihEOQeNpOp2ura0NBAI33XQTzUwQyikCRWs3l4w6RO UmmJGCJqsyRWxRh0s+M82WbNCuD8iRGBThnIdmWuSgCQaDvOF4 iEajPPkQfda+ffvi8TgWyaKeDmETPXAK/ZtcgYIAVa7/ejLFF/dUubEdxRIolKFTXV3t9/tRE8txnIMHDw4fPnzixInaNTUpN8I0dwGjXgtPwAkEAjgL27Z5 RcTOg2TxSCQSiUgkEgqFpkyZ4tkz2jgl6egcp4/jOLS6wgcffKCU2r59O7ksRKD8H/wS8CUAuxUqNUuWNAptEYR+A5+Coz/y+XzpdJqKLuBFMpk8efLkFVdcoZQaOXLk0aNH6evPPPMM2aWbm ppohufz+cSRmg+80+f9HrkDijjW0tjvyfWlRAReV9PzgnwQtDd 8l0tezbzwyGH2bE9RopZl7d+/nzJgLctqbm4+cuSI1ho5OzhInpidu+ZJu2YVLrl4XR8np/hK5+TKfbtt8Xh+XjpnsMe99gx83APAKw/xn8Pt+Mtf/qKUqqur066w4HBngsVWz+ZiFP9eddVVV155JbkmtFubRwRKm4v VYwIl9wB02/UvBKEfoF0jJalwmprDbGm7fd+sWbMGDRpUVVX129/+9uqrr6aBpLa2tqWlxbbt0tLSyspKvJlOp8PhsASh50MvFCj0i 18pUDTzBfB1W2zWmUMHYxK/fft2nNTy5cvT6TQcDeTXsF3LB15DFmDGyNVGPB4nyzrCtCGdNV uph+aZyWQSMaEdCRRyDOm2ywDRkVCc+NlcOkRDYp/U4uz2LDrtChTF4oJxBchjQGfEfTd4Exdh0aJF2vXAOu1Bbdyz5 BMOD7t6//33lVKIliUfrggUrYskULLZbCaToWClUCiEF2dTH0IQ+gqqbX0L yhog/H4/evmSkpIHHnhAa7169eqhQ4dqreG6RieFjU+dOoX+ly8rKHSNPi dQMLDheYAg4LN5Ho5NkRBgx44dSqlHH330gQceUEo999xzeN/v93PRY7t11imnnfZAa6HYzK6AhXuUUviIYrq5X6MjgWK3XS0Zc oSqV/BVU3CyHV2xdk0sfIZwlgKFPwBcC5IgwwHzEim2be/YscMwjJ07d9LF6WiOTaGvTU1NZGfiFzmdTvv9/vnz52PdUC0ChSiKQAGG60fHI4iEIEHoN9A0FA0tkUiEQiF6/h13kmdZ1rp16/x+/7Rp05RSL7zwgnY797q6OuRNhMPhw4cPkzUeYRNCl3H6oEDBI2G zSpitra3kJc+1qMXjcSxXMnHixHg8HolEJk2ahFOzbRuxJhZbq 5nSdvjiDLTneDyOLpqm+Eqp8847T7sVRHB43E7gaQ782KikFmQ Kd/FjJw7Lt+8cMsBQTPrXFShI4yL4F2EagXgiPYEXzz33nGmaOHJu x2oX7IffTfoX9VFnzpz5m9/8ho5QBMpfKYpAIRsjCqjAQNczPy0IPQmms5ZlQWeg3+EVEWjuu HPnzjfeeGPLli2azUefe+45iuOjwpSpVMo0zU5mlsJX0ucECkE T+paWltyd4FnCM2a7Qa/0vNEqdMlkMhgMOq7hhGwGNN2nzAnyVOq2ZhU6SDKEkJmBBuOOB AoltpA1AjuHAPLUBe38RpCUcVh4x9cVKB4XD10QbMPHJl50Y9q 0aTfffDP/0XalCfl04KulZptIJLj8euGFF8LhcCKRwPUUgfJXiiJQHMfJZD Kohkktp+d7BEHoVjKZDIoMUXfvaWLU96FPpzVB0Bbw4tChQ9Fo tLGxEa2GhE5Pnkj/oy8KFM0yengqCiCbBN8nLCgos6G1jsViyl0ml4xw3NqB4Zl+Do qB+yPI1hIIBKhOPA3qvJoI7cejTvixYbNkMkkNAVYQOrWzv3rY G5U174KLh19hfBdSz3aDSMhMApkyY8aMO+64g9QYrUneLh0tP0 k9w6pVqwKBAD8wEShaF0+goOVorZPJpKdIjiD0D9DF4PFuampy HMfv96NHow7LccP6ePFsx3ESiQRlT9B0kyzhEoOSJ31aoGBU42 GklBdJr7nRbtSoUSdOnEilUp9//nlZWdlDDz2kczQuFxMkHegAeJ0xHAMOsqysLBqNLl26NBKJ2La 9ZcuW7du3Y0TvXKCg/CDej8fj7777bktLSyaT2bRp0549e2ggb25u/sorRlafZDL5wQcf7N27l8TWWQqUTlw8nsrpkBq4LBMnTrz77rs 1K73R0fWk62azWBb+rWw2u2LFCuXWIdMiUIiiCBT0xeFwmCRqR ypbEPouuVZibkzmAwx1tZpNUrU7I9Rs6gzzuN/vz+0ThbOn7woUqjCm2yqS3PEY/x4+fHjUqFEoXuI4zoIFCxCXHQ6HPXZr/jqVStGwzW0n9KNUOvbaa68977zzMMwrpUKh0Nq1a3XbEdpzYDy k17Ks8vJyxVYY8Pv969ev1yzT7WyuXiqVeuqpp7Cfdn+33cE+1 8WDhkbqyrIsnBci3IPBIC+Qj1h40zRRd7iTYHntLqbLbxZODTr yrbfe8vv9dBgiUP4KvwQ9HySrO3huBKEfwGVHPk2sULtD1goAA CAASURBVPsRiN4sUDDmwQPucVXQqGaaJkWEUK0OmqzTVxCx1ND QcPLkSdrJ3r17E4kEj/Ow2Pqv9EVyBmmmEsiPY7hr8ZimuWXLFtgVMplMeXm5YRjcT6SZ wPKcbCaTqa6uVkp9+umneLO5ufkPf/gD9xx1ftG4xlJKPfHEE9BVDqtux3fSiUDpHLLK0KVYsGDBiBEj bHdNGCcn5buTibftpnNrN5vpwQcf/NWvfgXnkeM4tBooF6lfeZBnSV8SKEXs9bhAkemg0P8QgdJr6bU CxXEcmovzkdViyyakUinlFqTnPSct2koPDAK0v/jiC5gWNm/ejOEwEom89NJLmzdvtlk+LTkTIUrosmA0dRyH9p9KpRC7XVJSw lfitW37008/VW0rrDhtvS30wnLRWre2tpJP8+OPPybv/1leOgrysG3b5/PhaPF1uj7tBhJ0WaBks1lUgEVZRayqSLfJo6va1WfcHKW1Hjhw 4H333UenYxgGv5WFRQTKWSECRejfiEDptfRagQLTBY2aMEuQnY ACNoPBIH0LcaZkPiFTCmb2mzdvVko98MADf/7znw3D2LFjh9Z60aJFhmFUVFTQuO60rTgC1wa8D5oZMxKJBBXq UEqVlpY6jlNfX9/S0uI4zpo1a8Lh8IMPPqjdLBXyZXCB4gna4MlBCMW4//77z+aKcQ+Xdq07XNhFo1EuuXSBBAqIRqOhUOjRRx/1rPqSa/XxeN9Ir9B12Lp1ayAQWLduHb4uAuX/EIEiCN2ECJReS68VKNyC0u60G34EpVQ8Hqd/NbOmUEl1rXUsFvP7/ePGjYOd4/rrr1dKvfLKK6FQaPbs2Tqn48XsH8omFAo5rOy9ZpGeWCwQCwZt 2LDB7/fTv+Xl5a2trZSWTF/xWFDIvIE8fNu2E4kEAlAGDBgQi8VIk3WypAPtkysVuHgikQj/IgX8FkSgOG5qz6RJk77//e8j37u5udmjTsg+xH+UJIjjBrtoradPnz5ixIhEIkHeInHx/BURKILQTYhA6bX0coHi8/koRpUPrplMBqGjfEyNxWJ81AeUeExbIl/yW9/6lmEYY8eOJSGCj7hDJJvNtrS0cE+NZumW+EsXyjCM3/3ud9FolFa8pxPpSKCQ6KExmALG16xZwxXD2Y8L2DIajSo3uJin xfHLy7919gKFTo03xtraWqXUk08+ScdPmoP/Vq5A4RlSGzduVEotXbqU/5AIlL8iAkUQugkRKL2WXitQNAuSxRCOYY/WmNRaRyKRb37zmygjS5Xm8RFqpVOqSCqVCoVCJFxOnDihlPrpT 39K1Y0zmQxV8qBFevGvcmvO8kpllFYWDAaDwaBSqqysLFcEYOG ejlw8mvllWltbq6qqKMZWa/3RRx8FAgHa4CtL3ePsaP84bJRnpSOnAyiIQCEVYlnWI4884vf7 N27cyI/KU++EizbuJ9Jat7S0DB8+/Ne//jUuLHncxMXzV0SgCEI3IQKl19JrBQpZUBBLQR1jIpGorq5+773 3nn766RkzZiilnn322TfeeGPbtm1QGChsTxtToR1YYjCgbtu2j eI6eVgGRvRMJnP69Olly5a98sort9xySzgcnj179htvvFFVVXX y5EnNLDQo+AZM06TjxK/wyBUakrlAcViKzbFjx5RSw4YNO3HiRDabXbhwod/vpyz6s7wLvE4donP4Fz119PkXv5ZA0UyjOG49t1gsNnr06Isuu gjHTx/RD5GXh4ARBZVzb7jhhtLS0s8++0yzNQhFoPwfIlAEoZsQgdJr6 bUCBUGyKJ6BiXh9ff2SJUu+//3v48BCodDkyZOVUkOGDDFNE7m+ixcv3rdvn3YXdsEObbfUvVIK VV+VUtheKRUIBBx31ZszZ868/PLLI0eOVEoFg0HDMGbMmOH3+4cMGUIHs2DBgpqaGiQBOY6DKBn UCFHuysaAEn3pGnqiRKm3xxhfXV3Na40sWrSosbGRNut8aODFh KgYiXKTgPiP5m9B8ZwUKbyjR4+OHDlyxIgR9fX1ZH/q6Plx3PiVZDJ57bXX+v3+NWvW0KeUaiQuHq3dS0xWQaVUTU1NA bUCdzHiL/kFly5din6Bxzc5blQUKU3sx2IraBfq2AShuymgsKCdWO5SbQU7 ynMPbnLXbOVFpO9irDUMAy8QDoLXoVAIQym8MDSm+v1+w128ms bszvH5fKYLSQe8xkcQKG+++eagQYNCodC0adM++uijaDSKJwEh tPF4fOfOnU888QT28PTTT8diMQrVJKcJeRx4F0od74oVK0aOHG kYxqRJkz755BMsGWPbtt/vdxynqampqqrqT3/6Ew7pySefRGV6OpHcGmXtnq9nA6rzhq/j9OnE6ZrgUzi8+GXv6FfyhI4K8IOhsmz88PAiEAgcP3584MCBS qkPP/yQlAQV5OUPG96sqan57//+b9M0UdTOzlktmXcUBdfKfabvoOiqbDb77LPPBoPBESNG1NXV2 QWi3TI7mUzm2WefVUqdf/75tbW1FDBFwed0P7ASRK4PkstYQei1dIflg6bFeR/dOQ2PCVBKkfJDUVTPEEiDKKBlaDA+0VfIONERfJ98LDcMo7S01 LMTn893xx13BAKBO+644/Dhw5TfobVOp9MlJSXwCNBqunPmzFFKDRs2DItK5i4ITMYVx11c 17KsWbNmKaUmTZq0f/9+myUBZTIZ5QbJYj+tra2PPfaYUmro0KEnTpyAnuCGk6+ECxQq 8oZ36KxxHQzD8Pv9iHHhqqWTm1IoSGKiaCzJqdxj8Eilurq6W2 65RSk1btw4Xq2fr1Nh2/aZM2dmz56tlPrhD3+4fft2mpPTYykCpQ1UZuehhx7iF70gIPGM 33t6oMvKynBTKY7JcRws2413cDvpOG0W5SR2FKFPUECBwl34Wg RKgUBnopSy3XxX9E6wmqA/NE0TI2UwGKRxFMMY79/wmkaysxkFTYZSqrS0lAwGePGNb3zjnXfeQbwCRbDSUvB0Fqj2k clk9uzZM3To0JEjRx45ckS7Wb70XQoTodpo48ePV0qtXr1aM4M KzfjpJ9LpNMSNZVl79+4dOnTomDFjlFvbHuaNTmwnueeO8y0pK fEIDowOkD74CFcV1584myv8dcFoxY8nEAjwW0wvYC0jhYqLEA6 HcXnffPNNeMq+853vzJkz55133tm/f//hw4c3btz4wgsv3HTTTUqpCy64YOHChWfOnNHMvuJBBIrWWkMQU BCTUgoVkQuFZ60Hvsr2888/D1clZgCJRIKHMsXjcUp7o2gvHm3Uo5dJELpEAQWKuHi6A3QmuC k0ftP4FwgEaHUYctx4fBA+n6+kpASbYUhTna7JQsMhVAigMdsz o0PlLppec1uyYmvxaDaGVVdXDxkyZOTIkSdOnODFZ8m9nkqlMA McP358IBDYsGEDvY89WO56wkopTyAtPj169OiQIUN+8IMf0Bnh LLhS6RzyZCmlgsEgP2tukoEIIBlE6+CQCuzatLnd+8Lvbzgchk AkHx/ZcsjwQxvTRUDRXrjYPvnkk3nz5gWDQQr9gWVo7Nixa9eubWhoc NouHGi764BS5pEhAoUgV1kgEIBkKeyebduGs0a37WeVUtwfhPf T6TTMj9A3VBXRduvbFPDwBKFbKbgFRQRKYfEIFPRXtPoMrVAD6 UDjqHaLlsICQboBG3cyYeM/arv1MChhFfGnmUxm5cqVfr8fy9MAy10Bx7IslIRHgIh2Iwg1G8 aQSzxu3DjN1IbtlqtHZ/v8888HAoHVq1eT7HAch3ppfIWeVZptaq3ROR8+fFgpdf311+u2 IqndM83FdpcTgg6gRQFJTuEddPjw/uNNnhHdyXX+umjX2qS1jsVikAjpdJpSu0mooaQ9TySGkAqFQja LmNTuxPvw4cPHjh3bt29fbW2tdv0ANBXHA2a1XbcIiEDRWmvbt skZadu2YRj0jBYQ2iFvZtFoFPeAmhC5SPGYkk+HugmHJafl3lF B6G04EoPSu3FcFw91MuigMERROVTNilvgyqdSqddeew3GA80SW T0FMDrBMzcjUGrsgQceoIGZekjq8Wx3JT+aTyJwxHYrqr3//vuhUOjjjz/GSO9ZhiYajQaDwSlTprTb29tuZgMuC4kGlCrR7uJ2a9asMU1z4 8aNEBZUfOxsumV6hhHF4jBV5LjxMQcPHqypqTl06FBVVZVmY4d mqzef5aX+SjzHHI/HcdOrq6sPHTpUU1NTU1ODB8BzozOZDJetuJtQNtqtRNfU1KRZV ToqZ0emLAJixaMOcw8vf/pM34HnCWtEYQ13zbLY88dxdTfmB7hDsVhs1apVI0eONE2THjLH cQwWfPTFF19UVFTgnXA4DJuYZkr27DsCQSgWhRIoPDLAkRiUQk C3hsegaLeHQY0KbMm7mnQ6Tfmfx48fb2ho8Pl8sO3brHpp5z+a C8YzDPxPPPGEYRhHjx4ltaHby8dRLBEaB8AruVmW9fOf//zyyy/XTMRgqT/Lsh5//HGl1OnTp+l9WqjPchfc0VpjOCAJRYOFdueHl19++cUXX4yzhkY 5S4GCnyAPDo3K+PvKK6+MHj0aYwF8K0OGDHnppZcwmnArVwHBe dGyR8uWLUMoCTl0Ro4c+dJLL2lWURdCCv6mkpISklbavdHZbDa RSLz77ruJRMJxbWbJZHLr1q11dXVks4FS4epTi0ABPEYkk8kYh lHwG0/PPZ7dFStWfPvb3160aBEq/1DDTiaToVBIax2LxXbu3Onz+T755JPq6mqttVLq4MGD3FFK7UQ QejOFEiiJRAJLr5HhUARKPtBlxAty8XhqkJMohKOZSrxrZpOgG 0HSod3UxVzIZw3TNfaWTCaVUk8++aRm2QBcmlB3iq/QYMnXGcY269atU0pt27ZNs8BY7S5EPG/ePM8+6QWNCMqtGU/xf3QkeH/Lli2maVZUVJylNOEulWw2S8EodJrZbBaJMJMmTdq6dWt1dXVlZ eUXX3wxbdo0pVR5eTk0nM4prJI/dGCpVOrmm29WSk2ZMmXz5s27d+/ev3//tm3bpkyZopS64YYbqBIMzoIyjekBgOSFZQV/x48fDxGp3bUboXs0iyuCRKad9E+B4nmmbZboa9s24ne0e1G42b BQ9mcP1NQpRGvz5s0XX3zxlVdeuW7dOs1ajm3bvCTAjh07Tp8+ TbFL8AvSoRb86SwgtFgGN8yS35FMSkJvgFyKpNTPfoX3s4FHOK Jfw4Qbv8V722g0eumll/r9/ssvv/zw4cPaTZ3AZjfccAMPfdAiUPKGdyCefo97Xmy30rx2p3NUNIV7 fLi7gVuFeYd84MABbhUAiCpFZXfLsr788kul1N69e3NdP07bEu nkH/ecF4mq5uZm0zQXL15MjnJs8NlnnymlPvvsM9stQk8/xB3rXDZ5OlvsCo4MklMUQcK3J7XHXWYERbnSZs8995xSasOGDT gSKojlOM7q1auVUvfcc49mTn9As9ZTp04NGjSIxpEbbrgBbql0 On3DDTfwYNi6ujrdNuiYumUcQ0VFhePWitVuZ/7RRx8pd6Vlx3EoPslwS8OREU65GdrZbHbz5s0+n2/VqlVa67Vr15qmeeONN5JZyxPjotsbi/uPQMHTGY1G8Rdvwr6ES4ByyFygFNZB7sFjONXuAPDJJ59cdtll l1566ebNm7Wr0PFYBAKBHTt2QIRivU1EgXmafWGPs1CQiS8ej9 OA57BSLjQj4Wck9Ab4A2YXCM1qDGqtMT/Gr1BGPT76n//5n6FDh3755ZfXX3/9NddcQ0UwM5nMuHHj5s2bFw6H4XvFrMNga8oLXaAjgcKzBBx35 V7NBjOlFCnLaDQaCoVoNshHetoJ3abGxsYRI0aMGjXqyJEjXJv abkCJbdvPPvtsWVkZovFogKRD5V0fGXKctoXV+QHMmDHj2muvt W2bL+P38ssvoxg8njESJVys4LGkZ5V2zidX+N1Zs2aNHz9es3k jnk+edEkn68k5Um66NSkqwzAee+wxmtdRbwmR8fLLL5eVle3du 5cuLLf9WJY1YMCAUaNGHTx4UGtdUVGhlLruuuu01uPGjcPgorW uq6sbMmTIwIED+e2m+9XQ0BAMBufMmUMTFS4dcAyBQABTCBo0I VBopu04TklJCRxn2ENpaem6des2b958wQUXXHPNNXg/EomQGYY8XOeEBcVxnMrKSnj4DMNA0/rtb3/r9/vpueGWFd1tAgXPPT0Ezc3N9L7W+tNPP/3P//zPK6+88uOPP4ZgT6fTW7ZsUUrt2rWLMss93pzeLFC01ul0Graf mpoax3HgpYYNEMY9rXUymbz55pvff//9Yh/suQ6UInUxVAihgOmLFFkVCAQ89RuQwkAlHx5++GHbttevX89jN pVSc+bMoTlZc3MzmgPiA4Qu04kFRbOCCA0NDbZto3YqDauamUL xXcwG0bs6bQs10b+WZdXV1U2ePLmhoUEz61o6ncZOMpnM9OnTb 7nllpaWFnyXdph7ePQA0Ke2a+yhvv3ll182TZNGQfTDEyZMKC8 v16505sGtdlvLdDAY5O4MGilom1Qq9eabbyqWjIlPecgUfpQsf 5i52awGP1mkdu7cSTKCF8eiiwl9j1V/ybZB0TO2bYdCofr6ejJXf/TRR7NmzdJaT5s2DcG82OGRI0ewflBrays/X9u2d+zYoZTaunWrbpu5Q8fT1NTk8/leeOEFOgbDLexGx6OZgTObzS5YsCAQCKxZs2bTpk1KKZrEancU purAdBi6vwoULvMPHTqktd68efOxY8csy/rwww+Vu7gDxYfr7regaK158DPVO2ltbT1z5sySJUvQBWv3piYS iX379lVVVZEJFE8wF/uFPcgCQhYsmhLV1NSg3Mv27duVUuFwOJPJjB8//qGHHir2wQp/xTAMxy3Qqd3pY0HAo06lDhKJBAKtACZM+NH3339fKTVz5kylFL o/gDQHFNigbEyttWmavKcTvi7tChTcDvoIybRXXnkl6p7V1NRccs klpAyy2WwqlaKHxxPAodvGdpBxAn4iHoFru6kxlmXNmDHjj3/8o2YFGvgOHWbkUEpBJNnMj++0zUWHetBtU6Zvv/32mTNn8mV+6fDo5/ApdyPmmuvw06+//jr0tN3Wwk2HTWv4eUSbdgUKgo4ty3r77bdN0yRnEN0ILrluueW WKVOmcMMSvz4+n4/X28VPQyHx6JnFixeTKtJu5jBev/vuu8rNG+eVQh3HIc06YcKEiRMnkqEIAoUeIfLA0uTEMIy5c+fi mhhuqVLDXd7IY2yj+9I/BQrIZrN4fOm6w6FAd4USxnQ3CxQKVPbQ0NCwZMmSYDC4ePHiWC xGLieKBshms+h/PeZHT3Mt7NEWBIxJsFvGYrGWlhaaTK9atQoPLtRJJ8uICz0DFe VEjCGGnML+BMY8y7LgoEHDpGkfnm1Ioo0bN06ePPmjjz7iX6S+ HilvZAqGlV7oMu0KFA46nM2bN//0pz+lofSyyy7bvXt3c3MzulZUJ8OnNotZwR7IXO8xhNhuXi51w uQkuu2226ZOnWq7YSvtqhMM3nwNYf5zfNhesWIFOiKaHzqOM23 atAkTJnhqq9OeuZnE7/fjQeWCg3aOB3j58uVcc2umeEg/0bcwANOuuEDJZrMkpwAJAs30zaRJkyZMmED7pNggvEPFSGjQga anAjNa66eeekop9cQTT2CWzoe/bDaL1HHddhU5/lta69tuu23ChAl0UtS9O6wKBkJzTNO89tpr6VKvWbPG5/M9+eSTODWsoPTRRx/xnGTdvy0olmVBMAaDQcqUw0iPeONUKhWLxbho6FaBollwLpKZj x8//sgjjyilFi1adOLECVKvfErhcVXyRkh42kwvIZlMwmtQUlICpXX o0CHTNOPx+NNPP20YRjAYrKysHDJkCCr2Fvt4z3Ug4tFFUidVw PuCNUttNwhAtxePSfqbvsLnfJr1v7q9Ol1C1+hIoNCM35Pfq91 ISeqdcJv42E+jI1cJFivggRJqmECfOHECO1m2bNlLL73U2tpqW db06dPvuusuGo+5nYBj2zbyWnEwXFVz08hzzz1XVlZGZ4TjnzR p0p133snHZpvFjtDBx+PxcDis2+tp+eO6dOlSiDNsRg4jAOMxW dA9+yEXD3a4detWn8938OBBshJxteQ4TjweLykpWbx4sWaDApm acB8p+I8yQjDw01QEZWEfeeSR3Cchk8lUVFSYpllTU8NrrmAlA fwbiUT8fv8TTzxBx0YeW7o1iUQCJ75x40al1IUXXlhfX5/JZD7//HPkVNP4a5rm/v37NROj9FH/FCjazYlXSi1evDiZTJaXlx84cAASkvQpj6nuVoFC4VHkiZw7d+ 4//MM/PP/88x7TFgYGeo4pVK1dF6zurQJFs0k5Dm/37t1KqdOnTz/22GOIQohEIuvXrx85ciRqCwpFBJZbCgzy1LMqyP4dN0S6qakJs 9LW1laPOZ2PENotn4A98LphDnMNKMniyY+vtKBoV6xgZsU1h8O M04A6OtjJ+M4p7C8Wiw0cOHDgwIHV1dUDBgwYPXr04cOHKysrl VLoDx3HWbx48cCBA2F4JtMFjXx8t62traQ86IfoUzw2jz/++JVXXgktQkP+woULR48eTVvSo+gwK3XWrZxJ3/JYJmjUePTRR3/xi1+QQYgbdWzb9vv9FqsQY7npP9hAuSX/8dOnT5/2+Xz/+7//C6FDp0OT2GXLlimltm/frl2RRJYn2iHdXJKYJAhgvLFte8GCBdiSsoTot86cOaOUWrJkC XnE6JRxi1977TXDMCorKyFVbdsmfw1XGEqpTCaD1K0f/vCH//Zv/7Z79+533nlHKTVjxgytdSKRQN7y66+/7vHV4nf7p0DhcT20bAGlw5mmSQqAi3TdnRYU7T4HZJzcv3//xIkTR4wY8corr1D8LD8YzWLQ0BfQHaLm2h3HmT9Zt5i0z+fz+/3kWcONiMfjdIU///xzaGehiKC9IDCIxoACPl30PHuEBf0EvU8NkwIkacrLgxuo5XZT Uz136Eig4I7QiOVRihbLMHBY+rHW3igNMjPQ32PHjimlEMV55M gRpdSGDRsMw7jppptQbFRr/eabbxqGcfToUZ0TKMpFLVdITtuYXG5sGzFixN133+3Z5oMPPlB KNTc3W248L5cU9BP84D1nzbcZOnTogw8+yPtnepHJZGDn445+f pWUm8VD0nzy5MlKqZMnT+Y6Vvbv3x8Oh8eOHavbE4goUgc3Osb 7VCq1cuXKBQsWZLPZOXPmrFixAj7TdDq9bNkyTBR1W78YLsidd 96plDpx4gSNNfRbhw4dKikp+c1vfoN/0dsrd0Ue2hJv0kkdPXr00UcfXbt2bTqdXrhwIV/ZZ9GiRdxYwFt63xYoNGzToVNAMp0qWYZJ22JLnplmt61hjKuM7/LCz3kWh+DNg369urp6+vTpI0aMWLVqVTweT6VSp06dUkqVlJSY pllfX083MhgMRiIRON2PHDkybNiw/fv3d15QjiY0fCmffE7h7KGmRQ8rnyvT/cLdIUGTSCRsVqjx64JulG4TWQJoKkaGKClw5yEej/MobF1oC4ouxBygUPsRiHYFSqHkae5O0AMHAgHqFgzDuOiii777 3e/S4i+2bbe0tJim+ec//xnfos7cM0PTrBYI9e3YjBIgUO8ESTHcTNLY2IggDHQ+pLE6MR/S9JIGBXxr27ZtWDPIY8WhjigYDFL8DRX8IEmELLaSkhLtOrOi0 eiQIUMGDx68detW7ilDEZQxY8YgWlm3bRG2G308depUpVQgEKB FpydOnKi1njFjhlLK7/ejbFogELjrrru4rKTRIZvNtrS0XHjhhaNHj968eXOWlfnHMfzw hz9E6X06R+VWY3OYm4ybuzp/ojzGOVqah3xG9FEB+6VuFyjc0pBOp8khQuUTQDabpbr1aAM0cl N3TM4XrbVpmtwGgxcUJ9UFmcJjweCP1221wnvvvTdw4MDf/OY3tm2vXr0aRQnfeOMN8uohZRe+27q6ugEDBjz99NO4c50fD4Z 8vPY4j7sPuAnI/MOPAaTTaZQE1e41z80665qWgj0WMwmH1R6g3ZLoFAjbTYjg4eQ FvEoiUHot3SpQPD+EqQim+HQrA4HA8OHDacSlonwTJ04cM2YMF SnhFXF4cB6f6vAysvS7kyZNGj16dCqV4v0kNps1a9aQIUMoTYa GD0pQaPcULLYGHl5MmTJl8ODBPFnGoxjofGnJevoVBOpBozhu8 IplWSdOnLj66quVUpdeeum99947a9asyy67DMXNjh8/rt10J3545OuJxWJ1dXWnT5+Ox+ORSAQFUbTWkUiktrYWKfqRSG Tfvn28NAsJPuonT5069R//8R8+n+/HP/7xXXfddc8991x11VWmaY4bN+7QoUO2u6gk5ZlDo9htQ3lIEXaC nVPIkSw6uQKlgHS7QHnppZcw7bMsa8mSJVjK+Ve/+lVjY2N5eTkE3fTp07X7KJMow6WESQq7yrC1IsPhMC4uOfMoD7 7LM29KbLbYKg+WZe3Zs2f69OmDBg165513aJlKeEZwy23bPnLk yPDhw9etW4fJh2maCxYs0DmVBNv9Uf7k4SL0WNaM4zi7d+9ubG ykhxUBy19++SVtgOOHIMO1pSvThePkhZjoTfRoiUQCO6TCfVy7 nOOg3wyHw9TFF9bSJgKl19IzAoWPWNlsNhAIaHdOUlJS8sEHH2 iW2QCqq6uRmMr3A5niuHHcmlU9oQOmgTMajW7fvj0UCr3yyiv4 yGqbMbRz586ysrK5c+daloWDoVEg9/TpFMjbiK9s27YtFAq9/fbbOPiWlhZ8F9G+5P7QrnZxXGsNDMZIuYf7mw5Mu0VHtm3bdu+ 995aXl1922WV33XXXJ598QsYbjzGeBgLqNj05FtTv5a7MR5vxB YZodldRUXH//feXl5dfddVVEyZMWL16NV9zANvAax8MBmluT7fbysl+6ghPfA/WSCKTTLs3ahzQrgAAIABJREFUJU+6XaCgTB7OH2F3W7Zs8fv9d XV1SqlsNjt//nz4/5RS77777p/+9KdkMonQYt32UfA4BW3bDofDqDzD5VvXvDzkOtXu86S1rqysv PvuuwcPHvzqq6+i6K125fY111zjOE59fT0egkAgsGnTJu3WXf7 lL385fvx4PNyauYdzoVKMeIJpFvKVkjZPYCDJZDL//M//fO+99/IYrqeeeurv//7vUfEJbamhoSEcDqPohadRfd3fpXuKToT+6rbNidJWBYCnSLlV IAueZuyIQOmtOD0lUPjDhqpOyi24HgqFAoEARjiHLTV3//33K6W2bNli2zbVG3VYM6dOO5FIICuT1ANMJmPGjPnRj36ktaYl Wj0GVPzE7t278S9tk3v6DhMo2p1BJZPJUaNG/fu//zs6FgpH5c3Hdivkatb/8ArauA4+nw/9M/WBtKw9LghFI/B4IB43k3VLy1iWxbfJZrPc149zQV11fqY8/kO7OoZ66aamJj5j5MMlDphuqJ2Dw7Rju9AlxelEo1Haf98WKFp rrE5k27bP59uwYcPgwYPRzyqlFi5ciKUHamtr/X6/3+8fM2aMYRhkUistLeX1iChMHbn1jrveRDqdxvONe9YFjUIda2 NjI95ZsGDBv/zLv7zwwgt4AnCTILHxo/F4nCIzlFuMSGttGEYsFisvL7/55ptjsVgn6kSz9DyqXUtT5G4Fp7Nq1arbb7/dMIyWlhY0yFQqNWLEiEcfffTVV1+l45k3b96UKVNGjRqlmZWyy 34o3hhgr6qsrES0ncNmWlQoT9Bu30fzPHKTF2r/IlB6LT0mUDxjlcUyWWwWGkj5sVrrpqamn/zkJ0OHDkWxTe06i2k+yd09AK0eluPx48crpQ4ePJhri4VMwTg9 YsSIgQMHHjp0CK2Adsi/hQuCUyDjLpJDlVJkEubDdk1NzYsvvrhs2bI//vGPpmnOnz9/2bJlO3fu9GQaJ5NJVBBBVXhcokgkknGXZOHPvKesqM5RFQT1oh 7Liic+j5QBv4xc3/D3eRwrxBOPL6RkabttnvbZwIdg6p8pqaUPC5RsNuvz+XCZgsHg 8OHDEVWqtVZKjR07NpFIGIYRiUSg71paWnAdaQ9khbNZSDZkIL +Fmi1E3IXj5Hofw+TBgwfnzJkzaNCgt956i9fZhP1TKfW3f/u3yq1/TBWgLctCAcd0Ov3ggw8eP37c+apV93iMMEV1daRkCwUu3eDBg3 fv3j137tyFCxfiR1euXDl37txoNDpgwABcz/r6+mAwGI1G77jjDlhiqSniyL8WOGWeaIC60SNGjDh27BgSQ7gl ueAn3kfB80/1Kx3HoUelIIhA6bX0mEAh8wb2TFM1gBxau22yjOM4VVVVQ4cOH TZs2JEjR2w3hg9foYLC1N65sL7xxhuVUljjDJM9/LonPFFrffjw4VGjRg0YMAALy+v2pHmu0bGpqQkLDm/btg2NCIdx8uTJ559/fujQocFgEMnD06dPRxeEoaekpOThhx8+duwYvqXZKjZ8GNJuP4 YptGciSpfRUyXIcpOK6U3SEOQR0+0Z3bmZ2XNf6I7gHHkUo80i figsQbPemws7u9OJMX3quK6l/iBQbNsOh8OIgQ0EAq+++ioKgh09evS8885bs2bNnj17MKL7fD6 ESZ9//vnclI0cMIpApmeIVgyhiryQtx6xefZ4nidYTRobG1FvmG4PSUg y7mFCQPUEqaWhPXc+imBLxHL7fL4LLrhA9SAocBSLxZRSJ06cS CaTgwcPTiaTyWTyiSeeWLFihdb6iSeeQIH/w4cPK6XKysqwdlJZWZlnxZazxO/345bRyeJf0zRxHfCvwEHlaUQGZLNZclcXChEovZZuFSi0E49A4 YEU1ONl3cXw8CllEhw5cuR73/ueUmrDhg3Ij6UxMlfQaK2rqqouvfRSpdS2bds0i/zgHiLbtmOxGOXanDp1avTo0Uqp119/Xbd9zNpl7969l19+eTAY3Lp1Kx9ZV6xYMWbMGKXUpEmT1q1bhz jWbDYbDAbR7+3atevxxx/HiDN79uxYLBaLxdDjYTEHpRT1e/B/IbDjm9/8JrXWkpISWggauzLcBYqxMW/XcJwptnY0Ii95N4gfAp7ukf7F+lzoQvFzGCLxGj/K/8KLZ5om6t/TSj2dgO3JZKD7QZAsrgVqDB84cACevB07djiOU1lZiU+PHTtGZ gntJp3zq4DHlByfjpu6TNpTs1I2ukvxg6RLbFbDh7vZaMvcn+C vSR3zNtl5MKnjOIa7UCLOseC3OReaB6C7WbJkyaJFi1atWkX57 o2NjSNHjjx27JjP52tpaeH3guZJXTtO9Hr8Mq5fvz4YDJKd4Cu 1/LkJBg+agYkF5RyhWwUKb2jcPEDWaOpjuavds43jOLW1tRMmTFB K3XLLLXv37iVvBXUy2L62tnbOnDmGYYwePXrHjh20T6ryR82fn u1oNAp9gGWeMGTA8tGRlKeVZWiRS3w0YcIEn883ceLEgwcPkgP LdvPjNCvqmkql5s+fb5rmsGHDTp48qdoupYkXpaWlnmMIBoOwU tCR8C96VrdRSlGaBR0kVaygN+mUPboEe8PGfr+faws6BqgT2jM 2oy0Nlw71SFv4eWk3ZqhdgVLA8auXFnnkljr+PgVq2G64ic0yk LVbwb3gAzxuSTeJxB7Yf7tQL4OUeqXUoEGDUNYafcRjjz02fvz 4RYsW0Vd4J1XYTGAl9UaLytcVFu0aKcnOrFkqhNzZgoDOEDfFc 4VJZPSArM9xpPxfL+04zquvvjp48GC/3z98+PDFixe//fbb+/fv37dv3/r165cuXTpu3DiM4nPnziUXhsOWNSbNzWNLUdOdhl4yCfCRno+4 NAZzNUDlRjZu3MhL/uNFxl2CW7NOOBqN1tXVDRs2bOjQobQHGqSVUuedd55yl/jmxg+8Jns//0ou/BTwFTpZfJFEDDfecM3Bd0XrjfP9tGuewQvoIX49+f5VWyFIV4B iNkDfLtT2dfFE7ti2nXXBIwvv16FDhyKRCH+HAqp1N1wmLiC6o xfo7v3nQuEj9M4999xzww03aLamdnNz89/93d+dOnXKtm2atTuOAxVY2EOVYay4dNnywUNkPBYdPjcV8iRXo HjSuJy2dVp75njI4EFG4ng8vnPnThQco8IbGOHKy8tXr17d0NA A4ytlolEkh86xTG/YsIFGR6QRKWYjaXe8BxjOS0tLMTDjHZ/PhykuT6/Vrp9Ct7Uh2badSCRqamp+8IMfwIEFAoEAzogfA3emcBGAg8G/JJ44OE54Z2hv5513HhmKyLtEyz3CMkS6gV8WnDK/IO2qnNw3Yfuhg8e/dHgkU8gFz5+3c06g4AX6O25UaGpqmjNnzs9+9jNco0GDBgUCgf vuu+/TTz+lr/OqwAWk/wkUgKsdj8epfBBfWogCyGmuxgP7c8sQ5YMMY8WlCwLFaRsw6Nk VvZA7WxA8AoXKNVGD7fnahmQ+IZ9vc3OzzZJZotFoZWXloUOHj h49yvsT6uJw8GSXpfhQnMuGDRtKSkp8Ph8GaQ43FbSrUXjAIo3 l9Eh7ilbY7oIMDisGQwZm1N689dZbaWOqKUoX3zRNmrN5hjCq4 NAuPB+HvohvodDDypUrn3766UmTJk2ZMmXatGmTJ09++OGHV6x YcfToUR4JBChVmy4m/mIbyItQKIRbQHN+Ps/XbGEjzcKcyRqK68mv3rklUOjSULo8XkNKL1q0CMHV6PVOnTq1Z cuWn/70p1OnTj1z5gwfXAt7VP1PoHDXbyaTQeYq3qSZGY8Xpqg36hkL e5FlGCsuX1egdKRO+E7ExVNAPAKFDy00CvbA6hBclHBoTki9hG 5bexpvYmjP9Uk5bqAe6ZstW7ZQCOqQIUOam5upPltuD5kbD0A9 G7JEy8rKIGgQFkP2HjoRTw+MMs2wHNu2/d577wWDwU2bNsFOX1tbiyIIjhuWh4ccYzwiaTqvLpFL1q3ojX2 uXr160qRJSBxRSs2cOXPGjBm33nrr9OnTR44cCZ1x5ZVXPvvss 7BFxeNx7jUjuOghzw7eodotkGsnTpw4cODAgQMHUAY3mUzyur2 4pMFgECkstE99rgmUXDdNKpWigE3LXSCbrrLWOhqNPvfccw888 IDWmt+nAtL/BApZialJ8HQ4JIwopbZt24bGvH37djyX6A0LHugjw1hx6bKLR7 t+WI+9UwRKYcl18ZBVn9JHYe3vVto1Vxg5sSCweXzjG9+gN8Ph MAVtKFb/Dd+l0gyWu3QOvlVaWvrd73736NGjWFibLkXuCw/UQT3yyCPYFVw8nnXHeBoEd3mTDCLv9lVXXfXf//3fOEhKukRKDuXCwK5Dt4zWBPjKm8vr81ZVVd10000lJSUXX3zx smXL6uvrdduaKJFIpLm5eefOnePHjzdN86KLLtq1axe+S2MfLS mq27ZEXG36LSQDrl69+l//9V/5HRw0aNCbb76p3VwK2w2Fxqco1kc7ObcECuByOJ1ORyKRhoYGX nYGjxry3zzlT7hDtFD0P4HCzSSOG1ZCNkOllOM4R48eRcWaioq KoUOHlpSU8PT3bDZbwEJqMowVly4LFO6Kzf1Iy50tEB6Bks1ms VipJ221ZyBdQmkmpmkisoFiJjDVDgQC0CUAFTgposIwDNM0sYF 2rbMoPg4fzfDhw6uqqmg4cNji9tqtJ5trziHDUmtrK48thQwCn qxPdHRcoPBHOplMfvzxxygX7jhORUVFMBi86aabUKwslUoFAgH SEJ46FLqDkAP6CV6XdsOGDT6fb9SoUe+88w7epAkkCvPjTZJNN TU1F198cTAYnDNnjmdvdMUcdyUd3LhgMAjjELZErbx77rln7dq 1VVVV+/fvX7du3cyZM5VSv//978n7b7vhJhBn/IfORYGCh4wLZG6Uy2azfr+fi0oqO1Pw6BPQ/wSKblsXjsp/0aBimib6CKy3fvz4ceWONN1R4FXJMFZUvq5AoaeUqxNakpqbUu TOFgSPQHEcB+GfnrSLniTXsgKNAk2AQzJYbKYnUZYbVJSbqgrb CU5t2LBhp0+f5qKB8n06uUp4gWF1z549ihVeMtwaZdx2go0hUM gtknXXjqUuMZ1OK6WeeeYZvIPjHDdunEeF09E2NTXhRe5smVt6 eIHQTZs2KaWuv/7606dPY5ijlcuw2ItmASJUqCaTySxatMjv99PK0jSN5GU4tBtB gouAgfLFF19USq1evVq3VVHxeHzjxo2hUOi+++7T7nAMTxaeN5 4+dm4JFI905fOzLFu3RbmKW7v3g5R1YetDgP4nUPizS088GmQ6 nQ6FQgMHDnzjjTdQvAizNPQ+VLiwsDJFyTBWVLosUCjULplMnj 59GutP0dRWy50tEB6BorVWrplB92CEbOcjkMMi2+gJ4etv6xwn PskRrTUCDZH4+t3vfhcrnXnsIiA3/snJQWv95JNPwqJD3ZdmkzE6SJutxaPbhvHSzm3bnjZt2tixYyn cB2sQXnvttSiDTuMUnyeTAaOjQ9VuyMuBAweUUrfccgtF4FItf CqoQWZvfBGOIfzu448/XlJS8uKLL+beIAgyxNnAaoX9xONxn8/38MMPU6unIQC7ffHFFw3DOHLkiOOuQELS02Hl0c8tgdIJfFp2l vbnQsEFRMHvQQ/s/+xB6zIMo7a2dtSoUWvXrtVui4JwtlgJ5wIeqgxjxQW3OOsuoW5 ZVllZmeO6n2G1xpQuHo9PmTJFKXXjjTfSCiyO43z66afKTa/AevFFaar9D97K+MUko4XFVqMl2wAvE0VQ5gEfg/kUn9aEJ8M+PRWY+FnuYiC67ToyHvOGp4oBr7JNe8CnngpjYPjw 4fRonaX2op/DAeNXbr/99htuuAEBIvgJj7LxyGjbXWiMTpBPmF977TWlFLc0rF69miqR8 L3x2ru5N5H/S2bsSy65ZPDgwQgKyXWbttvTeibzDz74oFJq3759dNlhbiE7EF 1nfGvbtm2lpaU7d+7UbZ8H3H1cQ6XU8uXLSU6RxYsfhgiUv9K1 CL6C0P8sKB2B9oler6Gh4cUXX0ToTyaTwUIE3LRYwN8VgVJc+J QIY5tSqt1cjHnz5g0ePHjTpk1Dhgz5+c9/rt0ndvPmzVjjNBAIVFdX00BI+xG6RrsCJZ1OU/1Q3C8+smLR+Lfffvu11177+OOP4SjxrM+i2XismS2BD1Se3BzA Y/7IG8JVDj6NxWKffvrp8uXLX3311crKykgkwkNB6VCpRojhFtsY MWLEyZMnv25nyK+S7aYKT506Fevs4ELxGBTNUnhsd7VXbvuhJQ OJl19+GWuDcOd4bW0tVB23cPCL5rRdkdizT3zx1VdfLSkpOXDg gOM4ub/bySnTBg0NDbZtDxgwYNasWfgUzdZ2C6PDggKwweuvv66UgiSCg oQqInVl2/Ztt9126623klATgdIZIlB6hmQySUuS2m78tmbLV1Lh6rMJUD9L RKAUF15jG8GPWF2cxxaAcDi8cuVKrfVbb72FKanWOpVKoSI4+q +mpiaHxTMV+dz6OB1ZUCikA/8mEgk0yQULFii2BExJSUk4HH7yySdRJLpdwyeVYeR9rGbuGERo 2myZYofFBdKIjg4B65dBcFA9EsMwFi5cGIlEHLdqPllQKIoFD8 +pU6e4j/4swwo9CgDfmjJlysSJE6m+mWfU4AKFtAt5rnP74bfffpurbZQq oU+x3iFOraWlhQ/z/PCctiG9KN9w4YUXTp48mUo5cGNYJ8OBR8HYtr1s2TKl1MmTJ+l HyRjjOI7hlprFR8uWLTv//PO1WzyMh5VArziOM3PmzD/+8Y/0WyJQOkMESg/g8RB7VgiiyRP34xYEGcaKi2JplrjLZAr2zP9efvllwzAee+wx0 zSXLl1K44fP59u+fTs9vRSpZxiGWFDyoSOBQgM/BYQ1NjZiJbynnnqqpqYGX/z8889nz56tlEJUBzd18LqLWutoNPrwww9TKdIHH3wQNzGdTs+e PRtjG5I4YAvx2FfQJ0QikdGjR/t8vsWLF+/atQsD9pdffvnss88qpQYNGnT8+HHbTfHFqKnYsjWlpaWIDE2lU hTedDb9DEZQPMM0rk+aNOmWW27h0cR229wLGuDR/2BiRvuE5RivU6nUa6+9Bityc3Pzvffei9VS165dS4ao55577u6 77+Z2lHYT3LhG0Vrv2rVLKfX5559zRxjfrPNTdljGUH19fSAQe PbZZ2lX/OqREMQ7W7duNQwDsjWdTlOKMhVnwyKyyA/yCBSSUFoECiECpQcg6whNcWKxGBkeydbHTSkFQQRKcQkGg1prx 3FoDbBQKIQZHs2VLcvCyLRy5co777wTdhTHcZC8w7MD8OQgRqG srKyI59UP6ESgYLSgoWjq1KkjRoyora3F+MTn+keOHBk8ePCPf/xj3TYQBC+w5fjx430+386dO7PZ7NatW5VSt956q2VZ1113nVJq w4YNmUymoqKipKTkpptuIlevx3Txhz/8AREkPCdWa51KpXbv3j18+PBrrrmGIi201pSoTGvoaNaxdD5Ce 64SGQzIDDB79uyf/OQn0Fv4iY4EinbHeFpZhcfK4Hjuu+++Sy65RGt98803m6ZZUVF RXl6ulNqzZ4/W+pFHHvH7/QsXLtRugTjuLPMcKoWGZLPZt956y+/3kyzQLIKn8/GeHz8NjuXl5ZMmTcIGLS0tfHsuUFKpVDQaVUo99NBDmk1Hs+7y 0el0+r333gsEAl988QVK0pENRgRK+4hA6TEowg6tFB0KBaNQYH kBEYFSXAKBADdKQ3DkVuSz2YrT5CyAeOWhjnA3QLtQ1oDQNToR KKjPhn+rqqpM00R9LTJpWG5Rc631+vXrlVKffPIJts+dXZimiW VDMplMOp3+7LPPbrvttlQqdf/99/PlRFCnBK/5gKq13rt3r8/ne+utt7SbFUgPFdi4caNSCnvDs0SBsRj84HTQzN909qnFum3ca CaTWbt2LT2Tnhpluq0lA1eDVAL2AxGGE9FaDxo06JFHHoFxcf3 69Vrr1tZWpdS2bdvmz58fCASeeuoprPXDNVDuw+8wtNYTJ0687 rrr6DbxBQHOXqBo1879/PPPK6VImjisXBsvJYc377nnnnA4XFNTQ++QqD127JhSauzYsVT AVwTKVyACpQcgEU1tlS/lRZGP2LiApnsRKMVFuWWCaeKI6aZ20zcoLJpWFMccEc+Jp045N sALubN50q5AQVEKBJpg0Za1a9eapok65Q4LddRaQ2hqra+++uo//elPPJtUu4Yu1PnQbuvm6TlkVMOouWnTpgsuuIBCpyFPMcxDf9T X12Nc5EW9MclxHOeyyy6D14DyRGjY4xqCZMHXuj50XvhuQ0MDC shSLTvPF7mrhX5XsxRf0l6bNm0KBALvvvuu1rq0tJRkh1Lqscc e8/l8CxcupDxqxA7TNnZ7qUP0zsSJE6dOncrfp7BWTwxKriWG9gM9 l8lk3n77bXpIaDpB8oJfYcuyGhsbBw0aNHjw4C1btmi2yNq777 5rGMb3v//9kydP0o0QgfIViEDpGcg4SS5q242K1yxYnWrSFAQZxooLZauS/xsVJ0mMegpbwdfDnxO+Mi31zhiBevpk+hcdWVB4gqvW+pVXXqH XiB3hYy32M2HChMmTJ+Pf3MbL3Su4s1Rgft++fag4UFlZaZrmN ddco1m8LY3iy5cvDwQCJFmwWz7KxuPxu+66a8KECbqtBYVcPKZ pUnyb43qgvtKQQC/4kgs48cmTJ1OwTiAQ6MjFw79Ivh7aeTKZnDZt2tChQ9ENKreei m3bOOa5c+fyq0rX1lNZn6B/LcvCEoBki6JvQXDw29SJQKFvvfzyy4qVe6FvOW64DwW2Yy5aX1 9/9dVXK6Uuv/zyu+++++67777qqqtM07z++usPHz5MQk2LQPlKOroo3YplWV98 8QXdVLK/FWr/GPsDgQAf7wtbA408NQVfAaCAyDBWXJRb74sURtfuCPVQtm1jkk 3dmdA12hUofLxBv4E6NE1NTdxuwUPKtNbf+c53HnnkEeoHKG1E a51MJmlBHLxD/QaqpobDYe4ooZKmNKjbtv3OO+9wCwqN1txKMXz48IceeghvWu4 KdoqtOazbdvVduFz0xUQiUVdXR8V2sYIb906ikDw3HHJNQMakz z//PBgMrlq1CqM+rV2stVZKoTwaLzzjMS2T0OfVXUmpTJ48matG7l Lh56K1Ngyjkxga8MYbb9BoRRYU+joPkqVdJRKJLVu2PPzww7/+9a9/+ctfTp06dd26dXzuQZDU42+KQPkrRbGgYFHN8847j6LiodPtAq G1jkQiePI0k96F2r/ntxDU1guzKkSgFBcEjuAJhwObhoqvBeV9oJ9tamqSO5sn7QoUz cYb27az2ezx48dDodDixYs1WwAEWyKQaM2aNUopGPN1W8MDr36 k3WgGyt3z+Xy///3vY7EYdghnjdY6lUp5kpZra2vD4fDy5ct5lh8dRjKZ/OCDD0pKSjZu3AjNxAUK1VLThRAoJJtisVgoFMIyij6fL51O567 WDvhqKlTO1bZtx3EGDx588cUX0zSPTD6q7UqNSinYHWnPdK0cN 5aczgt3zbbtP//5zxdffDE/gObm5rMRKLZr2LZdLZjJZB599NGysrJEIsGNN9pVtKQvPZE9Ds sYisfjZCz3jEoiUDrDLoZAmT17NhVL/pu/+RulVFlZGZ7IghAKhbDil+GuhU0hXQUBOwwGg8gPBAV/jPJHhrHiov4/e28eX1V1ro/vM2UCem+/9/ZWMpIQQpgTQhIDBbHVVq1DRb8d7v21KCDSWilSK+Jtr/3aWmtLK2KLQxWVKkgBZ6tWFAiTKIMKYcw855wM5+TMe++1nt8f b/bblZOBhAaF3rwfP3jOzj57r732Wu961vNOVgEwUlXk/Xd2Jjz2qyVbIVU5GZazlr4ACntvwLLpLFu2bO7cueTzSCwscye nTp0qLi6+4YYbeCVTi8DBqjWze/duvv7u3bu3bt0qhLDZbLT15yWNYoDpMy1jhmEEAgFd15cuXVpQ UNDS0oLuBfmklNXV1YWFhddccw07wAore9iQAxR19eXa7DabjU AAl7Yhb242Qkkp6dHYzB0IBBYtWqRpGvUqs1Pq45Oth4c90ZDC ij3mZR5W2BQRV4yTXn75ZafTWVtbq155sACFIdGtt9562223oX vCCBKtRzVjEmqSeiN6HNU4SB+GAUp/8pkAFMMwKIJfWuZ5Gn+D3Vn2JUKIjo6OxMRENuuo6dGG5Po02p iSjYuLE5+1m0tPGQYon61QggfVdyE+Ph6DZ/LULbW0Mkyci+qS/3tE9gtQSDXRjK6vr580adKsWbPKysp4jkcikaNHj5aUlBQVFdX V1aGHBZkTMBIZoCl5V2+66SZYy9KoUaPUfH1QautIxXmuvr7+y 1/+cl5e3smTJ3kjbprmyZMn8/LyZs6cSdiFf8JmoyFnUHgtZwxE5qeYUkEkBL9i/Dba29tvu+02TdMOHz6sulgRL9JryjtCPHxNNrGxvy03D1ZFs5q aGpfLtX//fgY0nFqNzySx9W3ikVKSPUvTtFdeeYUiLlVrkRBC656tTirWHx JhhUTEXF8OA5SByGcCUGh1d7lcUkpa5of8HQAg42gwGGTXwiG8 OCEeZhfZQnleyTBA+WxFUxK10b+s0wclnH9ds2q7D7/Zf1B6BShCCO5qWtho1WxpaZk+fbqmaUuWLNmwYcMzzzxzxx13O ByO6dOnezwejsCCYuBQM8O+9957R44cAXDixIl9+/ZxCrhwOEzuEeyE12tSabKMnD59uri42OVy3XbbbRs3bty6devS pUs1TcvPz6+vr29ra4MCQc4RQIFCchCLTLS3w+H429/+JqzUt/Qgqj6k2OzOzs6ampprr71W07RDhw4Fg8EYOKK60IZCIfbckop/Lv2rhrlB8V1V/U+vvfba+fPnA/B6vYzyBwXJJ7rtAAAgAElEQVRQ6LKvvvqqzWarr6/v2SE9AQoJLXCqL7zsXlZJbcAwQOlPPhOAwqGSDB0CgcAQ5nUQV jpw0h26rg9h/ngoqkRa7GViYuIwQBmWGKEJRRsvKHmv++bmehdGOXQp0n1DC7j/t0mvAMU0TXaDYKzA6+7LL798zTXXOByOxMTEa6+9dsOGDV6vVw 1O4c+cOEB1yKD3HgwGeaMPZfXltVb1xkX38J/Ozs7169fPmzdP07S4uLhvf/vbmzdv5mFAuR9hMSi07J0jgCKlJCRHVp5FixbZ7fZbbrnlgw8+ gBJlw/4lUsr29vYnnnjCZrPl5+cfO3aMHXTY6UTTNCohRPg7Pj6eDlJe f2ahuBYBOcGwijO6Vy8SQpBn68cff4yzNfFQs6dNm7Zy5UoonI 16KU0x8fQfxR0DxYYZlAHJZwJQSOx2O/EQQ35lYmX+5V/+RVUcQ34jguR08fMTCpyfrfrfIzabjS3xortn3KCEYYp6ZBig/CPSK0Ch9YaWQ9UFgQKDGSYyaoFSGrDn6+B9f4zzAS2lwspoIqU k1oF/SAshR77Qn3iLxRs5crsmFcppZGmc2M6Nk6zKcKjEnmmaL774Yl FREeGPNWvWvP/++8eOHSsrKystLd2yZcvChQupGWvWrFFD5ekiVAdABSKEUeLi4 giCJCUlqRWINE0bMWIEfUhISPjd736nrvfUt5TG5oYbbrj66qu JryIANyiAAuC+++5LTEz86KOP1H2C7MNJFopDDM96rpFEQhBnm EEZqHxWACUYDLIWULOWDZWQrkH3oPmhujg1lR1QIpGIy+Uaqos PoQwDlM9WOAJTSsm7q7MYh+rmVc2GMsTN/d8kvQIUWJYLlUFhOoQ+sD1aTfJhWLUIpMLkCyU4llEFMyLCCu5 QW8VJvegrYxTOAqduiqQVKMTj4VxH8cQAFEIM5FAcjUb9fv/+/fvvvfdeIkIYZ2ia9oMf/ODNN99kuwxfgc/klPwMUGJMVDYl3IE+EzxyOBwOh2PNmjXonhuGPnz44Yeapt133 328zJ0RoKgn/PWvf3U6nU899RS6z8FeAUpfS4y6wqrC83cYoPQn6qj9lBkUm5J IbcjfwTm9PlOp+Iy6boAyDFA+Wxnu//NWYpYoXpM0pbSsVGwx56fwft1UkrgbhsFltG02W0JCgk1JxI6h UIZMNdEtYri9aDTa2tpaWVl5+vTp5uZm1UmWG2la6W41TaNwZY IanDledcJVJSaakkHS2rVrVRMqI4mnnnpK07RHHnkkhoiC9WY1 K5Me7x+IcdmxY4fL5brpppsYIzIlBsXmxaCKnzEGxPDORPXnVZ lUfjS1h4cBSpd8hqusCiDOhaHn3F1/GKAMy0BkuP/PW+kVoOi6Tut6QkKC6uH4GbXxzKLaDqSV1szv98fFxRG7QNaTT w2gqIYSMrIYViVUJo1YNMWzRHUjZbDFP+yrGeXl5fn5+czT3Hz zzZxmBgolv2rVKpvN9sMf/tDj8cDy8qF/dV13Op2UwRlAZ2cn3fH++++Pj4+fP38+e90yqiAKk2w3kUhEU3 xQGHYwp9WzpIm03G/ZZ4gTwKiPNgxQumQYoJyFDAOUYRmIDPf/eSu9AhTa1rMdQTU3nFfSK6NAuIoICXb1pUewfYoA5Yyalrqacu yycQcK2OqneXwO29E6OjoWL17stGTx4sWdnZ0c/sP/vv7660lJSfn5+Rs3buRLkbGJ7LCwTGYHDx684YYbNE177LHHOJ EEIRg2ojEQoZ8zxoJiA1Lrr9EHzXI54J/TB6KObN0tTbZhgEIyDFDOQoYByrAMRIb7/7yVXgGKEIIAChkObGcVE/4pC9tE1CP0geiTUaNGfZoAhfkPYZXlU28nFedu+jnRPEQn9PUT 9bMKUIio6OjoYCdcm8128803B4NB1SuIfnLixImf/vSnlCD03nvvfeONN06dOlVVVaVp2okTJ3bu3Pnwww9Pnz7dbrd ffvnlZWVlsHLbkHGHYsLZIYmz6nG4NbWQXaEJ18bHx5OvDL8g8 lYkqoauYLNq8QwDlF5kGKCchQwDlGEZiAz3/3krvQIU9irQuke02s8/IdbEbnmJ2iyXUlovXS6Xmv/tXAMUdhZWT1BNY6r3CbfEZrNxHBAfZxJFWr6DMQClp8EoGo0Gg 8Hvf//78fHxhAm+/e1vHz9+nH/IYVZCiJMnTz788MPf/OY3nU4n9xWlHZ84ceLq1au3b98OgPLe8s9VzoOtNnRZ7gduJOG nwsLCgoKC06dPs3czJWnsGYKu9ZZJZRigdMkwQDkLGQYowzIQG e7/81Z6BSi884biQIDu0R/niQhFOD8H5yKjxVXTtJEjR34KDEqvl41RubK79SccDnPAVFxcH PmoDsTEo4palMfv9z/22GNMIH31q189deqUtOw46F5JAIDb7T558mRZWZnL5Tp69GhlZ SWAQCAQ00giURoaGt54441oNOrz+TZv3tza2srn8B2FFVFMx1t aWqZOnTp79my3281nCqu+jyox3UgyDFC6ZBignIXIYYAyLAOQ4 f4/b0X2BlDoK0cC82b3M2nhQER2d5KFYpWAsrn/1ABKDH6KySfLwuEzxFE5nU72FyHpKy292gBpmZNgxc5QBRUOXx oxYsSpU6cAkFcKn+nz+bh4EAC73Y7uCempKqemadTO8vLySy65 hA1STqdz6dKlra2tUrEJxuh/4lc8Hs/06dMnTpzo8Xh0XWdtEA6H6Rb0mNyTwyaeXmQYoJyFDAOUYRmIX LD939dkEd3/60Uk/092fTEBkz7Kbsf73ib/Aw0fsPQKUDjOQiqJLoDzkUGRlgritGBSSkYn9NWmBPHiHPugxF xT/Sr78H7lJV9V1Ge8r+zOHqlJz6SUoVDooYceYrcPcvjgnzBMoRd NwTjkJCstIxTnuaFWUWDX5MmTm5qa6Ou+ffs0TSPoA8UgiO4Rz gAMw6itrZ01a1ZeXl59fX1iYmIwGFQbwNWaqBNk9zHZa2cOiVx IWkkO50HpW2i0SSu7gFCK79AJpBGklRTufJOhapW0/Ndg5afas2cP2cI3bdokhFi3bh1pw9LS0iG54z+HnJ+j4kwiAKM nEJEQEob1XxQwTEl5I2BETUgIQ5oCJilfw4QpYErDlBEgBBmBF FEdRte1TQGDLilNKU0BU0AKSAiGM+dWel0MeOEf1EViFn7+qlY qRXcmho6wdwL/lokEDhvp3+TRT6sIoNAk5XHIziLMFnCr1GYM5BYqQImBI2o3Ci u5CB/kP2mKxFw85oIDbBLDoJdeekmzqlKrDi7owYepqpsNNMRtUP1X6 kZS/pznnskVfgqn08lPF1P9oKGhgRBMQkIC+9tyn5imGfOOSIYBSpc MMyj9CAezsc8UT2zO2yOsuj/n4hH+QRnaBZIxCgCXy1VZWVlRUXHPPfccPXr0gQceEELU1dU5n c7zmRL/lOWCASh/V4DCAiiGAlPoFAIoOqADejjil4BOFL4EDJMuEomEAAEjgnAIQp eATw/7ZcSAgARCJiJAFIYpTZqbCkCRUvZNzQz1Ew8FQCFhewRny+DUZ JFIRE0OS24ibE1QdQinAGGgwBlEYpb8gT8grYsxDpisptgfIsY rYiB6rH+AwnCEyBW1yJqaLvzcAZRIJDJq1CjybiGcoQYG0wcqw QiADEx83DAMelmalcCNPnC36LqelJQEq8Yye1LDgqT0yLK7m3A 0Gg2FQmTrQfdyRcMApT8ZBij9i5SSUvLz12Aw+G//9m9lZWWRSETXdbfbvWLFihEjRpyHC/MQLpDMFakx/VC2iZqVtvJckGEXqFzIAKUnUqDjOmAY4QjhDQMwTQkJSKGH/NBDkIRgImbYB0R0IyhhAIYRDgX9AQDRsAkJXzAS0g0DMCC7oIk 0IaSANPBpDKChBSj8gQkP+qwSFT1VEC2o/JlmFq1tsNZyapLKQAz8ATUlS4pKadBnWiMp25i66R/4xXsCFNnd/kLWk5jL8tdzB1BIafdsnrBKKdHXYDAYDofZlAMgFArx64uPj6c LxsfHUyCPEELX9b1792qaVlZWxo4+FJSu2gcBNDc3l5SUbNmyR Qjh9/vp4DXXXLN8+XLWmcMA5cwyDFD6ESJa7XZ7IBBgNbRv376FCxcW FBQYhvHuu++WlJQ89dRTVO78fJOhXSBjKnDycZ/PR1PugQceOD+ZpM9KLkCAgr4BCv5Orkihh8ISME0d0kAkgM52R AJobcXpU6irRUsj6qrQVIe6anha0NyCsA7dQChMFhwJhHQRASK AQZNUmBCmAVOHeaEAFLXmDrqjEJUqoM26EKKzs5N2Nepf2ZGCU 3eYShHgIWFQNCtzv2rmME0zhhVWgctALt4XQOFssJqm0S3UakF 8kXMHUAKBgGalgVFNPOqlKJcrLAaFI6HonI6OjoSEBHIN4RwnA E6fPq1p2g9+8AMuLxDzCPSA1IDCwsKamhr+rWmaDz/8sKZpHo+HX/cwQDmDDAOUM4qmaXQR4vTmzZtXWlp6//33FxQUXH/99WVlZWoNrfNKhmqBpD0WqYD29nYhRFJSUlVVVWVl5d13311ZW blq1apgMLhz506HwzEMUFguWIDSlxtsF4kSiXiBkG52AD4E3Wi swOky7Nr+1MxLXv/SV3d++Zot2XmlM+b+bWrJm/kXvzz7svBTG3GqHhUNqG9BVCBiBv0hEwgBIcAAICRMAii6Dl2e ezPPkAAUVXmyD6bKf1BGr54zQlo1dFQji7CqwLD8gz4omlKEj/7E9gWVVIhxQxngLQYCUGhpDwQCqpVH3eScI4BCF+cU+FDAGT8v NSkYDLJ1RmW8uJfIXsOGufb29k2bNkWjUY5w1jSNqh3x+RzjXV dXB2sMwHqbLpcrBo+qIJJlGKB0yTBA6UcIJtPQoWFdVlZ29dVX G4bR2Ng4Z86ct956C9bgPg8X5iFcINWpaxjGzp07Sf3t3LkTwF NPPUWc6r59+1Rl9L9cLhiA0k36CdKh4zoQiAQbEWpEoBEnjry2 fOnvrr7i4a9c+kzJ7JeKZr82qXD35JJjk2ZX5BYfyZj44bhpb0 +/dNPMrz/z1Xk4eByN7egMIxCNRg0FoACmhDAFdOPCASjqrzikVlppSNiWE Y1Gjx079sYbb2zevHnTpk0bN2586aWXtm7dumXLljfeeOPAgQN ut1u1gwSDQcqsOliAwtAE3Z1k7Xa7UEorkysM/SQcDjNhQ0cGYugZoInHZrOFw2HOeMauwfT1XAMU9eIqdcTCQTR qrRzGE9zmmBVEKOECuq5TNhfOlw/Lcsd9zkLRxeSlpwLEYYDSnwwDlP7FNM2EhARYPO2DDz64ZcsWu uDp06fz8vLoOBsvzysZQgYF1jMyXw1rIyiljEajvPk7D4HaZyU XMkCxRFr8iuQ/RWB0IOKGt967aeOGWZc/WzD397Mva96yGY2V6GhA2SHjqadeGz99f8Zkz/SZJ9InHMuZuSvz4j35X9s4ec6J//kNGtvREYApdCAMCAmY6IrogS6hfwqOskMFUHhF5HWdJkhra+uu Xbv++Mc/XnXVVZQ7n8J9ic8g2wGHAY8aNeryyy9/8MEHDx48qCYBU50qzuIBmUFxOp1kg2ablLACYsnfk4HLACdvXw AF3Z1kedn2+XwqeCI5dwCFYnBcLhd5sKK7iyv/hMgt1QbEf6U/ffjhh/S+nnzySQYuDQ0Ny5cvP3HiBPcDvUoiwFT4VVdXx89C0cuRSMRm swWDQT4+DFDOIMMApR8hZM0mno0bN2pK8TBWNJzAcUibPwQy5A yKWq6T9wHC8u+jSThwV7t/erngAYrsCVAMIATdjbaK6F+e31A4a3fhldtnzcPOD9HWipAH6E CoGU3V+Oube2ZesveiZE/u1Lr0aXUZhcdHTy+bctlfC76yff4PUNuM9k4IGYGVKcUEhLzgA IpqH6HBf+rUqUceeYTAQXFx8a9//etNmzbV1tZ6PB5a4ciyQxqptbX1+PHjL7zwwq9//evi4mJSKatWrTp58iQbjlUZ1APy2ul0OsvLy3nx5gbTs7OlCQP Wk/0DFG5qT+ShKodzB1Ck5SRL9EbMcwmrQI96nJWYtJxk9+zZo2na 97///Q0bNmia9sQTTwghKioqiouLi4uLKT+slFKN4oESXVxQUDBz5sz q6mo+GI1GH3roocTExMbGRr71MEA5g6jAdoAAhd3LvV6v3SpMV VtbW1NTw77TzIwR4SktuywPIMMw6HY0YQZu/hyICCv0F0AwGCSm9CyibMhPLS4uzuv13nLLLd/73vcaGxt5z8RDmW6n1rGEUm1hCBdsLgNBd+RkCZx7MeZ8l8ule uSdtfGFc2vyg9O7o+NxcXFkVSUfnTNeR83/KJUMK6wsqJ3SShFBqt80TSJp2HkQ3QGT+hZYVJJcrfXF7049E0 oRdnTfUcW8SvWrruvUYDJUQ1FSmuXbzw/Y62v67IVRCEAApeuAhDABCiQWEhRko/vQfhof7XipcMb7U2d+OOHS8v9cjuoW6LoZDUjopvQj3IrG03hl 467J42rGjXWnj28bndv2hYnuMUWHs4tenVTS/Ns/oqIOkYjJViMDkDClYeDTiIYbFEDhl8iGEh6r6tJ+8uTJu+66y2 azzZkzZ9WqVYcPH+7nXUvFGsJGlmPHjq1evZpWrBUrVpw6dYrd NpmEoPGv5laJSVbG7bFZBXooFZjdqm/Mn1X3lJ6ZUfrvvb4ACotKTvQqQwtQYn6rWbUeB5IFLkaZUH9qm rZo0SKK33n44Yfj4uKqq6sLCwuLi4tra2uh5MMlUS8ipWxqanI 4HARfqCXx8fF2u/25556ju7A25lJKUHTgMEDpkkExKLT68lDWNG39+vVSyp07dx48 ePDtt9+mPF1r167l7pZWYoCeU0jTNL/fD2tVGEIShUaY3W4nbETL29ktzxQHX1hYuHnzZl7VpJJlGUAwG NR1nY0dfBo919AOL4YItEZSB6pzg5y5qBk0bRiqG1b577O7Kb1 NikvkxETovk9i8NSXqFpACEHth1J8i/5tb2+n44FAgNISoLsfDHU4fWDcxsNM13XGDdRytfQXLTAcFkiM Kyxynr4ySIJlyaIP4XBYrT0Ga9yy01woFGIcRoksKYkO/SrGC/J8kb4ACiCF9VchIQ1AR7AVtR+9819f3zt54vGxU8vGfWlH0XUo dyPQlevEb4YFghBtOLXv1He//vG40bWpKYG07NAXxkbSp1WOnlSWN/el6XNx6Bh8AVM3QJYeHZAwgCjEp4DgBgVQeFDRV0IVVDeO3nVb W9uKFSscDseMGTNefPHFjo4O/i2jGZVaiPnKhAqNvc7Ozo0bNxKhsmrVKo/HQ6NX9efo6RLB+0Y+zgBF07S1a9fa7faqqiohBMcVw0r0zlPvH 2dQWC4ggKL+3Ov1wrLsSyVRp8PhKCgouOSSS8rLywFEIhEq7kP tZ33IwQQAQqGQ6F6gh1UWszi0Tg0DlD5lUACFNTK9OUoQotIJa n1Iwyr8CKuikk2pCR4XF+dwOBISEmj+2Gw2soYOidAwpf2rtMo 0nAWTEY1GGxoaHA7HsWPHaGEjuoL/qm7Qw+EwRaa5XK733nsPwMGDB7UhDbulpZonITEotBLzhkzd9C clJanQEGfLVNH6yteJRCJJSUmMkCgVUiQSOSMgMwyjra2to6ND XacNw/j444/pM1fnoiqgUKY0P3soFIpEIj6fjzCBsHzvhRD19fX8jPTDxsZGO o0egfzU0B0nwUIbKoVDncyQrqmpiXESDarjx49DIW8B1NTUMN4 i30NN03gN41x/56MTsQJQJIRUAQpbeYQJaUCE0d6AF59+syD7k4mZldnjKrIKdo 2bg/V/Q00AfiBC00GH9KHteHD1nbunffFE9n+0Z4/xjk73XZTZfFFO3fiL306d1nLv79DuhRAw/g5QIkAQ4lOgUM6CQSHhhEAMGt5///2ioiKn0/nss88KJdNGTzKvL4AiLdoVyhLV3t7+7LPPulyuKVOmfPjhh4zC 6a+6rjNhqRKQKkBhmsThcITD4VOnTtGSyY3xer2868BgFsJ/MoDCGWhg8aYq/SmEaG5uTkhImD59ekVFRQw0TEhIUB9B9WKBYk4yTZNTwxG5zoH KvCyq7RwGKF0yKIDCBSHZOYPXLV3X7Xb7Lbfc0tnZeeDAAXT3G lOLM9H5zJow8c6b5n9caBdCzq0x9pdBCZkVnE4nM/+8k0aPtAf19fVk22pubiZy6JlnnqE99BCKupTS2qxqT3IsD4fD 1NWMynnaqNmfBi70W5WOpivTemyz2dRUCmzF61VuvPHGO+64g0 6mVm3fvt3hcFCpC2lBvdTUVHJM48vSlXlD853vfOcb3/gGW3+klKdPn/785z/f2trKjJ1hGIWFhffeey/nbSQFLa2KG4yTGKao4xnWynHPPfdMmTIFAFW7FUKcOHFi5MiRp 0+f5hUiGo3eeOONd955p1TM/Lw9pS01vbULFqDogA4RQHNNw7LvfzAuo3JsatPY7IYx+Z/kfvnV4m/iRACeKCJdDiRC96HtNF58ZHtJetmk5KactObk5NYvpvlSxjckT 6mZdvlfi69AdR1Mw0r/BkiEgQA+jYyHcjAABYo2k4r6am1tfe6558gWcPr0aVh7Bj6TvS J6bYBQBMrSaFip7oUQjY2NCxcudLlca9eu5VnA57M64kEluwMU 8kEhLdTTXsknq1bpgWyo5D8XQIEVialOXrJc02fS7R0dHaQfiK wFEAwGyQeZGBS+CyMbAiJ8F2bd2IjMOHKYQeldBgVQoOxxqYrS s88+a5rm9u3bd+/e7XK5QqGQodSsgdK5zKvzHVXG3uwt0+JZi2mazF6oAGWwIhRfF jUsHt3zBxCJZ5qmzWajg/Hx8bC6iHfV/7ioT6HWzqDEA6pDBoDa2lryomcUTxD+LIY7aS6ebKZpxsfHM29 BdyHw2o+KB1BZWXnZZZfNmDGjqamJCbZ58+b95Cc/eeihh6SUdJcXXnhh8eLFxcXF1GCfz0fgVVp7kWPHjk2fPn3GjB lcsss0zRUrVjz44IOPP/44a5nS0tKvfvWrmqZR0CYraDVfZEdHx4cffqg6QnEQJq0Wzc3N iYmJV1xxBQVU0yP/+Mc/vvPOO1esWEEmLWLarrjiiqKiIm5qJBIhnMqrFFv9zjvpA6BIGi 0SgICMQkZg+FBXtSOvxDM+vzU9q+Wi9PqUqUfHzv1r3v/Fy4fRRmljodNy2dGEtze+M3PcJxMz6samN2aktmWMbU8d35wy+ WTKjHfzvoL9B+Hv7AIogskU43wz8fBfVW0ZjUZvuukmp9P5xz/+UQ3foGlCapAPqtNTvRqDftE9CQePGRo2q1at0jRt8eLFHE+nk tnokWyNLs6xQk6nk5E3jUBCzIZhqBHOA1eS/2QAhX/FWiIcDmtKJhWXy0Vp39jJkq/JB6FYGMgAhO7+mlDUNRSAOOyD0p8MCqDQ4CZ1L4QIhUKE/lwuV01NDdGJn/vc58jQQ1OUuG7VssATjx0b6eUNoezYsSMpKclut9fW1vLg6+zs FIMUHoKdnZ0Ey5jnhwWqmAGiSfvcc8+tW7eOuH0Adrt9aIeXqR QvZe0GyxWD91L19fUFBQWaptHGjqmCcDjMqnPgEtMAWKCNWAr6 zHs45nh6yrJlyw4ePLhp06a1a9dSY3bs2HHddde1t7fbbDafz0 dcSGFh4YkTJ370ox+9/PLL6paUR9GKFStefPHFLVu23H777XSdw4cP33jjjX6/f+rUqew/eN111+3evft3v/vdQw89RE9BwZbcaT6f74477qBsLjRQuWMZpjz00EOPPfZYaWnp 9ddfT8RMRUVFYWFhR0dHfn5+RUUFDYC77757+/btW7ZsefLJJ9mQRDtX9RGEUhbkPJK+AYqgf2BAhIEQjA5UV3ww Y+7pz2d408Z608a2jck/PnbO6+OvjD79DjwROldGAAl4W7HtxXdKJhydkFU/JrMlPbM1I9uTmtOUPOn0F6ftnvYVbNsFXydMqhMIw5RSSmEOpb 98n088GIAiFFafplJDQ8NNN93kcDhKS0t5o9LTSbwnbuDrS0ti 7qVyITTZ6ciOHTucTueiRYtoDLPpMMZoqwIULuqraRpHzFJ5Gv q8dOnSntnoVZzUT+/9MwEUPoE7v6cp3OfzqfljYPnbqZBFVZVEgzGohWIopIWPvw4Dl P5EDJJBoTB92Z29JBUcsYTmMOESXs/4NbD867/+K2Ea9R0PiTz//PNkeaUBSh/odoMVrgbOEggEeJhyPwQCgfLycqrum5CQ8Nprr/EeeqgeioVuShUiGECwiqFVdt26dVQ/k9zIaStgs9nI9WewncBe6HwR9bnYkYjuxYxlTyGOLRqN5ufnky f8jTfeuGfPHgC///3v16xZA2DDhg1kAzp27JimbGLo7izkUzJlypTKykoAP/vZz3bt2gVg69atq1atEkKUlpZ+/etfB9De3s75NJ1OJz3LiBEjuMEOh8PpdNKNEhMTNWtM0rBMSkr y+/3hcPjKK688cOBAKBS6/fbbX331VV3XX3/99aVLlwI4evTolVdeCcDr9WqaRmZpujhtptlxof89+mcmvQAUI SG6KgwTfSICQABGG2pPvzWtqG5iXk3qf7SkX9SQmn0sI3/n1Csq/98j8LhNGe0KRjYl2pvx3tZtF08oHze+LSW7LXls6+gsd2pu7eg JLeMveSdnJrbtRiAMAQOIAFFhwhSI6OdhNWOVEm5tbV2yZMnnP ve5vXv30pLGvDJtYNjwyjTnGQEKuyjRr0ij8ooohNB1fdeuXZq mLV26lJRwTwMot5bUAvkC0lCMi4tbuHAhtTYQCLS0tOTm5iYlJ amGVDHgUMd/PoDCKj0QCBC3QZwTBYGqZ3LsHiyihR9BWJ7OtEVhdwj2cYkJla LWDgOU/mRQACXG3QHKNGPHdY4lUVdxNW5CKH4MUgl7GcKdpZTy97//PadIYL4AACAASURBVL1y1af17C6lWY6urCykEhwLxc2FxtnHH3/8+OOPAyDP3/5n6aBEWOm0o9FoTFJ5agxpyW3btk2aNGn+/PkPPvigVDwqKFLxLIa7ui2TUoZCoaSkJOZFHA4Hu+L2/xKFZSDbsmXLo48+Wlpaes0119A129rabDZbU1NTcXEx+Z8KJUZ GJR6E4smxefPmH//4xxUVFYQPAPj9/osvvtjtdt9www07d+6k52Wila/GCqK2ttZms6nOrXwL6jRWK7t3777iiitqa2vz8/Np/fD5fMXFxUeOHPnve+7evWsnFfKlfjBlFwlhdi3xMhqNCi6M16N j0D1/qwSbWECVa8BHup3cFXFjQpgQXbWApVqLWLkO0G3hl8ollT/FABQpJSCkiMIMAiEYXtSVv1hUfGTSpOpxY5oy05vSc45l5m3L/+rx//d7+NsiCFqmmgg63Sh99W8zck+PHdeWkt0xOtObnO0ZnePOzD+R Xrg97zK8sxf+KAyEDEQBQ5gwDRhRyPMuD4qKMB577DG73b5t2z b6k6HkN2NDMB1RsxfGMJFSMfGo7RHdww7oBB78O3bssNvt9913 n7S8tdDDPZZ/xQCFEsTRIKdLNTU10bL629/+Nsa8HtPOvnrjnwygoEf2AfUzrCQFalQEc+S0B1b1FcuBAweqq qqqq6s55pyt5Bj2QRmIqJNhIAwKzav9+/drmkaBlNS/tCVlN9iBjHJ16PT/DtQFA9a0ZAdJKNABVhypYRgul4ujXs8OnehWvUo1Iomtuapd2b SE6Dt1e0QuUb3626sbLDbc9N8k1mjkmY/uzj2BQGD58uXXXXcde5urYW/Scgvl5nFwU/+vjBsvLY9UypxIF9GUUuOqPTvGrxCKzu3s7CwuLr7++ut3795N HRsOh//4xz/ecsstP/7xj1WUEwPC2HxLxzs6OmbNmrVo0aLt27fDQi0vvPDCsmXLrr32 2phhww5uMUNu4OPwiiuuuPXWWzdu3Gha5Ty2bt26+JaFV3/tK0BEIuoPegEhISLSjAIGhAmCJUJCGDANSEGl8sKGBQ6EFBGIC IwwZJQAhy6g6xAmjAggEDEsZBKJIhqGNPSQ30IhRhQiAiMC3UA UIgwzCAQkQhIGhIQORAFTSFPAhDQhJaIRwIQRgQlEB+DzISWlQ zGEGUG7+8TypbumTTkyNqcmY7wna/pHGQUvF17V8vyrCPijMCLRAISOaBReD97c+u6MiSfHj6tPTe/IHBvOym3994yWjGnHx3/pnS9dj1ofgoCATglXJICIlAFKf39OpR+AIrt7h6gzF8Bf//pXTdOef/55Ol/NR6KmYEB3hwb6qobq8MBWf8KARg35URe2QCDw5z//OS4ubuvWrWrzVKBjWFmRHA4HA5S4uDhy5abTNmzYMGfOnD/84Q88efkRBth75z9A4fhQKJGnMZtkfl5KH8DQpH8miZtkmqZmB ajGYNDNmzfPnDmTjQYul6u4uPiFF15QYZCwfBzJVajXMTnYHhi IXEgAZbAMSjgcJv9TKgRFpSD9fv/ChQvJM9Tv99fX1w+kuu+gMr3Swh9DhxApSj6Ppmmq7qiUvwSDC e7v675xcXH8mVIIxDir9ozLUIE2Dy9aVgnrMOnCDuHogcN6Cj8 gOeRC8W8QQmzfvn369OnPPPMMcYyw+ocUJd+UlFGMSuq/i6SV4R6WCtCs+kTEoKhKXN1QMqDhS7G/0W9+85u8vDy1uyjv3/HjxxmusVoh/3m+Jj+4EGLt2rUTJ06EMpIjkchFF120a9culWlXFw/+LX0d+Dh85ZVXkpOTibMVllPLmIy07dveBCJCRgAjHA4ahhExj Yg0TUD+necQJoQBaUDSWmyYEoAeCkIakAaETiMiGA5JwCBgoQM BIBSFz4eGVjS3wxtAsxumDjMKIYhfMYAIhAEDUoeIACGBsAEpB QigCAFdAkAobEQp3UgY4ZBpDBSg/H1/j852fLTn5ctnvVdUtD178sHci3cXfm3dV+ahrg3hYNSCTTDDaG/G+if3zZhSNjbDP2lSw7+Pbv2PdG/qxPK0ae9kFx9YeCcagwgBAgZZhaQAIiY+M4CCPjAKM3DHjh0bO XLkTTfdxDwx/YpXPnSvjcd7AFKYbDpk31U6SGsYm3ViVkcOm+dYmx/96EeaplFQPd1R/Qk/At2Orh8fH9/Q0KC2ORAInDhxIj4+vrOzU8VAA+y9CxSgoHtqzZ7JY6B4LLA7X UwbegUorGoMw1i0aFFcXNzy5ct37NhRXl5eVla2a9eu22+/PT4+fsGCBeTjzIBmGKD0J4MCKACOHDlis9kOHDigaRrNnI6Oji VLlqxevRqApmmLFi2ikdHc3Nz/pQa+MPBGgb0u+O0yUlEHTWlp6bx585KSkvig3+8/i9dMyQM0Tdu7dy89LNmYSW2ptAq58TOv+MEHH1RUVHCIfENDg2 blXU5MTDRNk5QU+VXASm3ncrlWr17dTzt5Xvl8Pg4djEQiTU1N d99993XXXXfkyJEY3kJYVpWY2EJp5ZozrRR2qv9vjHDxMw6QY5 1CU1R0z5HKeUQ43J/uxYwR51Bh2xD1JCXqVSlWFs4uxRqcIZfX6+XwMdImPPaYcqcLt rW1sWthrwzKGbFsQ0MDR1LQ+W63O6KHQ5GgNIUR0slnwwjpMNB VX0aazHaYEAZE2NAFZDSsd7lrRAGrSp4BSAg9GoSpwwihw4PmO tRV4cDBF+dc/ZeCr64ruRLHa+HtRCiMKBAFIoAO0fXbrldP1IkuIU0IQeG7CAF hoB1oNWQUMIGAETBhnLE4XzcOzAjCX4PGj7Z+//9be+mcP1921Ts/+DHqGhAMikgQ0oQATBMIoPGk+dv7D04YfzojvWl0Wig5p+3fx7 VkX/zRxDmbZlyGd/aiLYgwujimLo7IkNQd51j6Wgz4r7K7CYYG6sqVK2fMmEErPUfu aFbCDCjWATX/kBDCbrdzjFtPARAfH6+yICpi4Ouom4ri4mJysWITZEw5MCEEYS BycSgoKCgpKaGWM9D51re+ddVVV8nu/qED0ZMXKEDhc8jRhL1JWLcIy4ZOZ3Kqkr6aRJ1MPcwb16eeekr TNMpZ2m3iAO+8847D4Vi5ciX/HMMApX8ZFEDp7Oz8whe+wJwhJWpLSEhYtWoVvRuHw0Gujg6Hg/fcfcmgFgY1i6LKQ6qpFaWUhw8fnj179rx5895//31iEc7YjH6E2ma32+fMmfOLX/xCXduk4tlAbTBNk7TMjh07CHns2rVLSrl37979+/fzCCYdQYF/ra2t5O9GaK+lpcXpdPbDsqpesawW33rrraKioo0bNzLCID9lab EXnIeDUBrNT56H9Iz9oBOSQCAglHLwmqax8xfrF05dRXeJoVJg 6XTTirZl8oZBEmuNzs5OajztNtQNK0Mrdf0g4c+qRw6BJG45PS nTuRjMOGQWR+XqTCmo1B0EYMLnDZq6VVzGAEwpCaNIQa4VJoQB U0JASIQM6IAOKaxyNKYOIwyfB231qD2JuhOPXjX38eKpb5dcfG TqnIM5M7flX/bs3K/D04ZQqAudhIEwpKArwSDWxoQhoUtISXYcRCCiiEZgeiE6gaCgl PKGoQfPCAi6qUgZBdohmtFajuYq1Dag0QNdB3SYBiQQFdDDkO1 oOFI+/zsfj81uzhnvTR8fSctv+uK0j8fM/FvhVW/fshx1LfCHYZiEqohY6p7T9hxK/wAFCg/BAJoqeP/lL3+RUqpzjX7OxKS0DATRaJR9ZtnDQHX44K+6rmuaJrvnpzaUy gwqfUixQjt27EhMTHz++edj3Fy4zera6XA4ampq2OKTmJjI+VE OHz6M7j6bA+y9CwigSCU5k9fr5Qvquk5JAYweVRJ5+9ETnaA77 LBZBSDpNQWDQU3THnjgAVgmPzqZliHTNJ955pmkpCSVzRoGKP3 JYBkUKIGmNMG4ZGU4HI6Li6NFtP+hSTIoBgUARVXEx8e3tLT4f D4a2Xa7nZY9sgG9/vrr+fn5y5cvP378OF8zGAyqyacHLlLKcDgcHx8fDAbvu+++goI CykEHK16XfO+5DzkcyeVyfe5zn2MXNprPiYmJdEJLSwslnCUcQ 3SITckn2I9Q9IphGE6n0+PxLFmy5MYbbzxx4oRUCgurni7cgcJ KxUHHab8VU/WmL2EaRkpJiVnppdP0o8LidGV15ZaKXwtNcrqLalSieRsfH0+q c+/evQA0y6VJs9ychRIYjO6uPPSV9kDMlr/wwguwVCRlS4OyxVS5NwxmHLL2J96I5M9//rOum3HORKfmHBE3UtPsBFZMf8TyVZUQsoseMQGJiAhHEQUAA3q wK0O8TgSItwPNjThZhg/3vjTn4lem5G7Pyz1QMOnIxPG1aePLvpC9f8rMF+Z8GVUnYQQgD UjCNdAhIzB1RAWiMHUYktxzIQAhICOQAZgB3ec2YYRgCkg9FIY eJceYfp66hxhARI+0QgZhRODX4RdGMCjMCCT0iCEBSB2dFTj45 pt5E0+Pn9g0ZnzN5zPcyTPKM+fsmH71+kv/Lxq8CEcRjUJEAV1Cj0IYQFdQ87nHKIMCKISPb7jhhuuuuw7dE5 bruj5q1Ch094elD2r2M+JNoXhioruvw4gRI3hAqlYe2VucKp1z zz335OXlqfQnD05h5VDnkD1+CrJAkaKgxINqm8+4UeRWXYgAha 9mKMXLYvhaNqip9p2ebeAjHCFIZx46dMjhcBw8eFCNMFdfHAX6 Pf7447xFHAYo/cmgAAoPaFj7ZgpdYQSqWXYfTuTVjwx8YfD5fLTJALBt2zZN0/bs2bN+/XoAjz76KK9ANOva29u3bNlSUlJyxx13VFRUMHV5dmVQTCv9mt/vP3nyZF5e3v333+/1ennMxWyDAPzsZz/TNI08M9g4BctEkpCQEIlEyJOX5jlFI7/33nvvvPOOpmn9WILVkapp2qxZszZs2KBGoOhKhRpY2jAmOZhpm uy5ojrx9PO+hOVvS5iMAIG67VBvoaoDoRT+UJO+E5rkn1O/NTc322w2XdcpLKipqUlYQUNqM7jYDQC/36/6LNOIoggFwzD+67/+6+GHHwYQiURIg3OGWXW8DRYoU6vIM0kIYddsMOHQ7BDY8d52R 3ycSWZsafEoAjDRxW/ogAkJw4QeiQYgBUwBXwAtHWj1o74FJ8vXfmnO1lmztk3P+6Qg7 0h2ZvX47NNjRtdmpAQyxvnHTTueO21zdi7KjqC2Ek1NaHKjsRV NrWhuRks9mmvRWIPaOtQ2oKEZDW7UNaO2AQ01qK9CTQXaPWhzI xyAFOT2inC4f0DQi34kzkiahil1vYv2MMIhmBBhAwCiXrSWla1 ctHtSTvXYiQ0Zk5uyZpwc+6Xdk772wuxv4UA1fDqi5HajS4R0h MPQDVh99VkDFNldDMMgxzsC0LwNoJHJc5aGIk09tTYTAKfTyQs hr3k8TXRdt9vt0WhU1VFCcZuAUtFJWHbegwcPJiYmMhbnBZg/c6j8yJEjDaveOF0txm1ODS35p8mD0qsPiprqghYOn8938803cz qDUaNGUaES9G3iQW8AhY5s3rzZ5XKRglUZFFL41P9Lly796U9/imEGZSAyWAZFt8S0Ahn4OioUGEifDsrEYxhGXFxcQ0PDkiVLeD REo9H//M//JHotBghHo9H169fPnj379ttvJ7VyFinGo1ZGf6ZqA4HAb37zGw ouFZZTBTumEIG0d+9eGrWPPvpoIBBYt27dpk2bVqxY8eijj/p8Pqrs89Of/nT//v2NjY0Oh+Po0aN2u725ubm2trb/KU00smEY9fX1iYmJ1dXVHDvDyz9NCfqXevXJJ5+kuffQQw+RIy rNqB07dtBl1eJh/fQ/LDdh+nrLLbcQjxIKhf70pz/RLTgqp7Ozk2nSmC2j+o7Yo6Wmpuajjz6ix+fkDevWrWPwoUYbs eJmXMWWssrKyo8++ogihzVN6+zsrKqqUl3h1IRy9GFQ45AfR9O 0Y8eO7d+/32Gzi0AQ0ti5670pM6ZU1VdGZcSEEdRDAlLKLtuOIbsCgmECUp jRABCBGYS/A55WHCzbVHL5X6fN+bDgy3tz8j6ZkPfxmJyKsTktWeNb0jNb0p O9Y8fU/8vnO9LH1qSOLZ8w7ZPpM9+ZUPBu/py/TZ9r/feld6eXlE4r3j2tcPeUoh1TS97On/3W9Nl/y5u9La9kW/7Fb08venl60ca5l+FUOXxeGEJETBGO9m9VUVXz3z8LIGRQ4Zyo CQMwTQkTCAERCRlBezW2bXqjYFzD1IL65ImN4y7ekzzljYmXbP nyt9EYQXUnfAICgDChRxAMIxhG1IC0+qf/lzAE0utiIPsQXdfvvPPOyy67zFCyDPPPadCqMy4m3hBWSgVppS dgEVbOAk1x6lIdpEhUdzcoQSjf+9735s6dS7VEYkgCAJTghyYm gw/6a0dHB6tQteDoGfUAd9SFCFD4vdBj2u32SCTyi1/8wmazrV27ll7Wd7/7XaqqyOhE9HCSRW8ABUA0GqU8WLAWBRVx8k9++MMfLlmyhLHmM EDpTwYFUDheDkr+GVhKn/NGSCUTQD8yqJ2rEIKKC2pK/AjBYXKF4ZMNSwC8+eabM2fO/M53vsMbmkEJM6XcSzTKjxw5Mm3atPvvv19N/A9rsNrt9sbGxkAgQPmRiCMh8EHJu2AVdyCuD1Y9GlrgB8KyslW bu47NFqxoqLXRaNRms1GskMvlqq+vf/rppwGUl5cTLcnasP+dk2EYTELoul5fX//zn/+c2kAuwLqu/+pXv6JwOwAnTpw4ffq0urOkUcF3YSs+bWuoo1paWlRrDodSwwJ n7CcLxeGXfYM46L26utrn89mUaq5SStUVrqcuGCBA4duRVc5ut 9fVVkMaNRWntDit2l1jIhLWfSb0sAxzQhJKRGaAPhlob0fID3c TKk/j1MmnZ81+M3/mBxOLTmYXVKRNrsuY1J6TVzs6052a05aS3Tp6TFtqhnfMGF9GV ssXk70Z4xpHj2lIzWkaO60qY2r5mGnlWXnlWdOqMqfUjpnQmJ7 blJ7TlJ5blzGhImsKHa8eM6k6c0L52ElHxk7dXTz3D5dchvpGB CMU8Nx/7WC1o3hSR6MGTMAPRGECHVG9y5YUBoIGdB8ay6qXL/xg2sTKMZNr06cfzC55Z/plh3743zjZhJq2Lq/eiASgQw8iFEI4At2AeX4CFAK769evJ6B88ODBjz76aMOGDS+88 MLWrVudTufy5ctXrlx511130aResWKF7E7UaUp195hm8CoVozb VdVo1GxlKDZ1du3bZbLajR49CQf8MU2h80r+LFy+myEreIcjuh t3+jbw9e+9CBCiwzMFQCNe9e/e++eabsBYOerQB1ieR3WsRSynff/99TdMaGhqkZdkxlFTjQoiOjo6RI0dSTMkwQDmzqKB7gD4oQyXq whCzRppWyg0ou2RN03bt2jVjxozGxsZt27Zt2LABwPr16zVNUz 3kaRnbtWvX1VdffeWVV1Ki0rPO0iaEiI+Pp6TFHJ5KC+0vf/nLoqKiQ4cOMRNwroXZXfK3gBIyx2FK6kLL8w3W+i2sCh1qNljO RAIrCSYrL2aJeD8BhRB2OBysDh577LH8/Hx6p5qmORwOjr5jLz9Wx8IKt6b72my2urq6/Pz80tLSmpqaBx54wDCM3bt3a4oPChSmh01OUICOrus2m62xsXH GjBm7du06efKkpmmhUKilpYWbASWaiZV+z3HYl/D+MhAIJCQkBAKB22677ZFHHgFEIBrU4rQIokAkGGyTiEZEOAoR gogAfjMcpZIznT40NuNkOY6XP180+2/T53wweeaR3PzjYyefGju+YmxOdVZ2Y0a2Oy27LSWnPTmnPTm3L SXXnZrjTsv2pGa1pWZ6UzK9KRntKZmetMyW9KzGjGz6rykjqyU 9syUjw52e0ZaW5knLaMrIbMrI8qRmtadkeVMyPalZ9RkTPpg44 6nZl6K2HuFQFAgDkUHiAQlE6Sc6YMCA0WWdkYAOdAbhb8T2l0p nzzgyZdqh1IkfT5zzSt5l4T/9BfVt6AwibHQFLhldrjNhGCHoBkwBK9vcuZe+AIrq8MG75/fee8/pdDY2NpKrLG0ziJygcU6FmX7yk5+sW7fu5ZdfPnHiBBQlxsZfF V5DmUcEJkwlN0FMQIBUfMtYIpFIIBAoKSn5+c9/Tkd4XrCFV7NyMTudzgULFqhVF0i4DCprsH4wuto/tPzT4/cEOrQh1KwUl0wsqXFJqrUl5i4xAEXdRatSW1tbX19/8uRJIlDVBnDubJfLpeIDtVc5uxq7BxmGQQjj6NGj6qa0L7VAL4 40Kr07cjF59NFH6YSYxGBCiFdeeUXTtA8//JCPUB/GdMIwQOmSwZp4hlB63bnyTj2qFEAm+xEZFEpLSzds2ECEBEl9f T2PoXA4vGfPnnnz5l177bWU+xwKtXN27VQ5G1gLud/vN03zk08+KSoq+u1vf0uu9eIcC23mqA0EDmhqcRgwLF3GHFJra 2t8fPzevXvXrFmjaRr5Z3R0dHg8HnoE6jfSXLyES6uSMytTagB 9pvTPQgjNKsdot9svvvji2tpap9N57NgxSrrg8XjIUUNVrKJ7I AMzTwDcbvfdd99NHU5rwL59++i0aDSqFmziNqtetxRPIaWsqam 58847AWzYsIE2UgRSOc93DBYZlJMs9wnR5sFg8Je/uj8qZKehO0clGRDBgBdSD/haASMswxEYnWYAiCDQitpKlFf8ae7lW2ZdumXc5OOFXz6ePrVl TF7t/8nwZU9qSMuoH5NZn5nRkp7pSc1qT8n2Jue0J09oS57gTp3gScl tS8nxJmd5UzK8KWntqSltaSmetDR3eoY7PcOdnulOz/SkZbSlZrSnprWnprSnpnjSMjxpGb7kjMDojOBFaZ3JGZ7UnI/H562fdQlqahEORc4eoIgufxEJA6EIQgbllwsaCPrRePzQHTe9N yO/dPyk0qkzt395Hg5XoS2EQCjc2SGEAQBhE2GTktxHgQg54wijK+ Lp3Etfu1VYa5JQ2I7Fixd/85vfFBZJeeTIkYaGBqaTHQ4HoQchhAqmYYWtAiC3KihjVf1KJ7 ACgTWXOeIMiq8lfeXa7/fcc8/cuXNNKx8j428mL2+++WbNSn+wePFiNgETZJfdi2j2P/6hEDCaUqXENE3apHE/wIqZoKfgoGt+Fur2XiMD+mJQeIZSVTVK/E9tKC4u5rqhLpeL9jxs3mKQR33CdfuYoN22bRtHYGiaNn/+fNalgwIodPB//ud/NE1rbGxkazgdD4fDVMD11ltvVeGgaiRiGQYoXXJeARSez8y2AW hsbOR9gMfjqays5JEkpSSA3NTUVFBQcPz48QcffPCiiy7605/+xLQ/ZTFS19dBSSAQoOWTkm2o2geWBfdnP/tZfHy87dyLZiVTYerS7XbDmkhkBFG5IurA+Pj4LVu2JCUlzZ8/PxqNxsfHE8/JPU9up6T+mNskRcbRARySwOY8KaXT6YxEIm+99VZCQsKePXt27 95N5jYOrUpKSqIMJegOTQwrWx0HAAsh/H5/zF2gOBvCAoWmFaxEBzm2GcpM5rJtrLVVJEdH+BYDByiwFHRUSa 9nCoQlgpROxABMgVAYpoAeNkQkIkISIRg+lH303Fe/9rcZsz/ILTw+fnpNbt7J0dmt4/NaUsY1/FuqGD/N8x+p7SmZbamZntQsd1qWOy3bnZrjScltS57QPnqSd/SkwBdzO0dne1MyPWlpTWNSGjNTmsaktWRktKRntaRnt6Rne1Jz fKNzfKOziV9xp2V7UrPbU7J9yVm+5AxvSqY7Nffj8dP/PPMSVNciHDS6SJDBAhRhwjBhmF2xzH4JvwQlxhXwebD7zc2XFL 5ROOO1i2c3PvBbnKqEN4yIhGmYMmrCENBhGOQPa1UCoDdlCOiC ShufYzkjQOFzqLDD888/z74avOTE5ARiy2OMw4dhFdRUxyp/oLHKbeClizUhkxywYArfKBQKkecWL89QVkT6oc/nu/XWWzVNGzVqlKZpCxYsiNmq8f6BMc0Zey8SiYwYMcJmWdj5OGfO FZbxgo/zNOdgOlWtxSCSngAlppiGYRgJCQk333xzOByuqqqaMmXKiBEjS JlQewi7uFwuyhfFXapuyah5paWlcXFx8+fPN03T7XaT07Fh5fU +I0AheGFTYoXcbndRUdHkyZMPHz7M7454OIfDMXfu3NraWoaSp C1tlpGIZRigdMl5BVAAkOoXFvNGYeV/+MMfALz++uvktEGOGnFxcadOnbLZbC0tLVOnTl2zZg0NkX379l 111VVUyRaKljmLFppKdC43L8ZYQNcPBoPy3AurHqlUCKIMJUzS 0qpPWpJ4EbKVrF69evny5VDqg1OlZdVpVFqOGrwXlMoGi+Ejsy aalSf7iSeeoDlWU1MjLNuztKxLsDZn/BboQWK+CitIh1Eghx5QY9iXhV8EJ9+UCjSBZV9Xhxb3Cd+l/3HYq0StQkjcY4ZhRHUZllaydgHoEqZExIQp9GgY0MPBFnQ0/Olrl782ZUb5+KL6L+bW/3tmx5jchosyGlMyfNkT2jPGtf5Huu+iTF9yljc5q40BSpehJ5c ASudFuZ2js9tSM1syMhrHpDWOyXCnZ7rTslrSs8nvxJ06wXfRh M6LcttSctxp2e7UXE9Kbntyrjc5pz0ly5Oa1ZI24ePx058ruQR VtQgGKQP/YLWfhDCgG9B1mEZXptsARVEbohPu6tP/s3JDXt7T04v1Z5+nBG4I6xRkbcCIyoguQqYRpqgfinKiRG2m/IwBSoyjPc30qqoqTdOorhP/hMLHAPh8PkoIySpCWlQBjVUaUbbubi4c38HXZDssXYrC6ZkIYV ENmvSBEi68/fbbfCm1AXR+KBRasGCBZlVOXbRoEccx0Izo6Tneq6g7Pc0q8UP 7t87OTrYrwcozRFmdYgKwpbWQ2ywXmb4AIn9lPoN5KWoAs6Ee5 2VlawAAIABJREFUj4cuYhgGxUMRGtM0LSEhgcMG+ekoHDUxMZG us2DBAra+SSUXg4pR+uqTmCge6p/GxsZvfOMbmqbdeOONd9xxx7333vutb31L07RFixaR+Y/1zDBAOYOcVwCFhgJvdukgl5PQrMAwYlBsNltlZeWIESPsdvuvf vUruiY7o+zbt+8b3/gGwRS/399P7G4/IqwUYZzsS1VhQgkwxjkYRj2FNKZh5cRDd5UaCATYj4R/ErPb432MqSTwhsUJ8dVk95xRMVsuNaFIjPYxrWpElLMIFhRg1a CmnKKDjz32GOW2AUDRQHa7fefOnbDSwe3YseO5557jHxpK0XNp 7UtcLhdZ9JgxJoxCg8fhcNTV1akN0M8qkyz9VTUvAoiLS3A6Rw qBkC8io9j4/AsOm32E3XVg115IwNChB9Dc8PyXL393XH7lF8brY/ID46bUpaR7J0wu/8JF9akZTalZLV8c05mR603Obk/JbqP/UrO8yVmdo7N8o7PbUnLcqbl00JNG1pzMttQs3+hs3+ictpTclr QJjemTWlIntY+e5B09wZOS607NbUue1JY8yTt6Qntyric1uyUt pzF9wsfjZ2wouQSV1Qj4IUyYEkIOikKREBHoOnQpTUhTQheI6o gKBCHaUH9q08xLX5xxqfjLq2hpg6cVgaAEQoAuhSEiuhm2iBvx 9zBsASFhSiFgyvMJoBiGsWfPHqfT2dTUBGsCMuxgYx8rCp5fqk JDd4dQl8tFAcBkx2TlRjflxZj2PFAoGWZc1CNCiMsvv3zt2rWq t4qahMOwaupS2B3da/78+apVFwqv0z9GgaVjXS5XQkICbXXoOPtbcP+QuuboQtPsVoZG s5xDzwhQeG5KZTdI9iM+ollxNHScOpZTdQN45plnnn766ebmZt J+hw4d0jTN7XZTIw3DIFAorVRPupUVs1fFzgdVeMFJQUm9vPvu u6tWrVqwYMG11167cuXK3bt3s6LmbhkGKGeQ8w2gxHhoUj3rhQ sXut3u6667jgw9jzzySDAYrKurI+70hhtuWLBggdfrZTXBs/e9994rLCycP38+BummTsLOU1CUDm84aD/NN/0UAIq0TBsUxcOsCVFNsAy0ND1YMaF7wAurCXJVYfMHPUs0GlWz KKqpnKJK8tlwOEzTjBxByC+PY5q405i3gKW/1EwM1IyVK1faLA92TdOam5vJjwwAwY65c+e63W7SxfwgfNkVK1 bU19dXV1fzJiYxMTEUCvl8vk8++YQO7tixw2azETkkFV85kkGZ eACMGjVq27ZtnZ2dCQkJZWVlpimd9nhIuN2tuq7/4v5f+v1+d32zU7OHgzokEI2gqenhi7/04WVfPzk2rz45pyo1qyF73KmLRrtzJjZnjGv4YqY/c3LTv2W0peS0xQKUTF9ylmX0ybKgSaY3Ocs3Orvzohzf6Nz25A melAnu1Anu1AltKbltKTnu1BxPak578gTv6Am+0bntyTnutOym 9JzG9AmHc6dvKLkEFdXw+yENmCbMQQMUHboBHaZJ6eAMQEdUwg u9Hh/v2lh8+aH//BGqPPB0QhcwBGWBkQAghIxG9YBuhExTh5AUsyMlDECXgkDPIFp zttIrQFEXQmnF1GzevJlGIyMGrtVCv1ItFMxewDLxqLwCja5gM EgzV62bAaVMlWEYjY2NlGypvLycNBsP+3A4XFZWxncxTfPWW2+ 94447oOxMaObyNKeD4XCYeBRiF5YsWUIzna2ovMfoq9N0pegp0 QbkAqIaofiOnZ2dmpIhBpbygUXWDhygoAd1RH7HDz30EL2IV19 91eFwUBV0TdP8fn9CQkJCQsLIkSPJQ8jn87322mu0V+G0kN/97ne5qjNn0aQlht6d6rbc1/hRaxFzH/r9fvohUz7suRzj/jwMUM4g5xtAgbKIktGXUukLIWh7zYlraQQ4nc5gMHjTTTeR/xetzbQKbt26taio6K677tqzZ8/ZvWPiBqGUfaEVnTAKL5afTggPCe3q3G53XFxceXk5lBFfV1cXg w/YRk6btrVr1wYCAZqcTqeT8oXwzIyPjydtQv0MgHL2U9H2xsZGA EII1VlVDf8hIUBD3cKzlM+hfzkYR1XxsExC77//fn5+fnx8POWvmzZtWk1NjbqDZALcNE3WraWlpU6nkwaM3W5/5JFH7rvvvrq6OnLXvfnmm2NM0RxQgEGmuqdGPvbYY/X19U6ns76+XprCqWk7tr9TMHtGEOGOUEezu+m59c87bHFdeVFN wOtFU/3vSopfKy7ZM3Hqx9m5leMmtuRMrU8Z502f1Px/0r3JOZ3pE9tSssmyQ3DEk5pFkTttqRltqeQMm9GemuFNIWNQdl tKjiclty0ltz05xzc625uc5UnLaMnIaMnI8KRlepOzfaOzO0dn e5Oz3OmZjRlZ9RkWQCEGhfLLDxoQCAkdQocuEYU0YAgIGYH0QF SYx3Y+OfNKPPU2miMwYUQJlkBE9XAoYBhRCUNy8LUgDsZKYkfe KINkdM5OegUoXY+n0PtCiNWrV5eUlMSQKzSzOG96VKldqlKP/Ffei6s0A3q4VlCuxT179vDK7XQ6CwsLa2tr6WSv17to0SLNck6 nVj3yyCNFRUVqRkR1vgjL44r2GIsXLyZDj91unz9/Ps0gnkcDZ5o5iocnLz34oUOHXn/99aeffnrlypWapj366KMvvvjiRx99pGoGXm5sA3OSVb/ybvDxxx93uVxPP/20aZq1tbWFhYUFBQWwlIlKWfEPA4FAe3s7ocPy8nL2aGY9D0WZ c16DgQMUoqVZucVoOf7AbnnoAVBiaN2Yew2VDAOUAUlfPihQXg nBFDVhM5OiNpuN7Ii03vzyl7+srKwEEAgEXn/99WnTpt1xxx1k8JPdkw0PSgiRsG2SrTm87rKiGcjm+x8U1c6ta VphYeG6deuoWlg0Gi0pKbn//vthkZPcSNM0HQ4HGSZoWQ2Hw/X19ZTAjZ6ourqa2r9q1aqFCxcmJCQQB1tRUeH1em02W3l5uVTi CNgpVY1WUN8aCZ+vMlv0J6rXRUdcLhcHOxQXF5NbNACbzZafn1 9dXU0/UVPvqJ75vBtje/+NN97IWT55q6eqSHU8DBygMM1jt9spGX9FRQUgEp02h12raCrv lAEtXrM7bZpmr61phEQ0ImEA4TDaWtBUg7KPn71kzuslX3p7Yt 4HU4o+yc6rSJ/SMiavJSXXnTzenZrTkp7dkp7F/xFr0paW1paW5klL86RltKdkepOz2pNzPCm5TWkTGtMntKTlelJ z2lOy21My3elpLRn0X4YnNYucZNtSst1pWU3pObVjJn04YcZzJ ZegqhJBH+WYP4uoGSmt5P06YMA0IUUE0gPjdPW7m9bMvRavHYT HMA2YQMQUMMyu9HSm3uVoYuqmEYYwpTRNQIfsAiifaR4UdHcOA KDr+n//93/feeedzC7wCaoXdszF+bfqoOLEXGw7UCP5OX1UU1OT3W7/3ve+RyO8urq6sLDwzjvvpJF///33k++nurgyxwOLO0FvicJIAoHAggUL1KIctF1huMArbj/CwIKzvPv9/ieeeGLWrFn8p7vuustutxcWFjKOeeSRR9TU3ipA6QeR8ITl3qP j4XB4/fr1zz33HJ1QW1tLjaGtCJEi7CenbtigTH9+KeoWlF/rYAGKmg8MCtLli/BbU8fGMEDpT2Ig7ad5a3VhOOt3ICyHShoWr7zySk5Ozp133llZ WamOLb1HcsYLVNhk43A4Wltbly1bdsMNN1RXVz/99NPf//73CwsLufa6qkwZ0gkheCE3TVOzqt5wLP6SJUsolB/WLoR82Zqbm0lxMEQ4C8ynsil8hJrBa39VVVVVVRWlBrfZbO+++ +6sWbOqq6s5hYOw3FTptytWrGhoaKiuruZ8fUTSUvpgAA0NDYW FhXv37mV8GQOCBz4O6fE1Tdu5cyeRzKdPn5ZSOuza9Ol5q9c8F BFRm4N3bNa6JdGVMTUcQqcX7W1obEZF9R8vuWJj8Ve25c0+MnX O0fRJtWMmtWROqvr35LasnNbM7JbUzIaL0hq/mNE5dkJzenpTSqo/a7z7i+ntqeNb0yfWp45vGjutJnNq9RjKw5Zbm5lTlzG2OW1MS9 qY5rSxjRnZ1Zk5VVk5tWNyG9NzPSkTGlMnV46dsWfKzGfnXIpT x6D7TREEdEMMjv+TVuo5iwWRENJEBNIHf3XDzjd+d/WNKP0EnUCE6hSKrp/9vWtF17/y73/p+rv8NNAJ+jbxxJAfUsqVK1f+5Cc/Uan+GDbljKIO+JhIH5WxYIutpmnEPtJffT5fdXU1ACFEc3NzVV UVJTSCpf02bNjgdDpj1lQWKGs8rDiaRYsWJSYmnhF/8PRn7GKzwncJ2ZDSeOmll6ZNm+Z0OpctW7Z///66ujq6I7Hdbrf7xIkTv/nNb6ha4e9//3sKPB41ahTXIEN377QYgMLbG+YkSJ97PB7iloSVHNLv91dWVga DQa4kz5tbupcaOjTkwnsh7jG+FzeDCyTxyXQ8Li7OtKIXaccl+ 04A8w/KhQRQzjcGZVBiKvGopEH27dv3gx/8YN68eZTHnT0q/jlEWGE7pmnSLgrAG2+8UVBQMGnSJLfbvWzZMirzbVoJs4mrcDg clHQSlucaB+ISq0z2FFraeXYlJSWtWbOmpqZG07Sqqioo8EhFP wMX2iYyAUOYQ80B8Pzzz5MG3L59OwCHw6Hr+t69e5988kk6wef zsbYlXnrjxo00/9evX0/bR5vNduzYsXXr1rGlnPAEd6DZPVB5UONQ1/XDhw+zyqPhp2laW1vbXXfdZZpmQkJCr8Q1SRf3YAoEQmhswela HD7+fNHsN6eV7JtSeGjc5OpJ0+tyJlenjXVnTmhOHRcYN63hog zvuNz6i0Z3powNpuW2pU2qSMn5JGvygfFTD0wq+JD+m5x/YFLe4YlTj0yYfGz85GM5eZ9MyNs/JW/f1Lz3p+QfmlhwbFxh2biSvRNmvlp06W9mzUFTHaJeQ4Z1MzzYz GgSiHblaqMEuTq6rDY6TP+J7W/d+61voy2EIKTfMIEApYw9z6QvBoWXeR5my5Ytu+eee+ivhpLfr x9rCP+c/S55b61enJ291DA0TgSgenHRpfh88tlitP3GG2/YrERh/Wz61eZRkC1F4TqdTp7yPYVDdWw228iRI9WVWNO0xMTEZcuWOZ3 Oe+65h+hqFnZchcVPhEKh1atXOxyOWbNmtbS08C1cLpdqJe+LQ YESAwGgurq6oKAgPj6eGkMlmm+++Wan03n06FFSXxwlRKDqnKI TzYIm/NXpdHK+OM3CKCr5xKiFRH1kbRigkFzQAAVKNkZKkkFHKioqbr/9dlqJadIyr3BBi7T8cgzDSEpKgkUqfvvb3yZ/sX379l1//fVs2GYY4XK5KisrNU0jQ084HN61a9e6det27tz5xBNPANiyZYt mucFDsePu3bs3Go3a7XaPx4PueVDO7hGYR6Xpx6YxoeRBIWG3u P+/vTMPkqu+7v2vt9lQhVTKrqxsNsTPxtrRaAFkIE6ejQDJxn4uwj MBBAQMNgQLkaeXcmJCilCODUGyHMGTi81gsDBEMrZZBQYEaDHY g5A00mgkjWYkzd773X6/8/44fY/O3J4ZprtHc3t6zqempJlebt97+/5+v+89K83p/FmqmEKV07hdhJxBPP+IyoQHroSxX4c8eIX8/fgUOvuKJ9ZhMBpcF9JJcCzo64buLjjaAXt2rrnggqcXnv/i7IVbzpy5+8xZbad8puvUs3tOO7vrTz7RfeoZg6eeMXDynyU/9slDf/KXLZ+cvv2Cv3pq3rzHFy167Nzznlh43lMLCj9PLlz01ILzfj7//KfnL3703MX/77zzf3ze+Y+eu/jp5s89veCin1506b2LLoDePnByuXzKMp4H4JU48tCC4gGAcUHb YDwNhUPN5wdca0A7WXC1m/TAAgNgee5kESj82yfj/z//8z/fdtttvNDOSIGTo39W4IKhoBMKJcGwWTQo4guoPDSlh+Arm5qaL MvCWwsAePbZZ5VvgxxJoNCD3Eo00oIdsKDw15BlApf8q666KpF IPP/88+RXIoc4AGCaMakxnD327t07e/bsGTNm/NEf/RG6q5RSfJ9HGkckyDBSWCmFxSHJ6vAf//EfSqnPf/7zwDwvuJ+YNnXipAlBfcTIgoKfjvuDeiWQvYWpRolEAoUsftdK BAoy2QUKzSN4S4Fx5p7fqQcLtcEJ+I7DgtzVdAVv3LjxpptuAt 8WumzZsn379vGFmUbOO++8AwB4i4/Ro7lcjiy91KAYBz8AYA4ePouFH/jSXoZG4RkNKBR43gEwuUmTDo8iRLMQxVB7fndlYEnpeD3QB6EG 4iGxxZH5Y78OPT8BnqdoBrooGGOSySTdAQOLyCnMvNqDbBZcB5 w8GBvAcvP9kOmDnmNw8CBs+90z5/7Vr2cu3Drj3JZPzd15xvRjZ89r//PTkqf/JXxidt/HPtX96UVbZyyEV1+FD96Htt2wvxX2tcHe/bBvP7Tth/YDsP8A7DsIew9AWzscaIcD7dDeDm0HoK0D9rRD5zHIZd18Bku4 OqWWaTt+nACeA55jPK09MC5oDwC0B24evLSrsSqMY1fpwBvJxQ NDL+xcLvfNb37zlltuARZ6NRboyqT4Ux6PxT+IcnlIQNCCTQOB LAd4XSlWdcN13YcffrihoYEkuzu0WTfZWmiBJzsiLw407AyJH0 oBufzM2LZ98803JxIJqtpOWyBfkhpagxv8FMiurq4FCxbgxFJc RLVYoBSHjABAJBJJp9O4nOODy5YtO/XUU5VSfX196E7CbmgoCAIunhMBfRD+iwYV1B/clcN1Eu/myI9OBEqByS5QNCsvTXisEDs+Qkl9kxoaup7nTZs2DQufRIaGt kUikVgshl338F20guLrUYJwIzb4sxWwOy00CdBGuDmavONlgLW VUqkUTTo86wdfwC0iMFSmgH/BYJA8Vzy0k4FkCj7B8Wg1enDs1yGKD/CXE6rIgmePiheDH/k48oY0GBdc18lksAoIuK6XSUEmDZlB6DgEbfvXX/j5x2Y0vzznc1s+fc7O087uO2tO98fP7vzjGS1nzH9+xnnw4W7o PQLJbkj3QTIFgxlIZiCTASsH+RwkczCYhXQW0hnIpCGTgVQGUl mwHHCc9EC/qz0PIJf3QB/PAB4rGMrqAnhuIfrV763jWbZt5w2A64HR4LkABrLZsS7qE8koF hQcZXSFb9iwIRKJ8BzgsS8Y3tDCgNTEI+C+AT/KHpeoxsZG1AR0qdNIJJciDVgA+Id/+AcK46U0w8CR0l0BHZ0eW6VUUickx1Gl/fSnP41Goy+99FKgChSPBVZ+DD4A5PN5umtyXbezs7Ouro76BME YYlDoT7wRjUQi3P6ay+X+6Z/+6Te/+U0sFkOvNBV9UX786YmGh7iR7CNtRN8mfR1UwYEfLxXXofMw0r dTNiJQxkTlAoVXCcN7azQD4NeP28dQjLIb8VQVNE2gf5dCxgDA +MnV/f393/3ud//gD/7g6aefTqVSxq8mmUwmydgAfi8P7GoBrLQDj2lHIYL3fHhWKcQP yuq/yNWk4zhY8C2fzwdKyuJhUnYSPpXNZrm3npdzxZ3v6+szQ6tU0f jHDZLxCYYGEIz9OqRFgqrc0kfQ0VGR0NG2A8Z1XXBMIQnZYCdf cAFsNwfGgiMd0NsLe/bBbz98YsGFm+df+MJpZ/9++uKtZ3/uxXlf+FHzhdA/CKk+0HkDDngGPIO1ziwAGzAsF0whnbdQTR6MtrMZDFA1AJatC9 6aXIlpvQbAxfolWGENjmsU24O8DQMpsDQM2JAHy3ImJCmnZMxw AgXhEiSfz2O/4oGBARi6do7yFQey/XGE4r979uxpbW3dtWtXa2srXUWGFUvFLJ4HHngAjYLvvPPOJZd ccu211/LsEnRe4wi1LOtLX/oS1kHB7fAbNr7DPAyL/KHDwrWL9uHHm0qlotHonXfeSQ5fftJoBq6vr7f9Rqp0P0A2IcX iMAISxAwVKMCqT9FcEYlE1q5dm8vlSBJhFnEkEtm9ezfeqjU2N qIRZeymrwrhOhJ3Hg0qKFB4JW56i+O3T8J5jAKlRaAATHKBgm9 HXcInDlySlVL8xqXsj6gqtF+8FSM0afCTQxrp6OhYsWKFYjUAg Fl3+UigOxs6h5QvE6hbgBMf5RWXPWxoI4FIW3TA44O8JRD4dnL tl+6lu1KcjvlXT4rBZSXdgLne8UaH+6pKsqDwOkt8oqE7bKpHR 1N80UbAcQvFPnJ5Fwzk8q7jasvBG2sNxgUrB7YDmRwc7IS+Adj fBseOfu+8Cx/460vv+cIyOHwMBgfAuADaGF/lYAURbbByPP7qolAxBowH2gPjGjsHRntWvvAKW2PPv5IwxmgwF mgLuwYaDywLMhk43AmHj0JbJ+ztgGMpSGYM6KTJV2Hw17AChV8 Vxi/s0d7erlj7WWCl1UaHLjy0OjzzzDNz585VSjU1NeFt/ezZs1988cVAyHk2m127di2leCQSienTp7/99tu4gP3hH/4heQpcv8qiUurZZ5/Fi23YGBTaOLdh0FAa9iod6aTheLz//vsTiQQ1LCRImuOWFUt+JhsD3ULwNCK+k8UChW6NaBQnk8m1a9c qpTZt2oRDz3Vdy7IefPBBpRRWaKRuQZhMNO7LfDGBPcfbFYpKI c8XFFXW5rdh+IsIlAKTWqDwZZLuHugpKulmhqtVMHnhHhbuBwF/3qHlH1PX+L0+da8gkzK9NyAXaCVGGcRvvGCoBWLs8LmYdpLA1w RKzXosZ5LiCvkO0LM85sP161dyRxI9yF3yUOJ1iJdcoHAfPsWr 7o5yiowBA2C5YLl+qXcDntHGGDBgHBftHV7OAo1F0RxwcpAbgG NH4Vg3DCYhk8H6ZkM2CwDGA9cDz1Acq/8a7HajwbPBuODkQTtgtJvPgSknXVyDwQSePHgOWGAlYaAbujp+ +y//sm7h+T+Zf8Hji/7m0Yv/F7Qfgf6+QlX7KmNYgQJF64cxBhNenn/+eeMX3eGvHAmqa4DX9s0336yUWrFixY4dO1paWlpbW1977bV//Md/jEQiy5cvJ9sGN0Lw/aRbEbrY6D5hx44d8Xh827ZtwDwyxcdIG+QuGG41GenkcAsKPp5 KpWKx2OrVq8ltxEcBrzXCg0sC04vjOGhaQEcM/9BhLSjA7pdIrDz++OPKL+JCubs47aPCozyagIdrlC+uEmjg8zF FGVJ0PdBx8dkJ/AuACjiJQAHwDz50gXIiLpoTvf3qRw2X6SoEmODrBNWD41cTwUa +hfofnsYf43eoMYVmfhqMA54NjqPd4ze+2ElHg7HAy4NnYcEz4 zjgWeBp8IzxCvEu/Ec7oB0wnsYwVwhqnY8EjS+gDRgXdAb6OqBl+xOLz31x7vzXPj3 j3c/Oe3f6otemf+7JORfBy1ugdwDs4+EFgV/CYiSBQs/yxezqq6/+5je/SXEbtK4UL96BjaOgX79+fTwex/ZSuPy4Pq+++qpS6rvf/S4MVbT8vnGUnddar1mzRilFzQW9j8r/N8yD4/ltQcF30+zZswebjwKA53n79u3DLbe3t5P+3rFjRzQa/f3vf08yvfikIYolBvJAdYTlvnxEkOwoxwIs3oucR3hvhglHvFt QqdsfF0Y6xsBHB/YqMjT1fZx3aXw3d0KZ1BaUcLdf/YhAGQsTfJ0YABc81xcQxvjF3Q0Yr6BINPtBWaHB09rV2vWM9oz WWoM24BrwjDGeA14OvDzWdj0uUAp/FsQO/WCTP2NcMHkwFpQ8/xkAx/FAA1g5yHTDkT2v/++vvDZnxs6zP7v/zE+3nn7Wgb+c3Xr6vN/O/Osnm78A7++DTMEqNikESrFd4bHHHlNKoUeDPBQBdRI4Ih70Fo/H7777bvB9QxRzgP8++eSTjY2NbW1tZCGgOTmwTa578MWWZV1yy SVUpoUCM0dRNmZoiAn4vVfJDvGNb3wDd/7ee++NxWKUZnLjjTei8XLdunVKKTKmUv/wYhoaGtBnwVOZSN5VLlACcehkWTHGkAVFKYV1sQM217Fsf1wQg VIRIlBqGBEoY2HCrxMNkAfIgrFBO6A9jAJBk4Rr/MY0YFzQLtZAMw5oB1y0d3iFBjraA9cD1wNtUG1o8EB7oD0XPMf XQBq8gnXGd/poXwORIafU+c92jAGwcjZ4Dlh9sP2VZ2Z/auesz7SdfmrPGWd0nX5ax2mf7PyLz+45Y+Eb0y/WDz4LfZnAjFydAqV4icXHu7q6YrHYCy+8QKsyxkiN9HoEl8+tW 7cqpVpaWihVmFrr4VKNJcsef/xxGFqjtlidcPGBWuG9996Lx+Nvv/324OBgMpnUH5WYExAo+KDye+MBwCuvvKKUeuqpp9C088Mf/tAY43netm3bMJAin89/+9vfvvHGG/G9vLWQYRG12k9g0VrzmDa+M5ULFNomRtADk2hxH97QuIztV44I lIoQgVLDiEAZCxN+nbgGsgBpgDwYG7RX6OjLs2EKebuuV9AqNm i74JAxrgEHlQdor9COWJtCMKw2oI0xHhppXPB8vw44cDzkRZtC UIqhImul4HnGQ7+Qk4OBTvjFky/PPXv3WacfO+2UwVNP6fzjP+76s1O6//zsjlMXvvepL/T/3/+C7nTxcjtOJ7NMxihQkFQqdemll37lK19BPwUFNo70et4fDquo UTUmWqQpL9113VtuueWOO+4AtoQHrsPitV9rncvlVq1aNWfOnO J4rJFkSrFAsSzr5JNPJoHium5dXd2hQ4f279+/b98+isHPZrOtra04n6xcufLb3/42sDpAxeoEwUrQwDJvDXOQjYtA4ek5GC2Lr6eybJGiRsEiUCbT qiACpYYRgTIWJtzFoy3IW5B3IW8ALSiGjCgkUDwAAxojVTQ4Gk 0qxjXg2uBmQecwfMRv9VcwkBQsJJ4xni6En1Dv4EKgC6qTQu46 zpegAAAgAElEQVRPGc35DIDtFMJK3Bz0d8LGpzbPnt565iePnn J66pQzev70L3pPOavv9Jn7T1/47llfOLJyDXRnJ4VAgaI1nmJOX3rpJaXUe++9x1vBjSRQDGsf8/Of/zwajQayNnjNDwD41re+dfvttwfkS2BvtZ8tT5GYqVQKjRwYhBG oIzIWgWKMwY2AH7qxfft2pdSGDRvoLRh5s2XLFlplb731VsxqL v7EgIqqr6/HAt88aJSGWOUChZeT4S9rbW1F84nyy6bxUyoCZTKtCiJQahgRK GNh4mNQLPAscFyUFxoTgAsqwQsk4BhA64gLaPfwHPAs0BnQWdA O2lH8wNvjScWF/B9N5hM/2BYACpnIBs0tWEOltAlQQz4L2slZWTAOWH2wdfNzMz+9d/qMQ3/+icFTP9V7ylnHTvkfh06Z8cGZ574061Lrx7+C/lxgRq5agcJfQCuuZVnpdPrCCy9cuXIlPovxoSPpAHw72lFeffX VaDTa29tLcRhYYxB/x9qJSqn169fzIj3FG+RrPwB4noft97q6umBo+MXoR22GWlC01r h8YraLUur666/v7e1FvYKHifEcy5Ytw0e+853voL0HAAYHB3nETIDi9Cg+vsbRx QO+wDLGvPjii+jW4QcFoxaCG2X7lSMCpSJEoNQwIlDGwsRfJ+R eAQ1gPDB+2Ak4AI4B16Ck0EN+ACNPDDgFBxAU9E1Bi2gXtAbP+ BlCHrh+NK4fcIuHCJ4DjguOC7YB24BdYhqwC2A5XtIFnTc51+6 G7j1vXPnld2bMOHDWjCOnfXb/n36y/bTP7PyLz74766JH/uqrcKgfskOSZmEyCBR6Ga0lDz/8sFLq9ddf50WKhxUoJCOMMX19fUqpdevWge+PML5vBYUC+oB27 tw5eg4/qSV8+wcffBCPx9esWUM7Q66W0Y+aCxT0WDU2Nn7rW99qamr6/ve///7771M5R/Ke5PP5v/u7v1NKbd261Rjzve99b/HixcM2YS3WKDzrmNc7gHHK4uFlCxzH2bFjB7YPbGhowD7tSqlY LMb3VgTKZFoVRKDUMCJQxkII1wn5VoYIFOt4c2DjoUDRTJ1gPo +nmYlFGxQoUBAoLhco5rhA8YNqjQbQGhwXHAdsF2wNeV2yQNEA eQN5CzwLXBvSkD4ALe8+c+6iV6ef8/an5m6fuWjb7PNfm3ne4+dcYL/2LgxmwT5e+yHwS1gMuxgMu8Ab370CAJdffvmiRYuwxivJhZFkA T7oOM6qVauUUgcPHgTWZhyvtM7OTqXUN77xjY+sy8xX/Ww2+7d/+7ef+cxncCNYFRDGUD4xIFDwoHCW+M///M9YLHbddddh+WlgZZ2xBPPdd9+Nr0RvV2dnJ09HCnwE/k6jKeDhQsbFgsI3jpG8FHqyZcuWqA+Ii4fv0vhu7sTB/akAEI1Gtd85lkKx6NkyanMFCoHTZtErGYvF+PbLKJ3Oe8IBQDZ bcHXjIUQiEV5YvdSNTy7oyyoulETnR4/eIGaqUgX1cnTRz3CY4/+b4G/4qw5sjT3PX8yKzo7ycSOBHiQDHmgLnBxkPOiH1GE43PbG/1n1Xxf+z4cu+OKPLvjify35KrR3wUAGLLcKa92PtBjQsxztVy5 ub29XSv3bv/0bsNFEV06grIjnd7nq7u6eN2/ewoUL33nnHVQnaE7AlJl58+b19vZSWcJAGArqA3T60OD9wQ9+E I1G33//ffyzJFXNBQrO9jhLWJb15ptvKqUWLFhw+PDhl19+ubm5+Yknns DtP/PMM83NzfjKY8eO1dXVrV69msfTuKwVBgz1vAR2kgJHMEYE68ly 5fqRlQMNMybRZh955BEqv6uU+s1vfoNLAC+lP4ogGBfoK8Mto0 0LdykajdIn0r8iUD4C49dGpB5U+K1TEXR8TaD7VEngMMZTjBuk IUquQVJF5e0/sBLL2NQbADKZTENDA/i6p7bXZurli98mVZRKJBJUEsrzPCoSFfb+VhdiaSsN40e7AFjg 5MF2IQc6Cdk+OHYEDh6CQ0fgcDcc7oGMpVM50NUnT0oUKPig1t q27SeffFIptXnzZnyQ2kTQlcO3TF6SQ4cOXXzxxUqpiy++eOXK ld///veXLl2KAR+HDh0iEwh/u9aaemryNe/VV1+dNm3ad77zHWCX69h7jZmhMSie59XX19NEumvXrlmzZv3kJ z9JJpN33nkn+kewFuodd9yB8S62bd9+++1z585NpVI8ZZqXcgc/upafBNd1edEUUg8nnXQSFLUj5V/EsEfBhePq1auxn/C0adNmzZrV2tqKh4ZiJZFIgH+fFsCMK8CMWJiIbllWfX097ht3/BUfWuBPESgF6OrB5pMwtB+3GepELHXj3LJnfGmM4xwAlFI8H6+ Mncd9w/Ltxu+WZ4zBLi2RSITS4mtYnXAwd5GKx6NtE1gMXTodTPgURKCU hm9B0WBscB0sBwcWuFlIDUI2B13dcKQX8i6kc6VXqZ0gRloM6F mO9ptAAUAmk7nuuuvQZcOXUpzBeEdrbIdJBmkA2Lp167333nvt tdcuWbJk5cqVb731Fi3YgY/WQ9v9YFtBY0xHR0c8Hr/yyisDnfPGPjmboRYUbG/OC9UbXwmBH0yDUzfuAz7e1tZWV1f30EMPUQcJPEzeAgI3GLCgG NYWER0xGMdKa7brNxiiPSyWESQvcMsPPPBALBabNm2aUmr27Nn 79+8HX46g6YIHydLhj/F0lURgs1iEF0WYUoqHLhW/XgTKMFDXALzcm5qawL/WcbGnuocwNON8jHD1wzeL39O0adO032G8bAsHbdl1XaoahE/F43Eyt0JNrz3Y+DfQAwL8hg48em7Y0LYpjgiUkvHLynlG60J0j A2uDbks2DbYLrgu2C66jyyrGu8NShIo9DjOJ+l0urm5ubm5+cC BAwHrLy1+9Agt4bSmYk0UMo3QbRtXA/R4Op2mqfjYsWNz585duHDhgQMHAACbgcMIWT+jHDi3oACrvo9/kqeG7iRxoQW2iFqW9a//+q9KqZaWFr63CD9AYJ2T6UAwj6mxsTEajVIhNVq8RxcQhmVc9/T0YGQM5hJPnz69p6cH/Oap4Md/fOxjH6N1x/Xbs/NAnGLLSnkAKxZMNfcwJga9E1osKCVBFxY2E0eTBhXVAf/UlBEdwqELlDaL7T3xuqRGteW5HgJlCcDP4nNdN5FI4EfzHahVU J/hLIBzotaall5+wxT2nlYdIlBKwvi50FiRthDNUqgJp6181hjPg E4mk57nuW6Vns9SBQrpDPRTHD16dMaMGXPnzu3u7ga/9jwZVPCWgNKJ+QJPH0ETF8oLnIpp6eIWAuTYsWOf+MQn5s+f39 HR4bouLfb4rB5bg2UYKlDw5tD4xW2N3weeNsUTeQIhsel0etas Weeee25nZydOLFiLhd5rfLs1nUDwxVAqlbrmmmsoerSpqSlQkX bYxZsmMTxXruted911iUQikUjEYrGbb765o6MDH6de6Eop7MjD 98r7qHZFlUM7n8/nE4mExKCUiTGGDA+u6/JIY1Sa/Oa77CBZ3IJt27xfFEpLlA5oCC3jokGpjtYX3BRdmvl8/qSTTuLCttSNTyL47Rr45lZjTENDA/VB5QIuxF2tQkSglISBQp5zIQSXar4BeAA2QNKzrEIitNFgyrvx ONGUKlCArSt4kbS3tzc3Ny9YsODll1/mkwzPDAB/sdda49Rk23Yul0NPCi7q5APi1hdahvGu46233po+ffpFF13U29 vLjaCB+mxjPHA9tA4K9RXnN6IUzMeN0AgZbI4ePTpr1qw5c+Z0 dnYGDj8QlEqeLxRAN998czweR7MHhsrW1dVhW2MEhQv/nT9C4BaUUtdcc002m+X7j2E95F4BNu8FpMD4QleC8Z1ZkUhEBE r54BVA8c9U4ubkk0/GFt5QFLg0dgJv3LZt28knn4zbxyuSLlCKligVMsBorVtbW/GSpQ7XGIdVV1cXj8dP3EUZOrlczrZty7J6e3vR4Imx8ZR0h39q 36EW9v5WFyJQSsIU8p2NMaYgULxCzOyg5eQBBozb59k50Gk7X3 hD9VGSQEFDAhZvBQC813Icp6Oj47LLLmtoaPj1r3+NzoVhS8FS nXv8k19j5Hog8wCB6gT8VoWXX3753r17eTNkFBBco4zxwDXzbp CSIDNzf38/3bLyveWWdZzVHcc5fPgwZve8/fbb2WyWThRZLLixx7btPXv2XHLJJZFI5K233sLJv6GhIRKJ0Co Qi8VQqQQECv5OL6CXNTU1XX/99RRlzNM7AAC32dDQQErlREO9FROJBBVikSDZMnFdt7+/f8GCBUeOHAE2qFpaWubMmYPBp3ixlj1xa7+KjjEmk8nMmTOnpa WFnkLHanNz88DAQHkxKPxbz+Vyl1122UsvvURS2rbtgYEBpVRH R8dUWHtc173hhhuee+45KlsJAJZlzZw5c8+ePfhnGcHOtY0IlJ LAfGZsxQwGwDPgGOMVzCd5gAz2QjSuB1prV3u1EINCcyMPaMO5 8aabbkIXw969e2lwcSUBLM9F+1Em+DJ6EP/ULKLFGNPW1vb1r389Ho/fddddZAAgAwYFtNLjYzxwbkExLCA3m83yyYGKONAbKQ2T73BHR 8ctt9yilLr++ut/97vfcTMG39revXux0t28efMwQZrfQSml6urq8H5yJDERKQJfSe ZzblvSfgY1BuHiv2TM4IaZgJGmcqLRKH4cfhZJFgmSLRm0cLzw wgs33nij8Z1zqVRqyZIlO3fupAvUjCE3fVgoEAxPcSaTaWlpWb p0aSqVoqF44403vvDCC+VZaMCfKWgnDx48OGvWLGxuiSN2xYoV zz33HNT6wkx3KliqIZPJ0HhYtWrVmjVrwJ9Pa/s8lEEV1EGZXGiDmTvGKZS21cYY0KbQRcjxnTvGeH4d3LB3uQjS o4b5milecpTLgAsXCuB78803582bp5R66KGHjhw5wt0uNAfiI2 h9oR3AtBeKwCADQDKZXLt2bSQSWbRo0caNG/G9FMB3gs7JR8IXUbSgoFqybfu///u/Z8+eHY1GFy5ceM8997zxxhu7du3atWvX66+//uijjy5fvhwX6bVr15IX3nEctOxiJvMoS36xNCHjCgDk83k+pxk WZYIbP0FCZOygXoGiu6BhjSi4cjU0NOD1cCJmpEkjUCiG9Iorr ti0aROu6OvXr7/vvvvwFpwiVKCCm0u0baC8zefzq1atWr9+PW5806ZNV1xxBQ9lL RXuRUJr57p167CSkud5GzduvPLKK48dO1bbCw+NeTSu/upXv7rtttvwkLds2XL++eeTfAExEhQhFpQS0WAcMDYYB40nx8v xG3/OxRK32gPtgHaqTaCQUYSWMWB+ljFuwbAqYZlMJpfL/fu//zuuRj/84Q/37NmDi7fWmqY+nu9DMR84MAcHB3HwHjly5Ec/+hEubPfff/+xY8eAxU9UTxaeGRpt6jhOKpXavHnzPffc09TUhOcBO/ZFo9GbbrrpF7/4BRnjKexmjHN+sf+LDOcBnxcGJvOvhqQJWTJOHKi0hgWdUMVGl MBh0nEpFg/KD2dcmDQCBQeJMaarq6uxsXH37t3bt29fvHhxe3s7DI2+Li/SjWcpg38xdXd3L168ePv27bt3725sbOzq6kINXsadfeDuBAdAb 2/vnDlz3n///f7+/nPOOWf37t0AgBaFMg5hshCYXpcuXbpp0yat9TnnnPPuu+9S6FY gFE4AESglo0EfFygaHA1eweODusTzwPV/qlKgIDRk6urqcKbSI1TuorcEHvc8r6+vD5/CCkPt7e133XUXrtA33HDDhg0bjh49SguM9qtWUrYLRXv09PT88 pe/vO666zAgY+3atZgfBEwK6DGn6kwAhuUDk0MZxVYymUwmk62trT t37uzv7+/r66NhhUGytAXwE6BoYR7jRyOBKJnAIsVrPhk/yOaEQjvGA4koVZb7xaBIoxgWGe15XiKRwBAL/oLx2s9JI1AQHCQbNmy4+uqrv/a1r23atAn8bHXwh3F5qR90TqmsEP6yadOmr33ta1dffTX29S47 ryRwzaGI9jxv69atzc3Nt99++8MPP0yXBZkZag9uUu7v78/lcocOHZozZ84dd9xx77330rOSvzMsIlBKRPuyoyBQXHB0IVBWg 9bg6eMCxfN7NVcTfMHAApX07Y/u3yFIuNCLyXfjOM7Ro0d/+ctffvGLX8TqYdFodMWKFWvWrHn22Wc3bdq0bdu2zs7ODRs2PP PMM4899tjKlSvJwbF06dINGzZQM2EAwJQf/kHVeYl6nofZ1Lw+BTAjPfgCAkUMzsZlxOwHBCJtCqUP+svopNF pDPekUThz4HcOVzaO4+CkpFmFwHFk0ggU3j9Ta71kyZKrrroKf G8onqwKS8XjRUnJrsYYjGm/6qqrlixZoln5kzIULs0RmBQN/jfquu4dd9yxcOFC1Cs8vblWwZsYEmGWZd13331nnHFGf38/AJCBqnruwKoHESilYaDgvjGeMZ4B14CL7QkLAgV/PHO850/1wQcCllrHWYKHoQwLdzHQ+kdzFxWzxuXz6NGjb7311o9//ONbbrmFHA08LFQpdfvtt69Zs2bbtm0DAwO4fVpcedUicg9REYG Jh4J86Qzg44FRwyumcOcUfxkqCZqUeEGKksAKXrRNXsYCp0Tjt 3MZn+tmVIqvnIBliLKc6MXDAr6Lh/K/xnf9mjQCBZjgzWQyfX19mE1OVikYejbL2HjAaUqCOpvN9vX1kR Wr7IWTxm3AbtbX14fZ+fwTy/uI6ofPWVhoAQBs28beGWTq1FpTq1KBEIFSMoXAWM8Y7KXsCxTq PmgADBgDpir1ifYj68G3oCiW4sGh7NZhicViVNcA/8WiYQjqD9o4Fk6l4Azl1z8l0NyCcaOBF1CkJz4+UtDoBFB8WiJ +Ng1WJMN9jsViGIAS8ctY0FMkzvD84Hv5y4Y9z5y4TzQabWpqw vfi1ugTE4lEPB7HF0ciESqfcULhp4WfKHpBQ0MDXQN0vIFziy+ IxWJYPIJmpHG8t5w0AsVxHNR0uKTxEB7DMneKa6iPEdLFlKeez WapKRTZMIFVKiyJgFMWdRXfeYqCru1ePGQ8pBNO7jmMMeKKU4w oASIiUErEFMSHOa5IwAVwC8EoAN7Qn+qTKEOcDsDu0wKMbk0h8 wCNL95cjO4EeBS/8Ysl8i3gp1DfQfDjTopb5BjmigqF4tNCQamBhmvan3zooPgkjL/jTeNH3jIV7waecDKcAzPbeH7KNAy100wAemj+tmEp3Pw8ADON8 POp2ZWGL6NN6akZJAvMLEbLGy+tQ+0eoNwgHfpK0um09iPF6IM 8VvanjI3Td0+mM8MCe/ErB//areEIDLqmedQYzWWUQmn8HLZQd7bqEIFSKui38ScE0iha+xXvP d+iUp0CRRcFmgR64wWe5aIksCmKOsdnaTv4LHl8yDkCfl8RYEX P6Bd8nNJ/wG//eYIWqlKhw6epFZgNG1jdF29od3qP9Z3lvnh6ttTd4N8FmcZ5uI n2XVG0YyUe6zjABQruAA9joH0bVgrz6NpxF1iTSaAIwhQnInVQ xg8z3I8gCNWDCBRBmDSIBUUQhKmDCBRBmDSIQBEEYeogAkUQJg 0iUARBmDqIQBGESYMIFEEQpg4iUARh0iACRRCEqYMIFEGYNIhA EQRh6iACRRAmDSJQBEGYOohAqV60X7GR12SEoe0uq6G/1GSBqiTxLhhUnog3Iqja8yl1UARBmDqIQKlSqLm59jtyUQ1mKp mMxR+l4upYoK7xeAKpXCadW611JpPhhfarELGgCIIwdRCBUqXw ZhBYYdoY47oumgGwTjMuUYEeh8KwoOzgfZSocTS2EgV/yec9E6oNESiCIEwdRKBUKdjkguwl/F/wRQn2kIShfROEkcCzhLqEqzpUe7yjRNUiAkUQhKmDCJTqhfpn4 lJE6yuwDpzh7uEkgpo1uq67ZcsW7Jx++PBhalWqlAK/dWfVyhQRKIIgTB1EoFQp+XwepQk2Ou/o6MhkMvgn3v1j6InruuShEEYBI4txaa+rqzt8+PCbb745f/58ALBt++///u+j0Sg+m8/nq3btF4EiCMLUQQRK9WJZluu6DQ0NSimlVENDA1+ZMH6COoaHu 6vVD560bDbrOE4kEnEchxb4yy+/fPXq1fF4nGf0hLmvIyMCRRCEqYMIlCoF3TfGGFyTWltblVLt7e 2PPPIIALz22muPPfYYADiOY9u2rFUfCXnKXNdFbw6qkO7u7kQi EYlEIpEIPm6MEYEiCIIQOiJQJghKBqYMEcx0Hf1duJpGo9FoNL p58+ZMJnPNNdfceuutixYtOnToEEkTSTP+SPD8o0yJRqOO4wwM DDz//PN46rTWqE5gaP5UtSF1UARBmDqIQJkgqMYa3qDzP4eFBI1S6ut f//q1116L8Zuvv/76xz/+8bvuuotvs2rv+KsHCpK1bfv+++9vbGxUSt13333gJ0PR2l/Nak8sKIIgTB1EoEwQVHgNADABhyqwDQsuqK7r1tfXp1Kp5cuXr 169ev/+/bNmzWpra7vqqqseffRRALBtm0qgCqOALjMyOFFkMZXlxQBkfGX VahQRKIIgTB1EoEwclmVRDg6hRwAA8vk8VWNLJpO7d+/O5/OYY2KM6ezsRH0jWTxjATVHNpul3GyyUWmtBwYGMEI24IarNkSg CIIwdRCBMkHgukj1TPFPNSrRaBQjN6PRaH19fTweTyQSSil8EH/HjYtGGQuk/NDsRDYtyoTCcm0kCqsQESiCIEwdRKBMHFT1lTwI8Xh8lBgUYNG vuGpSqVM0w0QikVwuNzg4GM7xTDZyuRzanMhSAv4ZTqfTWBavy hsbiUARBGHqIAJlgjDGYG8/rj/IBFIMBtJi4gmVaAO2gvJ02ap1SVQPFNND3QFPOumkVCqFj+OZx CopUMWtA0SgCIIwdRCBEgLoSoBRBQotP7RY5nI5fJCSgJRSnud V7WpaVVAFNjqxVPUEpR4+XuUNBESgCIIwdRCBEiaoMMBfbLC8K RVcB7+YLH8EnTvo66mvrweWfiKMDuZpU7nYeDxO1fBQrKTTaRh bfZqJB7/9+vp6DJ1Bh1Q1l2yZ4lDyP11L+A0KgjB2RKCECVlQUHagzshms zipkRah0M6AEFFKkTFmlJIqghl63vBPpZTxk6pisRgF/VAiT1WB1wNeMLjPEhld5eCdg/Fz10EKKgpCiYhACRP0LOCd/SuvvFJfX4+/G2Pw5nj79u2rVq1asWLF1q1bAcC2bcuybNvGZyORSBXe61cnPG 0HALCeLCXsKKUwCdwYk0wmQ97X4dBa5/N5UrS44OERCVWIKSqfOHrKniAIwxDWABaAhUEAwK233op/UjBEZ2dnLBa7+uqrly9frpRKJpOBOAmlFDos0DckjAIwaUIuHv wWstlsU1MTPo7GCSyjV1XgrsZiMbKrGfHrVTH47aB/1nEcz/OUUvF4PNTJXhAmG2EP5CmNUopScowxiURCa033Xq2trfPmzUNj ycKFC5VS2NOO+htHo1FsdBeNRsO8hiYJdXV18Xg8FotRa0CtNX ZbxGeVUvX19cqvNFNt4M4bPyCp2OUnVBVoDSWampqU31dLEISx IAIlTJSf3Up/otEeBUpPT08kEvnBD35w3333KaWOHDkCQ636/PUTHRMx2QA/BtayLNR8ZEExxjQ0NGg/1rg6TyYAuK5LnQ2MH5UyUZeqUBqB4HcAQHUSpsIVhElHyON4aq N8C4rxu+ySGwIAHMf58MMPly1bdumll27fvh38/GRM7UGjMQBUZ8xEtYGLRDKZpHxjPNuoWhKJBFZvw8jTKky4MMx Yks1mLcuSAJQqh3LE8LuLCIJQIiJQwkQphTfEjuMkEgn0L+BTe mjmjvYjJ9CfTYIGfPdQeAcxOaD0HPBtJNFolM4bV+pVm2ph2zZ vmCA5xtVMYEg6jhOpSr+hIFQ1YQ1gAQCUUrTM4C/GLzJLv+MdmGbFTkiyRCKRMPZ6UqL9+GIEFSFqO6015k8ZY6hWS tj7K0x6TFFRAEEQSiOs0SuAf+OObgW+dho/zRiYiRiYiAERKCVCGcVkhOBnT/lNA7TfRzqk3RRqBxEoglApYY1eAVgMCoaVwFD/Avp3stlsNps1xlAJdhEo5eF5XjKZNH7aZ11dHQq+TCaDzrLBwU HqJyAIFSICRRAqJazRK4AvUNLpNHlwsKIJZWcEmu4iAYEiAShj h/oYk4EKrSaGldXCTJnQdlGoFUSgCEKlhDV6BWCxmVpry7IoTgKT dBB8Af9TBEoZOI6Tz+cpVBZPMp5zkiyu6+bzeVEnwrggAkUQKi Ws0SuAn8VDEQ/YmjjgYuDpJ4i4eCohl8uhswzjYSnrGPwwIJAgWWE8EIEiCJUS1 ugVwLegWJbV09ODX0csFgMADJXQWu/YsePOO++88847d+zYQW4gEShlgEk6FPGDD5IdBfzy9gDguq5k8 AqVIwJFEColrNErAEszXrly5TvvvJNOp+vr6z/44AMMieju7o7H48uXL1++fHk8Hu/u7h7WxSOMEUzkoXNIMgUVCaYcY2OjUHdTqBFEoAhCpYQ1egUYm t3a1dXV29urlOrp6cGpraWlZebMmZlMJpvNNjc3U6cxrOcWi8W i0Sh2kFFKRSKRWCyGjyu/6SDGsuC6S0lAU7awG+Zvt7S0oJkKAH7729/iGTtw4AAmeIPv7hGEChGBIgiVEtboFYA101FKRSKReDyeSCRQT 7iuOzg4GIvFHnzwwXXr1imlenp68F2YewxDQ1gsy6KOLY2NjTC 0BD4uvel0mrcImVKgy+zQoUPTp0+vr6/P5/MdHR2xWOzo0aM/+9nPULJg8hTqmLD3V5j0iEARhEoJa/QK4FtQsGg9Vj0xxlApjkwm88Ybb3zpS1+67LLLtmzZAr6Tgrqk 4tspRZZKuim/ByEVfKPWLbhOT802LrZtU2PaHYsAAAX7SURBVJtANCMppQ4fPj x//vxIJOK6bjwex3Zub7zxRtg7K0x6RKAIQqWENXoF8E0glmXF43F s1YEVw4D1aid7SS6XC5TxQFnDN4gxFieddBIMzU/BX9DWEnjLFAHL9SKNjY1oXlJKzZw5880334xEIslkUim1ZcuWw 4cPy7gQKkcEiiBUSlijVwDm4uFNAcHvZgcA2WwWVYXruiQsLMv yPC+bzSo/CQifxRe4rhuJRCgaFADS6TQGo4CfwDI1NQoAOI5j23Y0GtVaf/jhh/X19Vu3bsW+0LlcTvkxyxSkIghlIwJFEColrNErAPPFgF9DltrB UO8Y1B8U2cpb8yjWyodTV1fHnTjU/Rj/nbJZKnhOotEo9jHu7+//6le/qpSqr6//2c9+lkql6OuQcSFUjggUQaiUsEavAABKqXQ6DX4JdpzRyLlDab Fo8CCRQRU7qJIsZaPQ14qZPvQVoxkGwz/JPDPVGBgYAN87RhE5qAhzuRzpP8niEcYFESiCUClhjV4BWKE2/NP48CwbWlADSbAY44kv7u/vX7Bgwa5du+hdnuf19PTMnz+/ra0N1Q+5daZgCg+w5jv4C+Zg46mgtB3btvG7mLJGJmEcEYEiCJ US1uidmuCiSNXry/vK6urqMKIWLSi4pm7evHnp0qUkYowxK1eufOSRR8I9XkGYsohA EYRKCWv0TjXIboG/UFRsGdvJ5XKob7LZLCoeFD233Xbbxo0b8ZFXXnnly1/+MvqPBEGYeESgCEKlhDV6pyDU5AX/zeVyZdQjQRcPxkzwxB8A6OrqUkp1dXVls9lZs2bt3r17PPdeEI RSEIEiCJUS1uidaqAW8TwP/S+UElzqdijNJ5/Po1jJZrOe52EuzxNPPHHDDTfcfffdjz/+eCCWRRCEiUQEiiBUSlijdwqCooTMJwMDA2UEY6K4oSiW/v7+wLNXXHHFmWeeyevcC4Iw8YhAEYRKCWv0TjWofa7rugMDAzw ZpyQohAVYskl/fz9aVhzHOXjw4L59+7TWU7YamyBUAyJQBKFSwhq9Uw0UE6lUip fZKENDGGOoqAnmx5IfhzrvkCNpfHZdEITSEYEiCJUS1uidalBM K/5LHQHLg78X9Qp9Cv2JqT1lf4QgCJUgAkUQKiWs0SsIglDDiEAR hEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhAr5/1Xny9vHN9jQAAAAAElFTkSuQmCC
http://www.longrangelocators.com/forums/ JekjFAAAgAElEQVR4nOydaXQc1Zn3b3X1opaAZM6ZnDNf5sPMm cmcmTcG72u2ycxwkglbAiEJScA2CAgQcLzbgGEIewzewQHDsBl jbMy+2wYv8oqNsPEm2bJl2ZZtWUu3eu+quu+Hf+qZR9WSMOqWW pKf3wedVnd1dW333v99tqu0IAiCUGgcx+H/KkEQvi7Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far0dYVmW1jqbzeKvbdu2bVuW5ThOIpHQWtu2rbWOxWL0uiPS6 TS2yWQyWut4PI79Y5/0E/SjgiAIhUIEiiDkS7FabydEo1HtygutdSaTcRyntbVVa51IJNLp NFp+Op3GR+2STCaxB0iQZDJJu4JeoZ/AzwmCIBQQESiCkC/Far0dASECPZHNZrPZbDqdhoUjnU7DcKK1jkQiZ7O3bDYLk4l27 TGWZaXTaeyZfgg/KgiCUChEoAhCvhSr9XYC/C/k2dGuC4YcOniTxEe7ZDIZbG9ZViKRgNXEcRzsCi/oh4p1poIg9FdEoAhCvhSr9XaEZVmwbQAcpM/nMwxDKRUKhXw+n1LK7/d3fl6lpaV4EQ6HTdMMBAKGYQSDQXydnziETjHOVRCEfosIFEHI l2K13s4h04hSCoEjeB+GENu26+rqgsGg1rqjGJR4PK6UCgaDgU CALCgtLS2IQVFKUfhtEU9TEIT+iggUQciXYrXejshkMsjW0Vqn 02k6wkQigfcdx8lms8OGDev84O+///6lS5e2trYqpU6cOIE90KdKKQrCJfkiCIJQKESgCEK+FKv1dk4m k0mlUlprpVQymURThzTBi2PHjpmmyZ1BHmpra23bjkajhmFUVV XhTewqmUzixFOplEgTQRC6AxEogpAvxWq9VIaEKpGQtyWbzTqO Y9u24zimaXLLB8JmsXFJSUkqleLZyPzr69evV0r5/f5AIAAnEVczhmFotwfx9COCIAj5IwJFEPKlWK0XJJNJy7JSqRT ybig9R2tt23Zra6tpmtrVHLFYjNdVU0pRAg7UiWVZmUwGn/r9/traWq57eCwLFyiSxSMIQsERgSII+VKs1ptMJrliaG5uxotsNgu 7CKkQcsTArKK1tixLKeX3+xEna9s21U0hOwqydQzD8Pv9+BTBs/hUBIogCN2KCBRByJditV7Ctm2Em/AqsdrN/lVKkTqhIFmqZRKLxaBasA2ZXlDeDduQcYWXPBGBIghCtyICRRD ypbitN5FIkNmDDCSRSIRKu4ZCIYgMiBj4fTQrXkLfIi1C9hJkE dN3NesyRKAIgtCtiEARhHwpYutNp9OQDqj6mkqlYrFYRUWFduu gZDIZwzBSqRRFs0Kd7N+/f8WKFRUVFVAk5NbhpU2qq6tXrVq1Zs0afBSLxRKJhAgUQRB6Bh EogpAvxWq9UBVUFtbv92utH3zwQdM0sc5OKpWyLCsYDJKAwEI8 n332mVLqZz/7WTAYXLJkiXZDaLENNt61a5dS6qqrrvL7/Y8//jhkUEdZPCJQBEEoOCJQBCFfith6W1pa8DqZTKKoSV1dnVIK4SZ QMEop5BvTt+67774bb7wxHo+vX78eOT6a1ZNFHvL8+fPLy8uTy eTGjRsDgQAWCOR1Y0WgCILQrYhAEYR8KVbr1W4DpmwdvOPz+Xh iMFUx0a4naNGiRSNHjqyqqpo7d+7IkSOxMeJO4BhKpVIvvPDCk CFD6uvrFy1aNGjQIOwNGgWvpQ6KIAjdiggUQciXYrXebDZbX19//PhxrTUMJ1pry7J8Pp/WOhaLQXngX81SiCORyBVXXGEYxo9+9KO1a9ciQoVSdSBBGhsbr 7jiCpzgJ598woNngVhQBEHoVkSgCEK+FLH17t27Vynl9/vD4TCECK1ajG1Qkz6TyZA6aW5uJtdPY2Mj1xbwBFmWRdYUpVQ8 Htcs5UdcPIIg9AwiUAQhX4rVehGyeuTIEcdx8JeydfBpa2srPD 7arXCPnGToiXA4TCsb41OqeR+LxfBaKZVKpVA9xbZt2kCLQBEE oZsRgSII+VKs1ptOp/lCfY7jRKNR7WoRqlwSCoVoaR7aOJVK4chhWaE6KLwUWyKRwDb0 KyJQBEHoMUSgCEK+FKv1ApS0R/6w1ppW0oF9JR6PI2aWSq6hDopt26FQKJlMkjTBt6jmPfZgGAZU Szqd5gEoWgSKIAjdjAgUQciXYrXeTCZDBWTpL4wcvG69UsojI5 LJZCKR8Pv9sLXAd0P6gza2bVspRQXvtdRBEQShBxGBIgj5UtzW y2NHENDKq8E6jmMYBr1DobIIgNUsbUcz/UErHmMpQfIWYT94LQJFEIRuRQSKIORLsVpvR0BGkGoxTdPv9+N QTdNUSpWUlCilgsGgUgqFaDvC7/dTWhD+0vtU4Q3FUUSjCIJQWESgCEK+FKv1dkQymSTjCtYlxvuQ EZlMBrG0hmHwoNd2UUqRNQUShJtbqECt4zieCBVBEIQ8EYEiCP lSrNbbCZAg2WyWsnIgIEhSpNNplMbv3PKBVGSKn0U9FdoV9k8/JwiCUEBEoAhCvhSr9XYE9ASVpacEH7ygmrDKTTPuaD+UZpzNZv FdCkahvZEviQq4CYIgFAQRKIKQL8VqvR1BjhusZqy1jsViVBwW VdcsyyopKYlEIp1bUPx+PxVBSSaTsLgkk0moE8uySLJ8pbdIEA ThayECRRDypVittxOi0SjqxmqtaaXAxsZGfMpXOUYNt3bRWiMS NpVKoXqKdmNQaO2eRCJBBeIEQRAKiAgUQciXYrXejoBVA7aTTC aDmFkoCe2aVWhNwU5AoTbtChry5mBXyWSSMpZ1W++PIAhC/ohAEYR8KVbr7Qiq0sazf2ktHrzQ7irHnceOGIaB2irQHzC30Fe wf0Sx8KL7giAI+SMCRRDypVittwvwmrOwjgCPjQSkUqlgMEhRt GIjEQShJxGBIgj5UqzW2wUogkS3FSitra28pCziYbUbp4L3YTi ReieCIPQMIlAEIV+K1Xq7QLsCBVokFoshsgShtVrr1tZWxVY81 jn9hSAIQvchAkUQ8qVYrbcLtCtQEDObyWSojBvyh2nFY1pQUEr aC4LQY4hAEYR8KVbr7QIduXj4UsZYU1BrnclkcHZU6g0Bs4IgC D2ACBRByJditd4u0K5AgY0kk8mkUql0Oh2Px1tbWxEtGwgEYFx JJpONjY1UDUUQBKG7EYEiCPlSrNbbBTqyoOBNvK+UCoVCdHahU Mjv9+OdAwcOSC6PIAg9gwgUQciXYrXeLtBJDAp9ZNv2hAkTXnj hBb7xM888M3XqVNRBKdrRC4JwLiECRRDypVittwt0VAfFtm1au MeyrIaGhtGjR1dVVeHf/fv3jxkz5syZM2I+EQShxxCBIgj5UqzW2wXataDAaoLXlmUhYPa tt94aO3asbduJROKKK654/fXX8S3J4hEEoWcQgSII+VKs1tsFOopBge2E0om11tlsdvLkycu XL3/mmWdmzJihtU6n0xSnIgiC0N2IQBGEfClW6+0CHVlQIE1okZ1MJ mNZ1tGjR8Ph8IABA+rq6vCVWCxGle8FQRC6FREogpAvxWq9XaC TSrL4iGq1QbIsXbr0nXfe0VrzQviCIAg9gAgUQciXYrXeLtCRB UUzgcLXJUbhk0wmk81m0+l0KpUSF48gCD2DCBRByJditd4u0FE MCuwleD+bzWLxHQSjNDQ0YBuKU+n5wxYE4RxEBIog5EuxWm8X6 KgOCt6nSvY80AQGlWw2KwvxCILQk4hAEYR8KVbr7QId1UERBEH obYhAEYR8KVbr7QKdlLoXBEHoVYhAEYR8KVbr7QIiUARB6CuIQ BGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQBEHoK4hAEYR8KVb r7QIiUARB6CuIQBGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQB EHoK4hAEYR8KVbr7QJSB0UQhL6CCBRByJditd4uIBYUQRD6CiJ QBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBRBEPoKIlAEIV+K1 Xq7gAgUQRD6CiJQBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBR BEPoKIlAEIV+K1Xq7gAgUQRD6CiJQBCFfitV6u4DUQREEoa8gA kUQ8qVYrbcLiAVFEIS+gggUQciXYrXeLiACRRCEvoIIFEHIl2K 13i4gAkUQhL6CCBRByJditd4uIAJFEIS+gggUQciXYrXeLiACR RCEvoIIFEHIl2K13i4gAkUQhL6CCBRByJditd4uIAJFEIS+ggg UQciXYrXeLiB1UARBEAThHKEvCRSxoAiCIAjCOYIIFEEQBEEQe h0iUARBEARB6HWIQBEEQRAEodchAkUQBEEQhF6HCBRBEARBEHo dIlAEQRAEQeh19CWBorVOJBJ4gQou8Xic/mazWSqUYllWJpPBlplMJpvNcnEjCIIgCEIvp88IFNu2oTkcx0m lUoFAAJojk8ngI8dxIF/wvtY6nU7jK5ZlaVEngiAIgtB36DMCBXYREhmGYSSTSVItra2t2 Ab/wqZi23Y2m9VaJ5NJx3Ecx0mn00U7AUEQBEEQzpo+I1BgBYnFYl rrdDpdVlZG70OdkBzBlnhNiiSVShXjqAVBEARB6Ap9RqBAcGit I5HIa6+9ppRav349GVTS6bTjONFoFO+QZwdixbbtdDptWRbtRB AEQRCE3kyfEShw8cydO3fgwIELFy5sbm7WWqdSKcTAkqWkubn5 2LFjtm1blpVKperq6rRrR0kmk0U8fkEQBEEQzp4+I1C01rFY7P XXX7/iiituu+22AwcOwGuD5B3btpVSpmmGQiGlVDAY1Fpfd911paWlm UwGthOJQREEQRCEvkKfESjwziDQZP369b/4xS8mTpy4d+9e7cbAlpSUZDKZVCq1Zs0apZTjOKtXrzYMg7w8R T4BQRAEQRDOmj4jULSrTizLgrNm3bp1sKbs2rXLsiyllFLKMAy l1LFjx2AsUUpBoFBZFHh/bNsmj48EpghCR5B7lKyPFMsFkyRaFt6hViYUEPRg9IL/S6/PETzlrHjtCZ7jKRScjq6tbdv4iEqUFZY+I1BisZinnEljY+PCh QtN01y+fLnW2ufznThxYsSIEbt27ULMrGVZfr8fG8Mf1NraytN 5UENFBIogdATUPF7TeICWiGR+7bpZRZ10E9TjoadKpVJkTuYCB ZUUinKEPQCdKU4TXbfWOh6Pk0bRbqCh2MsLjuPieZ9EMw2jhb3 4fUagaK0zmUxLS4vW+vTp0/PmzVNKPf7448ePH9daZ7NZ0zTT6XR1dfWwYcMqKyu11jCrIIUn lUpRndlMJoPnmCZ/olEEoV3QakiC2C7omNLpNCYD2FiS+bsDy7LoIlNPhcC7c2okRj eumTLGrB2pEpr158U7xnMFrldILILCXv8+I1DwLDY3N8+fP98w jAULFpw4cYI+hRbRWqfT6Ugksm/fPtu2/X6/aZp81Z5MJoNKKrZtp1IpyJR+PO0QhDyhCod8so5xgoy6ra2t55 qvoSjYto1rnnWBfYv3YE4/hU4QKoQmnNFoFM5HTET78RUoLvwBw/yEnkC6I3x5mUI9831GoDiOk81mx48f///+3//74IMPNHPB4rk8cOCAUioQCCAGZfPmzYhKCQaDkUiEIlRuvfVWh y3ZIx2rIHQOpu8YCG3bDofDPp8P6XI0OiLV3xGtX2jIf4Fra1k WlcnGxfeMH/0V6qs9/TY5eujfc8qqVBRIo5Bnh9yOkCwF/K0+I1C0q5E3btz4i1/84r/+67+2bt2q2VqABw4cqKio0Fq/+eabSqnPPvvs8OHDmUzGNM3q6upgMJjNZltbW5VSdDU182gW88 QEobcCKyMZS5LJJDykSJTTWn/66adoTW+++SY8sEJhwYjLC2TzYdhxfT0U/t8voZPV7owUXTc+5avDptPp4h5qP4bbVPAOxSbT38LK5T4jUPg jGI/Ht23bdskll1x22WXr16/XWkOjXHDBBbCU7Nq16/Dhw6ZpBoNBpdTJkyd9Pl9paalhGNdff73WGiZrlEjR4rYUhI45 c+aMZquFazfkS2udSqWWLFlSXl7+0EMP3XzzzfCfCgWE0qMct9 qTYRjwXJum6ff7fT6fYRg+nw8vVD/F5/PhhWEYhmEEg0GcL04Z1wEblJSUFO0o+y+41D4GXXzTNFtbW23m aizgeNpnBApUcyaT4QnDy5Yt+6d/+qeZM2ei6c6ZMyebzR4/ftxxHKVURUVFNBqNRCJaa9M0x44dO3bs2DNnzvBQPqmSIgidw2 dIFCerlNJukuEvf/nLb3/727TQhFBYqLu3LAsRdTD60n0517ovPmoqV5HQp+K171bIfEJhK Lj4lN9XWHdEnxEoWutEIkFtsqamZtq0aYMHD165cmUqlUqn08q 1OeMBNQyDr8ijlEqlUuPHjx87diz2xjtTeaaFcxxeyIRiMDsZ+ ZQbk7506dLrr7/+0UcfHTduHL6Ob+Hr/B2ha/Ceino5ckxj5tZjNmDPjI4Cj+j9njkSHAAeQngZ6JD4krGaXRly U7Yb+9kL8ZwRQW2K/H3tfh0nSGXAaCdUgZ223LNnz6uvvrps2bLbbrvt7rvvnjt37qp Vq3bv3o25vW6v/Ax2i1BlPJN8GlNA+pJAwZWtrKycNGnSRRdd9MYbb8RiMZpJwOb JLYEImMWcA49yIpFYtWqVZu2KbqEgnONQgJvNCp90RDgcxtC4d u1avHjrrbfq6+vp6xgPKMOiSOfUH6BO3zMYUHonDTY97KqmWBA asbhA6dbhnwQKl9HozOkdLMemXbECt37v1yWAt0G8wLlQAh1ed GKu4IHVeIdHsFqW1dTU9PTTTw8aNEgpVVZWppSaNWvW7bffPmz YMPLgzJ8/f/fu3dqN7MEvkjrROc/kuStQHMdJJpO33nrrP/7jP65cuTKZTFJ4TmtrKz180WiUvhKPx6nkZTKZxGvEe/PEBAlAEQTuR0ilUvF4HFrfOAswJSgpKUGCj1IqHA6bpgn/NDe/C12gXYHS2NiotVZK+f1+cnnw190H3fFAIICBjar52ax2XM8IFO 0a/JDF+e6772q3Ytbvfve7WbNmISqgrKwsEAjw6asnkKI3Ew6H6a9 mTRUSoXMLCjezIUQMl2vVqlXDhw9XSs2aNWvjxo3Hjh2jXaFqQ GVl5ZIlSzDJnzdvnsfuwpPLlAgU7V67Xbt2TZgwYdSoUa+99lp rayspErpeJJ/bdYlhY4pGJsuVzPAEgWbkra2t2u39nQ5Adg+ld2o334dKZtFHP p9P2ldBcBzHMAzqr1SOIumZsRaZB36/n37uG9/4BvWlPSxQ+EN7//33YzStr6+/6KKLAoHAhg0btNYIUkFivK8tvVadQNn7/X7cYvwluU/R6J0sMcEtbdrVKJZlJRKJmTNnmqZ55513ouq6dtez4+WO0ul0L BZraWn5y1/+4vf7v/e97x04cEBrjYAK+nURKH+F26b27NmjlDp48CAuBxm78KTGYjGH lT3WbvAKZWzz7tKzvIUgnLNgdCETLi202S42q4CC75I5HaEn5H 1QSomRMn8wBsBhTXF1Pp8Pc1xyZ/fM8EnRqYFAAD9dLIFCP4RCYXPmzFFKfetb3xo0aFAkEkmlUolE wjAM0iimaSISoNdKEwJCUCn1zW9+E9JEKUXZc/RIdNRI+XSCtolEIjfddJNSasWKFXQlcTG5NxaTf9pVZWXlhRde OGbMmIMHD2InmhkFlAgUgNqvuIKGYcTjccfNxiaNwuvG8OWjst ksIno85ZClAoogaKbRoTxisVggEOjc8kG9JEWvYx5GBbWwuvh5 550nFpT8wRjg8/m0e7OU64DrGc8OoHHd7/djBEVxh2IJFJphIvrks88+gxYZN24cxtFsNkslxfGiT6gTUpyU ykvHTKE/uBQ8/z/3gaGJBK7PbbfdZhjGzp07sQ0FPOi2JgB6AWNqJpOpr68fPHjws GHDGhoatBvQo0Wg5IIpGr9PdHVwDxCdR+9ApmBKR7Xteb0j6T0 FgUcXAtVp7Ai6J76EKYl+dGoUjtD5foSzBCMNJtC4UxQkpNk6j j1JJpM5//zzMZrS+NTzFhQKx16+fDkqXX344YdKqYsuuqi+vj6bzUKylJaW YizndN8R5gm3i6BlKebigcGyc8M/P0Hcl2XLlhmG8eGHHyI6k+d/4elKp9PUihEOQeNpOp2ura0NBAI33XQTzUwQyikCRWs3l4w6RO UmmJGCJqsyRWxRh0s+M82WbNCuD8iRGBThnIdmWuSgCQaDvOF4 iEajPPkQfda+ffvi8TgWyaKeDmETPXAK/ZtcgYIAVa7/ejLFF/dUubEdxRIolKFTXV3t9/tRE8txnIMHDw4fPnzixInaNTUpN8I0dwGjXgtPwAkEAjgL27Z5 RcTOg2TxSCQSiUgkEgqFpkyZ4tkz2jgl6egcp4/jOLS6wgcffKCU2r59O7ksRKD8H/wS8CUAuxUqNUuWNAptEYR+A5+Coz/y+XzpdJqKLuBFMpk8efLkFVdcoZQaOXLk0aNH6evPPPMM2aWbm ppohufz+cSRmg+80+f9HrkDijjW0tjvyfWlRAReV9PzgnwQtDd 8l0tezbzwyGH2bE9RopZl7d+/nzJgLctqbm4+cuSI1ho5OzhInpidu+ZJu2YVLrl4XR8np/hK5+TKfbtt8Xh+XjpnsMe99gx83APAKw/xn8Pt+Mtf/qKUqqur066w4HBngsVWz+ZiFP9eddVVV155JbkmtFubRwRKm4v VYwIl9wB02/UvBKEfoF0jJalwmprDbGm7fd+sWbMGDRpUVVX129/+9uqrr6aBpLa2tqWlxbbt0tLSyspKvJlOp8PhsASh50MvFCj0i 18pUDTzBfB1W2zWmUMHYxK/fft2nNTy5cvT6TQcDeTXsF3LB15DFmDGyNVGPB4nyzrCtCGdNV uph+aZyWQSMaEdCRRyDOm2ywDRkVCc+NlcOkRDYp/U4uz2LDrtChTF4oJxBchjQGfEfTd4Exdh0aJF2vXAOu1Bbdyz5 BMOD7t6//33lVKIliUfrggUrYskULLZbCaToWClUCiEF2dTH0IQ+gqqbX0L yhog/H4/evmSkpIHHnhAa7169eqhQ4dqreG6RieFjU+dOoX+ly8rKHSNPi dQMLDheYAg4LN5Ho5NkRBgx44dSqlHH330gQceUEo999xzeN/v93PRY7t11imnnfZAa6HYzK6AhXuUUviIYrq5X6MjgWK3XS0Zc oSqV/BVU3CyHV2xdk0sfIZwlgKFPwBcC5IgwwHzEim2be/YscMwjJ07d9LF6WiOTaGvTU1NZGfiFzmdTvv9/vnz52PdUC0ChSiKQAGG60fHI4iEIEHoN9A0FA0tkUiEQiF6/h13kmdZ1rp16/x+/7Rp05RSL7zwgnY797q6OuRNhMPhw4cPkzUeYRNCl3H6oEDBI2G zSpitra3kJc+1qMXjcSxXMnHixHg8HolEJk2ahFOzbRuxJhZbq 5nSdvjiDLTneDyOLpqm+Eqp8847T7sVRHB43E7gaQ782KikFmQ Kd/FjJw7Lt+8cMsBQTPrXFShI4yL4F2EagXgiPYEXzz33nGmaOHJu x2oX7IffTfoX9VFnzpz5m9/8ho5QBMpfKYpAIRsjCqjAQNczPy0IPQmms5ZlQWeg3+EVEWjuu HPnzjfeeGPLli2azUefe+45iuOjwpSpVMo0zU5mlsJX0ucECkE T+paWltyd4FnCM2a7Qa/0vNEqdMlkMhgMOq7hhGwGNN2nzAnyVOq2ZhU6SDKEkJmBBuOOB AoltpA1AjuHAPLUBe38RpCUcVh4x9cVKB4XD10QbMPHJl50Y9q 0aTfffDP/0XalCfl04KulZptIJLj8euGFF8LhcCKRwPUUgfJXiiJQHMfJZD Kohkktp+d7BEHoVjKZDIoMUXfvaWLU96FPpzVB0Bbw4tChQ9Fo tLGxEa2GhE5Pnkj/oy8KFM0yengqCiCbBN8nLCgos6G1jsViyl0ml4xw3NqB4Zl+Do qB+yPI1hIIBKhOPA3qvJoI7cejTvixYbNkMkkNAVYQOrWzv3rY G5U174KLh19hfBdSz3aDSMhMApkyY8aMO+64g9QYrUneLh0tP0 k9w6pVqwKBAD8wEShaF0+goOVorZPJpKdIjiD0D9DF4PFuampy HMfv96NHow7LccP6ePFsx3ESiQRlT9B0kyzhEoOSJ31aoGBU42 GklBdJr7nRbtSoUSdOnEilUp9//nlZWdlDDz2kczQuFxMkHegAeJ0xHAMOsqysLBqNLl26NBKJ2La 9ZcuW7du3Y0TvXKCg/CDej8fj7777bktLSyaT2bRp0549e2ggb25u/sorRlafZDL5wQcf7N27l8TWWQqUTlw8nsrpkBq4LBMnTrz77rs 1K73R0fWk62azWBb+rWw2u2LFCuXWIdMiUIiiCBT0xeFwmCRqR ypbEPouuVZibkzmAwx1tZpNUrU7I9Rs6gzzuN/vz+0ThbOn7woUqjCm2yqS3PEY/x4+fHjUqFEoXuI4zoIFCxCXHQ6HPXZr/jqVStGwzW0n9KNUOvbaa68977zzMMwrpUKh0Nq1a3XbEdpzYDy k17Ks8vJyxVYY8Pv969ev1yzT7WyuXiqVeuqpp7Cfdn+33cE+1 8WDhkbqyrIsnBci3IPBIC+Qj1h40zRRd7iTYHntLqbLbxZODTr yrbfe8vv9dBgiUP4KvwQ9HySrO3huBKEfwGVHPk2sULtD1goAA CAASURBVPsRiN4sUDDmwQPucVXQqGaaJkWEUK0OmqzTVxCx1ND QcPLkSdrJ3r17E4kEj/Ow2Pqv9EVyBmmmEsiPY7hr8ZimuWXLFtgVMplMeXm5YRjcT6SZ wPKcbCaTqa6uVkp9+umneLO5ufkPf/gD9xx1ftG4xlJKPfHEE9BVDqtux3fSiUDpHLLK0KVYsGDBiBEj bHdNGCcn5buTibftpnNrN5vpwQcf/NWvfgXnkeM4tBooF6lfeZBnSV8SKEXs9bhAkemg0P8QgdJr6bU CxXEcmovzkdViyyakUinlFqTnPSct2koPDAK0v/jiC5gWNm/ejOEwEom89NJLmzdvtlk+LTkTIUrosmA0dRyH9p9KpRC7XVJSw lfitW37008/VW0rrDhtvS30wnLRWre2tpJP8+OPPybv/1leOgrysG3b5/PhaPF1uj7tBhJ0WaBks1lUgEVZRayqSLfJo6va1WfcHKW1Hjhw 4H333UenYxgGv5WFRQTKWSECRejfiEDptfRagQLTBY2aMEuQnY ACNoPBIH0LcaZkPiFTCmb2mzdvVko98MADf/7znw3D2LFjh9Z60aJFhmFUVFTQuO60rTgC1wa8D5oZMxKJBBXq UEqVlpY6jlNfX9/S0uI4zpo1a8Lh8IMPPqjdLBXyZXCB4gna4MlBCMW4//77z+aKcQ+Xdq07XNhFo1EuuXSBBAqIRqOhUOjRRx/1rPqSa/XxeN9Ir9B12Lp1ayAQWLduHb4uAuX/EIEiCN2ECJReS68VKNyC0u60G34EpVQ8Hqd/NbOmUEl1rXUsFvP7/ePGjYOd4/rrr1dKvfLKK6FQaPbs2Tqn48XsH8omFAo5rOy9ZpGeWCwQCwZt 2LDB7/fTv+Xl5a2trZSWTF/xWFDIvIE8fNu2E4kEAlAGDBgQi8VIk3WypAPtkysVuHgikQj/IgX8FkSgOG5qz6RJk77//e8j37u5udmjTsg+xH+UJIjjBrtoradPnz5ixIhEIkHeInHx/BURKILQTYhA6bX0coHi8/koRpUPrplMBqGjfEyNxWJ81AeUeExbIl/yW9/6lmEYY8eOJSGCj7hDJJvNtrS0cE+NZumW+EsXyjCM3/3ud9FolFa8pxPpSKCQ6KExmALG16xZwxXD2Y8L2DIajSo3uJin xfHLy7919gKFTo03xtraWqXUk08+ScdPmoP/Vq5A4RlSGzduVEotXbqU/5AIlL8iAkUQugkRKL2WXitQNAuSxRCOYY/WmNRaRyKRb37zmygjS5Xm8RFqpVOqSCqVCoVCJFxOnDihlPrpT 39K1Y0zmQxV8qBFevGvcmvO8kpllFYWDAaDwaBSqqysLFcEYOG ejlw8mvllWltbq6qqKMZWa/3RRx8FAgHa4CtL3ePsaP84bJRnpSOnAyiIQCEVYlnWI4884vf7 N27cyI/KU++EizbuJ9Jat7S0DB8+/Ne//jUuLHncxMXzV0SgCEI3IQKl19JrBQpZUBBLQR1jIpGorq5+773 3nn766RkzZiilnn322TfeeGPbtm1QGChsTxtToR1YYjCgbtu2j eI6eVgGRvRMJnP69Olly5a98sort9xySzgcnj179htvvFFVVXX y5EnNLDQo+AZM06TjxK/wyBUakrlAcViKzbFjx5RSw4YNO3HiRDabXbhwod/vpyz6s7wLvE4donP4Fz119PkXv5ZA0UyjOG49t1gsNnr06Isuu gjHTx/RD5GXh4ARBZVzb7jhhtLS0s8++0yzNQhFoPwfIlAEoZsQgdJr6 bUCBUGyKJ6BiXh9ff2SJUu+//3v48BCodDkyZOVUkOGDDFNE7m+ixcv3rdvn3YXdsEObbfUvVIK VV+VUtheKRUIBBx31ZszZ868/PLLI0eOVEoFg0HDMGbMmOH3+4cMGUIHs2DBgpqaGiQBOY6DKBn UCFHuysaAEn3pGnqiRKm3xxhfXV3Na40sWrSosbGRNut8aODFh KgYiXKTgPiP5m9B8ZwUKbyjR4+OHDlyxIgR9fX1ZH/q6Plx3PiVZDJ57bXX+v3+NWvW0KeUaiQuHq3dS0xWQaVUTU1NA bUCdzHiL/kFly5din6Bxzc5blQUKU3sx2IraBfq2AShuymgsKCdWO5SbQU7 ynMPbnLXbOVFpO9irDUMAy8QDoLXoVAIQym8MDSm+v1+w128ms bszvH5fKYLSQe8xkcQKG+++eagQYNCodC0adM++uijaDSKJwEh tPF4fOfOnU888QT28PTTT8diMQrVJKcJeRx4F0od74oVK0aOHG kYxqRJkz755BMsGWPbtt/vdxynqampqqrqT3/6Ew7pySefRGV6OpHcGmXtnq9nA6rzhq/j9OnE6ZrgUzi8+GXv6FfyhI4K8IOhsmz88PAiEAgcP3584MCBS qkPP/yQlAQV5OUPG96sqan57//+b9M0UdTOzlktmXcUBdfKfabvoOiqbDb77LPPBoPBESNG1NXV2 QWi3TI7mUzm2WefVUqdf/75tbW1FDBFwed0P7ASRK4PkstYQei1dIflg6bFeR/dOQ2PCVBKkfJDUVTPEEiDKKBlaDA+0VfIONERfJ98LDcMo7S01 LMTn893xx13BAKBO+644/Dhw5TfobVOp9MlJSXwCNBqunPmzFFKDRs2DItK5i4ITMYVx11c 17KsWbNmKaUmTZq0f/9+myUBZTIZ5QbJYj+tra2PPfaYUmro0KEnTpyAnuCGk6+ECxQq 8oZ36KxxHQzD8Pv9iHHhqqWTm1IoSGKiaCzJqdxj8Eilurq6W2 65RSk1btw4Xq2fr1Nh2/aZM2dmz56tlPrhD3+4fft2mpPTYykCpQ1UZuehhx7iF70gIPGM 33t6oMvKynBTKY7JcRws2413cDvpOG0W5SR2FKFPUECBwl34Wg RKgUBnopSy3XxX9E6wmqA/NE0TI2UwGKRxFMMY79/wmkaysxkFTYZSqrS0lAwGePGNb3zjnXfeQbwCRbDSUvB0Fqj2k clk9uzZM3To0JEjRx45ckS7Wb70XQoTodpo48ePV0qtXr1aM4M KzfjpJ9LpNMSNZVl79+4dOnTomDFjlFvbHuaNTmwnueeO8y0pK fEIDowOkD74CFcV1584myv8dcFoxY8nEAjwW0wvYC0jhYqLEA6 HcXnffPNNeMq+853vzJkz55133tm/f//hw4c3btz4wgsv3HTTTUqpCy64YOHChWfOnNHMvuJBBIrWWkMQU BCTUgoVkQuFZ60Hvsr2888/D1clZgCJRIKHMsXjcUp7o2gvHm3Uo5dJELpEAQWKuHi6A3QmuC k0ftP4FwgEaHUYctx4fBA+n6+kpASbYUhTna7JQsMhVAigMdsz o0PlLppec1uyYmvxaDaGVVdXDxkyZOTIkSdOnODFZ8m9nkqlMA McP358IBDYsGEDvY89WO56wkopTyAtPj169OiQIUN+8IMf0Bnh LLhS6RzyZCmlgsEgP2tukoEIIBlE6+CQCuzatLnd+8Lvbzgchk AkHx/ZcsjwQxvTRUDRXrjYPvnkk3nz5gWDQQr9gWVo7Nixa9eubWhoc NouHGi764BS5pEhAoUgV1kgEIBkKeyebduGs0a37WeVUtwfhPf T6TTMj9A3VBXRduvbFPDwBKFbKbgFRQRKYfEIFPRXtPoMrVAD6 UDjqHaLlsICQboBG3cyYeM/arv1MChhFfGnmUxm5cqVfr8fy9MAy10Bx7IslIRHgIh2Iwg1G8 aQSzxu3DjN1IbtlqtHZ/v8888HAoHVq1eT7HAch3ppfIWeVZptaq3ROR8+fFgpdf311+u2 IqndM83FdpcTgg6gRQFJTuEddPjw/uNNnhHdyXX+umjX2qS1jsVikAjpdJpSu0mooaQ9TySGkAqFQja LmNTuxPvw4cPHjh3bt29fbW2tdv0ANBXHA2a1XbcIiEDRWmvbt skZadu2YRj0jBYQ2iFvZtFoFPeAmhC5SPGYkk+HugmHJafl3lF B6G04EoPSu3FcFw91MuigMERROVTNilvgyqdSqddeew3GA80SW T0FMDrBMzcjUGrsgQceoIGZekjq8Wx3JT+aTyJwxHYrqr3//vuhUOjjjz/GSO9ZhiYajQaDwSlTprTb29tuZgMuC4kGlCrR7uJ2a9asMU1z4 8aNEBZUfOxsumV6hhHF4jBV5LjxMQcPHqypqTl06FBVVZVmY4d mqzef5aX+SjzHHI/HcdOrq6sPHTpUU1NTU1ODB8BzozOZDJetuJtQNtqtRNfU1KRZV ToqZ0emLAJixaMOcw8vf/pM34HnCWtEYQ13zbLY88dxdTfmB7hDsVhs1apVI0eONE2THjLH cQwWfPTFF19UVFTgnXA4DJuYZkr27DsCQSgWhRIoPDLAkRiUQk C3hsegaLeHQY0KbMm7mnQ6Tfmfx48fb2ho8Pl8sO3brHpp5z+a C8YzDPxPPPGEYRhHjx4ltaHby8dRLBEaB8AruVmW9fOf//zyyy/XTMRgqT/Lsh5//HGl1OnTp+l9WqjPchfc0VpjOCAJRYOFdueHl19++cUXX4yzhkY 5S4GCnyAPDo3K+PvKK6+MHj0aYwF8K0OGDHnppZcwmnArVwHBe dGyR8uWLUMoCTl0Ro4c+dJLL2lWURdCCv6mkpISklbavdHZbDa RSLz77ruJRMJxbWbJZHLr1q11dXVks4FS4epTi0ABPEYkk8kYh lHwG0/PPZ7dFStWfPvb3160aBEq/1DDTiaToVBIax2LxXbu3Onz+T755JPq6mqttVLq4MGD3FFK7UQ QejOFEiiJRAJLr5HhUARKPtBlxAty8XhqkJMohKOZSrxrZpOgG 0HSod3UxVzIZw3TNfaWTCaVUk8++aRm2QBcmlB3iq/QYMnXGcY269atU0pt27ZNs8BY7S5EPG/ePM8+6QWNCMqtGU/xf3QkeH/Lli2maVZUVJylNOEulWw2S8EodJrZbBaJMJMmTdq6dWt1dXVlZ eUXX3wxbdo0pVR5eTk0nM4prJI/dGCpVOrmm29WSk2ZMmXz5s27d+/ev3//tm3bpkyZopS64YYbqBIMzoIyjekBgOSFZQV/x48fDxGp3bUboXs0iyuCRKad9E+B4nmmbZboa9s24ne0e1G42b BQ9mcP1NQpRGvz5s0XX3zxlVdeuW7dOs1ajm3bvCTAjh07Tp8+ TbFL8AvSoRb86SwgtFgGN8yS35FMSkJvgFyKpNTPfoX3s4FHOK Jfw4Qbv8V722g0eumll/r9/ssvv/zw4cPaTZ3AZjfccAMPfdAiUPKGdyCefo97Xmy30rx2p3NUNIV7 fLi7gVuFeYd84MABbhUAiCpFZXfLsr788kul1N69e3NdP07bEu nkH/ecF4mq5uZm0zQXL15MjnJs8NlnnymlPvvsM9stQk8/xB3rXDZ5OlvsCo4MklMUQcK3J7XHXWYERbnSZs8995xSasOGDT gSKojlOM7q1auVUvfcc49mTn9As9ZTp04NGjSIxpEbbrgBbql0 On3DDTfwYNi6ujrdNuiYumUcQ0VFhePWitVuZ/7RRx8pd6Vlx3EoPslwS8OREU65GdrZbHbz5s0+n2/VqlVa67Vr15qmeeONN5JZyxPjotsbi/uPQMHTGY1G8Rdvwr6ES4ByyFygFNZB7sFjONXuAPDJJ59cdtll l1566ebNm7Wr0PFYBAKBHTt2QIRivU1EgXmafWGPs1CQiS8ej9 OA57BSLjQj4Wck9Ab4A2YXCM1qDGqtMT/Gr1BGPT76n//5n6FDh3755ZfXX3/9NddcQ0UwM5nMuHHj5s2bFw6H4XvFrMNga8oLXaAjgcKzBBx35 V7NBjOlFCnLaDQaCoVoNshHetoJ3abGxsYRI0aMGjXqyJEjXJv abkCJbdvPPvtsWVkZovFogKRD5V0fGXKctoXV+QHMmDHj2muvt W2bL+P38ssvoxg8njESJVys4LGkZ5V2zidX+N1Zs2aNHz9es3k jnk+edEkn68k5Um66NSkqwzAee+wxmtdRbwmR8fLLL5eVle3du 5cuLLf9WJY1YMCAUaNGHTx4UGtdUVGhlLruuuu01uPGjcPgorW uq6sbMmTIwIED+e2m+9XQ0BAMBufMmUMTFS4dcAyBQABTCBo0I VBopu04TklJCRxn2ENpaem6des2b958wQUXXHPNNXg/EomQGYY8XOeEBcVxnMrKSnj4DMNA0/rtb3/r9/vpueGWFd1tAgXPPT0Ezc3N9L7W+tNPP/3P//zPK6+88uOPP4ZgT6fTW7ZsUUrt2rWLMss93pzeLFC01ul0Graf mpoax3HgpYYNEMY9rXUymbz55pvff//9Yh/suQ6UInUxVAihgOmLFFkVCAQ89RuQwkAlHx5++GHbttevX89jN pVSc+bMoTlZc3MzmgPiA4Qu04kFRbOCCA0NDbZto3YqDauamUL xXcwG0bs6bQs10b+WZdXV1U2ePLmhoUEz61o6ncZOMpnM9OnTb 7nllpaWFnyXdph7ePQA0Ke2a+yhvv3ll182TZNGQfTDEyZMKC8 v16505sGtdlvLdDAY5O4MGilom1Qq9eabbyqWjIlPecgUfpQsf 5i52awGP1mkdu7cSTKCF8eiiwl9j1V/ybZB0TO2bYdCofr6ejJXf/TRR7NmzdJaT5s2DcG82OGRI0ewflBrays/X9u2d+zYoZTaunWrbpu5Q8fT1NTk8/leeOEFOgbDLexGx6OZgTObzS5YsCAQCKxZs2bTpk1KKZrEancU purAdBi6vwoULvMPHTqktd68efOxY8csy/rwww+Vu7gDxYfr7regaK158DPVO2ltbT1z5sySJUvQBWv3piYS iX379lVVVZEJFE8wF/uFPcgCQhYsmhLV1NSg3Mv27duVUuFwOJPJjB8//qGHHir2wQp/xTAMxy3Qqd3pY0HAo06lDhKJBAKtACZM+NH3339fKTVz5kylFL o/gDQHFNigbEyttWmavKcTvi7tChTcDvoIybRXXnkl6p7V1NRccs klpAyy2WwqlaKHxxPAodvGdpBxAn4iHoFru6kxlmXNmDHjj3/8o2YFGvgOHWbkUEpBJNnMj++0zUWHetBtU6Zvv/32mTNn8mV+6fDo5/ApdyPmmuvw06+//jr0tN3Wwk2HTWv4eUSbdgUKgo4ty3r77bdN0yRnEN0ILrluueW WKVOmcMMSvz4+n4/X28VPQyHx6JnFixeTKtJu5jBev/vuu8rNG+eVQh3HIc06YcKEiRMnkqEIAoUeIfLA0uTEMIy5c+fi mhhuqVLDXd7IY2yj+9I/BQrIZrN4fOm6w6FAd4USxnQ3CxQKVPbQ0NCwZMmSYDC4ePHiWC xGLieKBshms+h/PeZHT3Mt7NEWBIxJsFvGYrGWlhaaTK9atQoPLtRJJ8uICz0DFe VEjCGGnML+BMY8y7LgoEHDpGkfnm1Ioo0bN06ePPmjjz7iX6S+ HilvZAqGlV7oMu0KFA46nM2bN//0pz+lofSyyy7bvXt3c3MzulZUJ8OnNotZwR7IXO8xhNhuXi51w uQkuu2226ZOnWq7YSvtqhMM3nwNYf5zfNhesWIFOiKaHzqOM23 atAkTJnhqq9OeuZnE7/fjQeWCg3aOB3j58uVcc2umeEg/0bcwANOuuEDJZrMkpwAJAs30zaRJkyZMmED7pNggvEPFSGjQga anAjNa66eeekop9cQTT2CWzoe/bDaL1HHddhU5/lta69tuu23ChAl0UtS9O6wKBkJzTNO89tpr6VKvWbPG5/M9+eSTODWsoPTRRx/xnGTdvy0olmVBMAaDQcqUw0iPeONUKhWLxbho6FaBollwLpKZj x8//sgjjyilFi1adOLECVKvfErhcVXyRkh42kwvIZlMwmtQUlICpXX o0CHTNOPx+NNPP20YRjAYrKysHDJkCCr2Fvt4z3Ug4tFFUidVw PuCNUttNwhAtxePSfqbvsLnfJr1v7q9Ol1C1+hIoNCM35Pfq91 ISeqdcJv42E+jI1cJFivggRJqmECfOHECO1m2bNlLL73U2tpqW db06dPvuusuGo+5nYBj2zbyWnEwXFVz08hzzz1XVlZGZ4TjnzR p0p133snHZpvFjtDBx+PxcDis2+tp+eO6dOlSiDNsRg4jAOMxW dA9+yEXD3a4detWn8938OBBshJxteQ4TjweLykpWbx4sWaDApm acB8p+I8yQjDw01QEZWEfeeSR3Cchk8lUVFSYpllTU8NrrmAlA fwbiUT8fv8TTzxBx0YeW7o1iUQCJ75x40al1IUXXlhfX5/JZD7//HPkVNP4a5rm/v37NROj9FH/FCjazYlXSi1evDiZTJaXlx84cAASkvQpj6nuVoFC4VHkiZw7d+ 4//MM/PP/88x7TFgYGeo4pVK1dF6zurQJFs0k5Dm/37t1KqdOnTz/22GOIQohEIuvXrx85ciRqCwpFBJZbCgzy1LMqyP4dN0S6qakJs 9LW1laPOZ2PENotn4A98LphDnMNKMniyY+vtKBoV6xgZsU1h8O M04A6OtjJ+M4p7C8Wiw0cOHDgwIHV1dUDBgwYPXr04cOHKysrl VLoDx3HWbx48cCBA2F4JtMFjXx8t62traQ86IfoUzw2jz/++JVXXgktQkP+woULR48eTVvSo+gwK3XWrZxJ3/JYJmjUePTRR3/xi1+QQYgbdWzb9vv9FqsQY7npP9hAuSX/8dOnT5/2+Xz/+7//C6FDp0OT2GXLlimltm/frl2RRJYn2iHdXJKYJAhgvLFte8GCBdiSsoTot86cOaOUWrJkC XnE6JRxi1977TXDMCorKyFVbdsmfw1XGEqpTCaD1K0f/vCH//Zv/7Z79+533nlHKTVjxgytdSKRQN7y66+/7vHV4nf7p0DhcT20bAGlw5mmSQqAi3TdnRYU7T4HZJzcv3//xIkTR4wY8corr1D8LD8YzWLQ0BfQHaLm2h3HmT9Zt5i0z+fz+/3kWcONiMfjdIU///xzaGehiKC9IDCIxoACPl30PHuEBf0EvU8NkwIkacrLgxuo5XZT Uz136Eig4I7QiOVRihbLMHBY+rHW3igNMjPQ32PHjimlEMV55M gRpdSGDRsMw7jppptQbFRr/eabbxqGcfToUZ0TKMpFLVdITtuYXG5sGzFixN133+3Z5oMPPlB KNTc3W248L5cU9BP84D1nzbcZOnTogw8+yPtnepHJZGDn445+f pWUm8VD0nzy5MlKqZMnT+Y6Vvbv3x8Oh8eOHavbE4goUgc3Osb 7VCq1cuXKBQsWZLPZOXPmrFixAj7TdDq9bNkyTBR1W78YLsidd 96plDpx4gSNNfRbhw4dKikp+c1vfoN/0dsrd0Ue2hJv0kkdPXr00UcfXbt2bTqdXrhwIV/ZZ9GiRdxYwFt63xYoNGzToVNAMp0qWYZJ22JLnplmt61hjKuM7/LCz3kWh+DNg369urp6+vTpI0aMWLVqVTweT6VSp06dUkqVlJSY pllfX083MhgMRiIRON2PHDkybNiw/fv3d15QjiY0fCmffE7h7KGmRQ8rnyvT/cLdIUGTSCRsVqjx64JulG4TWQJoKkaGKClw5yEej/MobF1oC4ouxBygUPsRiHYFSqHkae5O0AMHAgHqFgzDuOiii777 3e/S4i+2bbe0tJim+ec//xnfos7cM0PTrBYI9e3YjBIgUO8ESTHcTNLY2IggDHQ+pLE6MR/S9JIGBXxr27ZtWDPIY8WhjigYDFL8DRX8IEmELLaSkhLtOrOi0 eiQIUMGDx68detW7ilDEZQxY8YgWlm3bRG2G308depUpVQgEKB FpydOnKi1njFjhlLK7/ejbFogELjrrru4rKTRIZvNtrS0XHjhhaNHj968eXOWlfnHMfzw hz9E6X06R+VWY3OYm4ybuzp/ojzGOVqah3xG9FEB+6VuFyjc0pBOp8khQuUTQDabpbr1aAM0cl N3TM4XrbVpmtwGgxcUJ9UFmcJjweCP1221wnvvvTdw4MDf/OY3tm2vXr0aRQnfeOMN8uohZRe+27q6ugEDBjz99NO4c50fD4Z 8vPY4j7sPuAnI/MOPAaTTaZQE1e41z80665qWgj0WMwmH1R6g3ZLoFAjbTYjg4eQ FvEoiUHot3SpQPD+EqQim+HQrA4HA8OHDacSlonwTJ04cM2YMF SnhFXF4cB6f6vAysvS7kyZNGj16dCqV4v0kNps1a9aQIUMoTYa GD0pQaPcULLYGHl5MmTJl8ODBPFnGoxjofGnJevoVBOpBozhu8 IplWSdOnLj66quVUpdeeum99947a9asyy67DMXNjh8/rt10J3545OuJxWJ1dXWnT5+Ox+ORSAQFUbTWkUiktrYWKfqRSG Tfvn28NAsJPuonT5069R//8R8+n+/HP/7xXXfddc8991x11VWmaY4bN+7QoUO2u6gk5ZlDo9htQ3lIEXaC nVPIkSw6uQKlgHS7QHnppZcw7bMsa8mSJVjK+Ve/+lVjY2N5eTkE3fTp07X7KJMow6WESQq7yrC1IsPhMC4uOfMoD7 7LM29KbLbYKg+WZe3Zs2f69OmDBg165513aJlKeEZwy23bPnLk yPDhw9etW4fJh2maCxYs0DmVBNv9Uf7k4SL0WNaM4zi7d+9ubG ykhxUBy19++SVtgOOHIMO1pSvThePkhZjoTfRoiUQCO6TCfVy7 nOOg3wyHw9TFF9bSJgKl19IzAoWPWNlsNhAIaHdOUlJS8sEHH2 iW2QCqq6uRmMr3A5niuHHcmlU9oQOmgTMajW7fvj0UCr3yyiv4 yGqbMbRz586ysrK5c+daloWDoVEg9/TpFMjbiK9s27YtFAq9/fbbOPiWlhZ8F9G+5P7QrnZxXGsNDMZIuYf7mw5Mu0VHtm3bdu+ 995aXl1922WV33XXXJ598QsYbjzGeBgLqNj05FtTv5a7MR5vxB YZodldRUXH//feXl5dfddVVEyZMWL16NV9zANvAax8MBmluT7fbysl+6ghPfA/WSCKTTLs3ahzQrgAAIABJREFUJU+6XaCgTB7OH2F3W7Zs8fv9d XV1SqlsNjt//nz4/5RS77777p/+9KdkMonQYt32UfA4BW3bDofDqDzD5VvXvDzkOtXu86S1rqysv PvuuwcPHvzqq6+i6K125fY111zjOE59fT0egkAgsGnTJu3WXf7 lL385fvx4PNyauYdzoVKMeIJpFvKVkjZPYCDJZDL//M//fO+99/IYrqeeeurv//7vUfEJbamhoSEcDqPohadRfd3fpXuKToT+6rbNidJWBYCnSLlV IAueZuyIQOmtOD0lUPjDhqpOyi24HgqFAoEARjiHLTV3//33K6W2bNli2zbVG3VYM6dOO5FIICuT1ANMJmPGjPnRj36ktaYl Wj0GVPzE7t278S9tk3v6DhMo2p1BJZPJUaNG/fu//zs6FgpH5c3Hdivkatb/8ArauA4+nw/9M/WBtKw9LghFI/B4IB43k3VLy1iWxbfJZrPc149zQV11fqY8/kO7OoZ66aamJj5j5MMlDphuqJ2Dw7Rju9AlxelEo1Haf98WKFp rrE5k27bP59uwYcPgwYPRzyqlFi5ciKUHamtr/X6/3+8fM2aMYRhkUistLeX1iChMHbn1jrveRDqdxvONe9YFjUIda2 NjI95ZsGDBv/zLv7zwwgt4AnCTILHxo/F4nCIzlFuMSGttGEYsFisvL7/55ptjsVgn6kSz9DyqXUtT5G4Fp7Nq1arbb7/dMIyWlhY0yFQqNWLEiEcfffTVV1+l45k3b96UKVNGjRqlmZWyy 34o3hhgr6qsrES0ncNmWlQoT9Bu30fzPHKTF2r/IlB6LT0mUDxjlcUyWWwWGkj5sVrrpqamn/zkJ0OHDkWxTe06i2k+yd09AK0eluPx48crpQ4ePJhri4VMwTg9 YsSIgQMHHjp0CK2Adsi/hQuCUyDjLpJDlVJkEubDdk1NzYsvvrhs2bI//vGPpmnOnz9/2bJlO3fu9GQaJ5NJVBBBVXhcokgkknGXZOHPvKesqM5RFQT1oh 7Liic+j5QBv4xc3/D3eRwrxBOPL6RkabttnvbZwIdg6p8pqaUPC5RsNuvz+XCZgsHg 8OHDEVWqtVZKjR07NpFIGIYRiUSg71paWnAdaQ9khbNZSDZkIL +Fmi1E3IXj5Hofw+TBgwfnzJkzaNCgt956i9fZhP1TKfW3f/u3yq1/TBWgLctCAcd0Ov3ggw8eP37c+apV93iMMEV1daRkCwUu3eDBg3 fv3j137tyFCxfiR1euXDl37txoNDpgwABcz/r6+mAwGI1G77jjDlhiqSniyL8WOGWeaIC60SNGjDh27BgSQ7gl ueAn3kfB80/1Kx3HoUelIIhA6bX0mEAh8wb2TFM1gBxau22yjOM4VVVVQ4cOH TZs2JEjR2w3hg9foYLC1N65sL7xxhuVUljjDJM9/LonPFFrffjw4VGjRg0YMAALy+v2pHmu0bGpqQkLDm/btg2NCIdx8uTJ559/fujQocFgEMnD06dPRxeEoaekpOThhx8+duwYvqXZKjZ8GNJuP4 YptGciSpfRUyXIcpOK6U3SEOQR0+0Z3bmZ2XNf6I7gHHkUo80i figsQbPemws7u9OJMX3quK6l/iBQbNsOh8OIgQ0EAq+++ioKgh09evS8885bs2bNnj17MKL7fD6 ESZ9//vnclI0cMIpApmeIVgyhiryQtx6xefZ4nidYTRobG1FvmG4PSUg y7mFCQPUEqaWhPXc+imBLxHL7fL4LLrhA9SAocBSLxZRSJ06cS CaTgwcPTiaTyWTyiSeeWLFihdb6iSeeQIH/w4cPK6XKysqwdlJZWZlnxZazxO/345bRyeJf0zRxHfCvwEHlaUQGZLNZclcXChEovZZuFSi0E49A4 YEU1ONl3cXw8CllEhw5cuR73/ueUmrDhg3Ij6UxMlfQaK2rqqouvfRSpdS2bds0i/zgHiLbtmOxGOXanDp1avTo0Uqp119/Xbd9zNpl7969l19+eTAY3Lp1Kx9ZV6xYMWbMGKXUpEmT1q1bhz jWbDYbDAbR7+3atevxxx/HiDN79uxYLBaLxdDjYTEHpRT1e/B/IbDjm9/8JrXWkpISWggauzLcBYqxMW/XcJwptnY0Ii95N4gfAp7ukf7F+lzoQvFzGCLxGj/K/8KLZ5om6t/TSj2dgO3JZKD7QZAsrgVqDB84cACevB07djiOU1lZiU+PHTtGZ gntJp3zq4DHlByfjpu6TNpTs1I2ukvxg6RLbFbDh7vZaMvcn+C vSR3zNtl5MKnjOIa7UCLOseC3OReaB6C7WbJkyaJFi1atWkX57 o2NjSNHjjx27JjP52tpaeH3guZJXTtO9Hr8Mq5fvz4YDJKd4Cu 1/LkJBg+agYkF5RyhWwUKb2jcPEDWaOpjuavds43jOLW1tRMmTFB K3XLLLXv37iVvBXUy2L62tnbOnDmGYYwePXrHjh20T6ryR82fn u1oNAp9gGWeMGTA8tGRlKeVZWiRS3w0YcIEn883ceLEgwcPkgP LdvPjNCvqmkql5s+fb5rmsGHDTp48qdoupYkXpaWlnmMIBoOwU tCR8C96VrdRSlGaBR0kVaygN+mUPboEe8PGfr+faws6BqgT2jM 2oy0Nlw71SFv4eWk3ZqhdgVLA8auXFnnkljr+PgVq2G64ic0yk LVbwb3gAzxuSTeJxB7Yf7tQL4OUeqXUoEGDUNYafcRjjz02fvz 4RYsW0Vd4J1XYTGAl9UaLytcVFu0aKcnOrFkqhNzZgoDOEDfFc 4VJZPSArM9xpPxfL+04zquvvjp48GC/3z98+PDFixe//fbb+/fv37dv3/r165cuXTpu3DiM4nPnziUXhsOWNSbNzWNLUdOdhl4yCfCRno+4 NAZzNUDlRjZu3MhL/uNFxl2CW7NOOBqN1tXVDRs2bOjQobQHGqSVUuedd55yl/jmxg+8Jns//0ou/BTwFTpZfJFEDDfecM3Bd0XrjfP9tGuewQvoIX49+f5VWyFIV4B iNkDfLtT2dfFE7ti2nXXBIwvv16FDhyKRCH+HAqp1N1wmLiC6o xfo7v3nQuEj9M4999xzww03aLamdnNz89/93d+dOnXKtm2atTuOAxVY2EOVYay4dNnywUNkPBYdPjcV8iRXo HjSuJy2dVp75njI4EFG4ng8vnPnThQco8IbGOHKy8tXr17d0NA A4ytlolEkh86xTG/YsIFGR6QRKWYjaXe8BxjOS0tLMTDjHZ/PhykuT6/Vrp9Ct7Uh2badSCRqamp+8IMfwIEFAoEAzogfA3emcBGAg8G/JJ44OE54Z2hv5513HhmKyLtEyz3CMkS6gV8WnDK/IO2qnNw3Yfuhg8e/dHgkU8gFz5+3c06g4AX6O25UaGpqmjNnzs9+9jNco0GDBgUCgf vuu+/TTz+lr/OqwAWk/wkUgKsdj8epfBBfWogCyGmuxgP7c8sQ5YMMY8WlCwLFaRsw6Nk VvZA7WxA8AoXKNVGD7fnahmQ+IZ9vc3OzzZJZotFoZWXloUOHj h49yvsT6uJw8GSXpfhQnMuGDRtKSkp8Ph8GaQ43FbSrUXjAIo3 l9Eh7ilbY7oIMDisGQwZm1N689dZbaWOqKUoX3zRNmrN5hjCq4 NAuPB+HvohvodDDypUrn3766UmTJk2ZMmXatGmTJ09++OGHV6x YcfToUR4JBChVmy4m/mIbyItQKIRbQHN+Ps/XbGEjzcKcyRqK68mv3rklUOjSULo8XkNKL1q0CMHV6PVOnTq1Z cuWn/70p1OnTj1z5gwfXAt7VP1PoHDXbyaTQeYq3qSZGY8Xpqg36hkL e5FlGCsuX1egdKRO+E7ExVNAPAKFDy00CvbA6hBclHBoTki9hG 5bexpvYmjP9Uk5bqAe6ZstW7ZQCOqQIUOam5upPltuD5kbD0A9 G7JEy8rKIGgQFkP2HjoRTw+MMs2wHNu2/d577wWDwU2bNsFOX1tbiyIIjhuWh4ccYzwiaTqvLpFL1q3ojX2 uXr160qRJSBxRSs2cOXPGjBm33nrr9OnTR44cCZ1x5ZVXPvvss 7BFxeNx7jUjuOghzw7eodotkGsnTpw4cODAgQMHUAY3mUzyur2 4pMFgECkstE99rgmUXDdNKpWigE3LXSCbrrLWOhqNPvfccw888 IDWmt+nAtL/BApZialJ8HQ4JIwopbZt24bGvH37djyX6A0LHugjw1hx6bKLR7 t+WI+9UwRKYcl18ZBVn9JHYe3vVto1Vxg5sSCweXzjG9+gN8Ph MAVtKFb/Dd+l0gyWu3QOvlVaWvrd73736NGjWFibLkXuCw/UQT3yyCPYFVw8nnXHeBoEd3mTDCLv9lVXXfXf//3fOEhKukRKDuXCwK5Dt4zWBPjKm8vr81ZVVd10000lJSUXX3zx smXL6uvrdduaKJFIpLm5eefOnePHjzdN86KLLtq1axe+S2MfLS mq27ZEXG36LSQDrl69+l//9V/5HRw0aNCbb76p3VwK2w2Fxqco1kc7ObcECuByOJ1ORyKRhoYGX nYGjxry3zzlT7hDtFD0P4HCzSSOG1ZCNkOllOM4R48eRcWaioq KoUOHlpSU8PT3bDZbwEJqMowVly4LFO6Kzf1Iy50tEB6Bks1ms VipJ221ZyBdQmkmpmkisoFiJjDVDgQC0CUAFTgposIwDNM0sYF 2rbMoPg4fzfDhw6uqqmg4cNji9tqtJ5trziHDUmtrK48thQwCn qxPdHRcoPBHOplMfvzxxygX7jhORUVFMBi86aabUKwslUoFAgH SEJ46FLqDkAP6CV6XdsOGDT6fb9SoUe+88w7epAkkCvPjTZJNN TU1F198cTAYnDNnjmdvdMUcdyUd3LhgMAjjELZErbx77rln7dq 1VVVV+/fvX7du3cyZM5VSv//978n7b7vhJhBn/IfORYGCh4wLZG6Uy2azfr+fi0oqO1Pw6BPQ/wSKblsXjsp/0aBimib6CKy3fvz4ceWONN1R4FXJMFZUvq5AoaeUqxNakpqbUu TOFgSPQHEcB+GfnrSLniTXsgKNAk2AQzJYbKYnUZYbVJSbqgrb CU5t2LBhp0+f5qKB8n06uUp4gWF1z549ihVeMtwaZdx2go0hUM gtknXXjqUuMZ1OK6WeeeYZvIPjHDdunEeF09E2NTXhRe5smVt6 eIHQTZs2KaWuv/7606dPY5ijlcuw2ItmASJUqCaTySxatMjv99PK0jSN5GU4tBtB gouAgfLFF19USq1evVq3VVHxeHzjxo2hUOi+++7T7nAMTxaeN5 4+dm4JFI905fOzLFu3RbmKW7v3g5R1YetDgP4nUPizS088GmQ6 nQ6FQgMHDnzjjTdQvAizNPQ+VLiwsDJFyTBWVLosUCjULplMnj 59GutP0dRWy50tEB6BorVWrplB92CEbOcjkMMi2+gJ4etv6xwn PskRrTUCDZH4+t3vfhcrnXnsIiA3/snJQWv95JNPwqJD3ZdmkzE6SJutxaPbhvHSzm3bnjZt2tixYyn cB2sQXnvttSiDTuMUnyeTAaOjQ9VuyMuBAweUUrfccgtF4FItf CqoQWZvfBGOIfzu448/XlJS8uKLL+beIAgyxNnAaoX9xONxn8/38MMPU6unIQC7ffHFFw3DOHLkiOOuQELS02Hl0c8tgdIJfFp2l vbnQsEFRMHvQQ/s/+xB6zIMo7a2dtSoUWvXrtVui4JwtlgJ5wIeqgxjxQW3OOsuoW5 ZVllZmeO6n2G1xpQuHo9PmTJFKXXjjTfSCiyO43z66afKTa/AevFFaar9D97K+MUko4XFVqMl2wAvE0VQ5gEfg/kUn9aEJ8M+PRWY+FnuYiC67ToyHvOGp4oBr7JNe8CnngpjYPjw 4fRonaX2op/DAeNXbr/99htuuAEBIvgJj7LxyGjbXWiMTpBPmF977TWlFLc0rF69miqR8 L3x2ru5N5H/S2bsSy65ZPDgwQgKyXWbttvTeibzDz74oFJq3759dNlhbiE7EF 1nfGvbtm2lpaU7d+7UbZ8H3H1cQ6XU8uXLSU6RxYsfhgiUv9K1 CL6C0P8sKB2B9oler6Gh4cUXX0ToTyaTwUIE3LRYwN8VgVJc+J QIY5tSqt1cjHnz5g0ePHjTpk1Dhgz5+c9/rt0ndvPmzVjjNBAIVFdX00BI+xG6RrsCJZ1OU/1Q3C8+smLR+Lfffvu11177+OOP4SjxrM+i2XismS2BD1Se3BzA Y/7IG8JVDj6NxWKffvrp8uXLX3311crKykgkwkNB6VCpRojhFtsY MWLEyZMnv25nyK+S7aYKT506Fevs4ELxGBTNUnhsd7VXbvuhJQ OJl19+GWuDcOd4bW0tVB23cPCL5rRdkdizT3zx1VdfLSkpOXDg gOM4ub/bySnTBg0NDbZtDxgwYNasWfgUzdZ2C6PDggKwweuvv66UgiSCg oQqInVl2/Ztt9126623klATgdIZIlB6hmQySUuS2m78tmbLV1Lh6rMJUD9L RKAUF15jG8GPWF2cxxaAcDi8cuVKrfVbb72FKanWOpVKoSI4+q +mpiaHxTMV+dz6OB1ZUCikA/8mEgk0yQULFii2BExJSUk4HH7yySdRJLpdwyeVYeR9rGbuGERo 2myZYofFBdKIjg4B65dBcFA9EsMwFi5cGIlEHLdqPllQKIoFD8 +pU6e4j/4swwo9CgDfmjJlysSJE6m+mWfU4AKFtAt5rnP74bfffpurbZQq oU+x3iFOraWlhQ/z/PCctiG9KN9w4YUXTp48mUo5cGNYJ8OBR8HYtr1s2TKl1MmTJ+l HyRjjOI7hlprFR8uWLTv//PO1WzyMh5VArziOM3PmzD/+8Y/0WyJQOkMESg/g8RB7VgiiyRP34xYEGcaKi2JplrjLZAr2zP9efvllwzAee+wx0 zSXLl1K44fP59u+fTs9vRSpZxiGWFDyoSOBQgM/BYQ1NjZiJbynnnqqpqYGX/z8889nz56tlEJUBzd18LqLWutoNPrwww9TKdIHH3wQNzGdTs+e PRtjG5I4YAvx2FfQJ0QikdGjR/t8vsWLF+/atQsD9pdffvnss88qpQYNGnT8+HHbTfHFqKnYsjWlpaWIDE2lU hTedDb9DEZQPMM0rk+aNOmWW27h0cR229wLGuDR/2BiRvuE5RivU6nUa6+9Bityc3Pzvffei9VS165dS4ao55577u6 77+Z2lHYT3LhG0Vrv2rVLKfX5559zRxjfrPNTdljGUH19fSAQe PbZZ2lX/OqREMQ7W7duNQwDsjWdTlOKMhVnwyKyyA/yCBSSUFoECiECpQcg6whNcWKxGBkeydbHTSkFQQRKcQkGg1prx 3FoDbBQKIQZHs2VLcvCyLRy5co777wTdhTHcZC8w7MD8OQgRqG srKyI59UP6ESgYLSgoWjq1KkjRoyora3F+MTn+keOHBk8ePCPf/xj3TYQBC+w5fjx430+386dO7PZ7NatW5VSt956q2VZ1113nVJq w4YNmUymoqKipKTkpptuIlevx3Txhz/8AREkPCdWa51KpXbv3j18+PBrrrmGIi201pSoTGvoaNaxdD5Ce 64SGQzIDDB79uyf/OQn0Fv4iY4EinbHeFpZhcfK4Hjuu+++Sy65RGt98803m6ZZUVF RXl6ulNqzZ4/W+pFHHvH7/QsXLtRugTjuLPMcKoWGZLPZt956y+/3kyzQLIKn8/GeHz8NjuXl5ZMmTcIGLS0tfHsuUFKpVDQaVUo99NBDmk1Hs+7y 0el0+r333gsEAl988QVK0pENRgRK+4hA6TEowg6tFB0KBaNQYH kBEYFSXAKBADdKQ3DkVuSz2YrT5CyAeOWhjnA3QLtQ1oDQNToR KKjPhn+rqqpM00R9LTJpWG5Rc631+vXrlVKffPIJts+dXZimiW VDMplMOp3+7LPPbrvttlQqdf/99/PlRFCnBK/5gKq13rt3r8/ne+utt7SbFUgPFdi4caNSCnvDs0SBsRj84HTQzN909qnFum3ca CaTWbt2LT2Tnhpluq0lA1eDVAL2AxGGE9FaDxo06JFHHoFxcf3 69Vrr1tZWpdS2bdvmz58fCASeeuoprPXDNVDuw+8wtNYTJ0687 rrr6DbxBQHOXqBo1879/PPPK6VImjisXBsvJYc377nnnnA4XFNTQ++QqD127JhSauzYsVT AVwTKVyACpQcgEU1tlS/lRZGP2LiApnsRKMVFuWWCaeKI6aZ20zcoLJpWFMccEc+Jp045N sALubN50q5AQVEKBJpg0Za1a9eapok65Q4LddRaQ2hqra+++uo//elPPJtUu4Yu1PnQbuvm6TlkVMOouWnTpgsuuIBCpyFPMcxDf9T X12Nc5EW9MclxHOeyyy6D14DyRGjY4xqCZMHXuj50XvhuQ0MDC shSLTvPF7mrhX5XsxRf0l6bNm0KBALvvvuu1rq0tJRkh1Lqscc e8/l8CxcupDxqxA7TNnZ7qUP0zsSJE6dOncrfp7BWTwxKriWG9gM9 l8lk3n77bXpIaDpB8oJfYcuyGhsbBw0aNHjw4C1btmi2yNq777 5rGMb3v//9kydP0o0QgfIViEDpGcg4SS5q242K1yxYnWrSFAQZxooLZauS/xsVJ0mMegpbwdfDnxO+Mi31zhiBevpk+hcdWVB4gqvW+pVXXqH XiB3hYy32M2HChMmTJ+Pf3MbL3Su4s1Rgft++fag4UFlZaZrmN ddco1m8LY3iy5cvDwQCJFmwWz7KxuPxu+66a8KECbqtBYVcPKZ pUnyb43qgvtKQQC/4kgs48cmTJ1OwTiAQ6MjFw79Ivh7aeTKZnDZt2tChQ9ENKreei m3bOOa5c+fyq0rX1lNZn6B/LcvCEoBki6JvQXDw29SJQKFvvfzyy4qVe6FvOW64DwW2Yy5aX1 9/9dVXK6Uuv/zyu+++++67777qqqtM07z++usPHz5MQk2LQPlKOroo3YplWV98 8QXdVLK/FWr/GPsDgQAf7wtbA408NQVfAaCAyDBWXJRb74sURtfuCPVQtm1jkk 3dmdA12hUofLxBv4E6NE1NTdxuwUPKtNbf+c53HnnkEeoHKG1E a51MJmlBHLxD/QaqpobDYe4ooZKmNKjbtv3OO+9wCwqN1txKMXz48IceeghvWu4 KdoqtOazbdvVduFz0xUQiUVdXR8V2sYIb906ikDw3HHJNQMakz z//PBgMrlq1CqM+rV2stVZKoTwaLzzjMS2T0OfVXUmpTJ48matG7l Lh56K1Ngyjkxga8MYbb9BoRRYU+joPkqVdJRKJLVu2PPzww7/+9a9/+ctfTp06dd26dXzuQZDU42+KQPkrRbGgYFHN8847j6LiodPtAq G1jkQiePI0k96F2r/ntxDU1guzKkSgFBcEjuAJhwObhoqvBeV9oJ9tamqSO5sn7QoUz cYb27az2ezx48dDodDixYs1WwAEWyKQaM2aNUopGPN1W8MDr36 k3WgGyt3z+Xy///3vY7EYdghnjdY6lUp5kpZra2vD4fDy5ct5lh8dRjKZ/OCDD0pKSjZu3AjNxAUK1VLThRAoJJtisVgoFMIyij6fL51O567 WDvhqKlTO1bZtx3EGDx588cUX0zSPTD6q7UqNSinYHWnPdK0cN 5aczgt3zbbtP//5zxdffDE/gObm5rMRKLZr2LZdLZjJZB599NGysrJEIsGNN9pVtKQvPZE9Ds sYisfjZCz3jEoiUDrDLoZAmT17NhVL/pu/+RulVFlZGZ7IghAKhbDil+GuhU0hXQUBOwwGg8gPBAV/jPJHhrHiov4/e28eX1V1ro/vM2UCem+/9/ZWMpIQQpgTQhIDBbHVVq1DRb8d7v21KCDSWilSK+Jtr/3aWmtLK2KLQxWVKkgBZ6tWFAiTKIMKYcw855wM5+TMe++1nt8f b/bblZOBhAaF3rwfP3jOzj57r732Wu961vNOVgEwUlXk/Xd2Jjz2qyVbIVU5GZazlr4ACntvwLLpLFu2bO7cueTzSCwscye nTp0qLi6+4YYbeCVTi8DBqjWze/duvv7u3bu3bt0qhLDZbLT15yWNYoDpMy1jhmEEAgFd15cuXVpQ UNDS0oLuBfmklNXV1YWFhddccw07wAore9iQAxR19eXa7DabjU AAl7Yhb242Qkkp6dHYzB0IBBYtWqRpGvUqs1Pq45Oth4c90ZDC ij3mZR5W2BQRV4yTXn75ZafTWVtbq155sACFIdGtt9562223oX vCCBKtRzVjEmqSeiN6HNU4SB+GAUp/8pkAFMMwKIJfWuZ5Gn+D3Vn2JUKIjo6OxMRENuuo6dGG5Po02p iSjYuLE5+1m0tPGQYon61QggfVdyE+Ph6DZ/LULbW0Mkyci+qS/3tE9gtQSDXRjK6vr580adKsWbPKysp4jkcikaNHj5aUlBQVFdX V1aGHBZkTMBIZoCl5V2+66SZYy9KoUaPUfH1QautIxXmuvr7+y 1/+cl5e3smTJ3kjbprmyZMn8/LyZs6cSdiFf8JmoyFnUHgtZwxE5qeYUkEkBL9i/Dba29tvu+02TdMOHz6sulgRL9JryjtCPHxNNrGxvy03D1ZFs5q aGpfLtX//fgY0nFqNzySx9W3ikVKSPUvTtFdeeYUiLlVrkRBC656tTirWHx JhhUTEXF8OA5SByGcCUGh1d7lcUkpa5of8HQAg42gwGGTXwiG8 OCEeZhfZQnleyTBA+WxFUxK10b+s0wclnH9ds2q7D7/Zf1B6BShCCO5qWtho1WxpaZk+fbqmaUuWLNmwYcMzzzxzxx13O ByO6dOnezwejsCCYuBQM8O+9957R44cAXDixIl9+/ZxCrhwOEzuEeyE12tSabKMnD59uri42OVy3XbbbRs3bty6devS pUs1TcvPz6+vr29ra4MCQc4RQIFCchCLTLS3w+H429/+JqzUt/Qgqj6k2OzOzs6ampprr71W07RDhw4Fg8EYOKK60IZCIfbckop/Lv2rhrlB8V1V/U+vvfba+fPnA/B6vYzyBwXJJ7rtAAAgAElEQVRQ6LKvvvqqzWarr6/v2SE9AQoJLXCqL7zsXlZJbcAwQOlPPhOAwqGSDB0CgcAQ5nUQV jpw0h26rg9h/ngoqkRa7GViYuIwQBmWGKEJRRsvKHmv++bmehdGOXQp0n1DC7j/t0mvAMU0TXaDYKzA6+7LL798zTXXOByOxMTEa6+9dsOGDV6vVw 1O4c+cOEB1yKD3HgwGeaMPZfXltVb1xkX38J/Ozs7169fPmzdP07S4uLhvf/vbmzdv5mFAuR9hMSi07J0jgCKlJCRHVp5FixbZ7fZbbrnlgw8+ gBJlw/4lUsr29vYnnnjCZrPl5+cfO3aMHXTY6UTTNCohRPg7Pj6eDlJe f2ahuBYBOcGwijO6Vy8SQpBn68cff4yzNfFQs6dNm7Zy5UoonI 16KU0x8fQfxR0DxYYZlAHJZwJQSOx2O/EQQ35lYmX+5V/+RVUcQ34jguR08fMTCpyfrfrfIzabjS3xortn3KCEYYp6ZBig/CPSK0Ch9YaWQ9UFgQKDGSYyaoFSGrDn6+B9f4zzAS2lwspoIqU k1oF/SAshR77Qn3iLxRs5crsmFcppZGmc2M6Nk6zKcKjEnmmaL774Yl FREeGPNWvWvP/++8eOHSsrKystLd2yZcvChQupGWvWrFFD5ekiVAdABSKEUeLi4 giCJCUlqRWINE0bMWIEfUhISPjd736nrvfUt5TG5oYbbrj66qu JryIANyiAAuC+++5LTEz86KOP1H2C7MNJFopDDM96rpFEQhBnm EEZqHxWACUYDLIWULOWDZWQrkH3oPmhujg1lR1QIpGIy+Uaqos PoQwDlM9WOAJTSsm7q7MYh+rmVc2GMsTN/d8kvQIUWJYLlUFhOoQ+sD1aTfJhWLUIpMLkCyU4llEFMyLCCu5 QW8VJvegrYxTOAqduiqQVKMTj4VxH8cQAFEIM5FAcjUb9fv/+/fvvvfdeIkIYZ2ia9oMf/ODNN99kuwxfgc/klPwMUGJMVDYl3IE+EzxyOBwOh2PNmjXonhuGPnz44Yeapt133 328zJ0RoKgn/PWvf3U6nU899RS6z8FeAUpfS4y6wqrC83cYoPQn6qj9lBkUm5J IbcjfwTm9PlOp+Iy6boAyDFA+Wxnu//NWYpYoXpM0pbSsVGwx56fwft1UkrgbhsFltG02W0JCgk1JxI6h UIZMNdEtYri9aDTa2tpaWVl5+vTp5uZm1UmWG2la6W41TaNwZY IanDledcJVJSaakkHS2rVrVRMqI4mnnnpK07RHHnkkhoiC9WY1 K5Me7x+IcdmxY4fL5brpppsYIzIlBsXmxaCKnzEGxPDORPXnVZ lUfjS1h4cBSpd8hqusCiDOhaHn3F1/GKAMy0BkuP/PW+kVoOi6Tut6QkKC6uH4GbXxzKLaDqSV1szv98fFxRG7QNaTT w2gqIYSMrIYViVUJo1YNMWzRHUjZbDFP+yrGeXl5fn5+czT3Hz zzZxmBgolv2rVKpvN9sMf/tDj8cDy8qF/dV13Op2UwRlAZ2cn3fH++++Pj4+fP38+e90yqiAKk2w3kUhEU3 xQGHYwp9WzpIm03G/ZZ4gTwKiPNgxQumQYoJyFDAOUYRmIDPf/eSu9AhTa1rMdQTU3nFfSK6NAuIoICXb1pUewfYoA5Yyalrqacu yycQcK2OqneXwO29E6OjoWL17stGTx4sWdnZ0c/sP/vv7660lJSfn5+Rs3buRLkbGJ7LCwTGYHDx684YYbNE177LHHOJ EEIRg2ojEQoZ8zxoJiA1Lrr9EHzXI54J/TB6KObN0tTbZhgEIyDFDOQoYByrAMRIb7/7yVXgGKEIIAChkObGcVE/4pC9tE1CP0geiTUaNGfZoAhfkPYZXlU28nFedu+jnRPEQn9PUT 9bMKUIio6OjoYCdcm8128803B4NB1SuIfnLixImf/vSnlCD03nvvfeONN06dOlVVVaVp2okTJ3bu3Pnwww9Pnz7dbrd ffvnlZWVlsHLbkHGHYsLZIYmz6nG4NbWQXaEJ18bHx5OvDL8g8 lYkqoauYLNq8QwDlF5kGKCchQwDlGEZiAz3/3krvQIU9irQuke02s8/IdbEbnmJ2iyXUlovXS6Xmv/tXAMUdhZWT1BNY6r3CbfEZrNxHBAfZxJFWr6DMQClp8EoGo0Gg 8Hvf//78fHxhAm+/e1vHz9+nH/IYVZCiJMnTz788MPf/OY3nU4n9xWlHZ84ceLq1au3b98OgPLe8s9VzoOtNnRZ7gduJOG nwsLCgoKC06dPs3czJWnsGYKu9ZZJZRigdMkwQDkLGQYowzIQG e7/81Z6BSi884biQIDu0R/niQhFOD8H5yKjxVXTtJEjR34KDEqvl41RubK79SccDnPAVFxcH PmoDsTEo4palMfv9z/22GNMIH31q189deqUtOw46F5JAIDb7T558mRZWZnL5Tp69GhlZ SWAQCAQ00giURoaGt54441oNOrz+TZv3tza2srn8B2FFVFMx1t aWqZOnTp79my3281nCqu+jyox3UgyDFC6ZBignIXIYYAyLAOQ4 f4/b0X2BlDoK0cC82b3M2nhQER2d5KFYpWAsrn/1ABKDH6KySfLwuEzxFE5nU72FyHpKy292gBpmZNgxc5QBRUOXx oxYsSpU6cAkFcKn+nz+bh4EAC73Y7uCempKqemadTO8vLySy65 hA1STqdz6dKlra2tUrEJxuh/4lc8Hs/06dMnTpzo8Xh0XWdtEA6H6Rb0mNyTwyaeXmQYoJyFDAOUYRmIX LD939dkEd3/60Uk/092fTEBkz7Kbsf73ib/Aw0fsPQKUDjOQiqJLoDzkUGRlgritGBSSkYn9NWmBPHiHPugxF xT/Sr78H7lJV9V1Ge8r+zOHqlJz6SUoVDooYceYrcPcvjgnzBMoRd NwTjkJCstIxTnuaFWUWDX5MmTm5qa6Ou+ffs0TSPoA8UgiO4Rz gAMw6itrZ01a1ZeXl59fX1iYmIwGFQbwNWaqBNk9zHZa2cOiVx IWkkO50HpW2i0SSu7gFCK79AJpBGklRTufJOhapW0/Ndg5afas2cP2cI3bdokhFi3bh1pw9LS0iG54z+HnJ+j4kwiAKM nEJEQEob1XxQwTEl5I2BETUgIQ5oCJilfw4QpYErDlBEgBBmBF FEdRte1TQGDLilNKU0BU0AKSAiGM+dWel0MeOEf1EViFn7+qlY qRXcmho6wdwL/lokEDhvp3+TRT6sIoNAk5XHIziLMFnCr1GYM5BYqQImBI2o3Ci u5CB/kP2mKxFw85oIDbBLDoJdeekmzqlKrDi7owYepqpsNNMRtUP1X6 kZS/pznnskVfgqn08lPF1P9oKGhgRBMQkIC+9tyn5imGfOOSIYBSpc MMyj9CAezsc8UT2zO2yOsuj/n4hH+QRnaBZIxCgCXy1VZWVlRUXHPPfccPXr0gQceEELU1dU5n c7zmRL/lOWCASh/V4DCAiiGAlPoFAIoOqADejjil4BOFL4EDJMuEomEAAEjgnAIQp eATw/7ZcSAgARCJiJAFIYpTZqbCkCRUvZNzQz1Ew8FQCFhewRny+DUZ JFIRE0OS24ibE1QdQinAGGgwBlEYpb8gT8grYsxDpisptgfIsY rYiB6rH+AwnCEyBW1yJqaLvzcAZRIJDJq1CjybiGcoQYG0wcqw QiADEx83DAMelmalcCNPnC36LqelJQEq8Yye1LDgqT0yLK7m3A 0Gg2FQmTrQfdyRcMApT8ZBij9i5SSUvLz12Aw+G//9m9lZWWRSETXdbfbvWLFihEjRpyHC/MQLpDMFakx/VC2iZqVtvJckGEXqFzIAKUnUqDjOmAY4QjhDQMwTQkJSKGH/NBDkIRgImbYB0R0IyhhAIYRDgX9AQDRsAkJXzAS0g0DMCC7oIk 0IaSANPBpDKChBSj8gQkP+qwSFT1VEC2o/JlmFq1tsNZyapLKQAz8ATUlS4pKadBnWiMp25i66R/4xXsCFNnd/kLWk5jL8tdzB1BIafdsnrBKKdHXYDAYDofZlAMgFArx64uPj6c LxsfHUyCPEELX9b1792qaVlZWxo4+FJSu2gcBNDc3l5SUbNmyR Qjh9/vp4DXXXLN8+XLWmcMA5cwyDFD6ESJa7XZ7IBBgNbRv376FCxcW FBQYhvHuu++WlJQ89dRTVO78fJOhXSBjKnDycZ/PR1PugQceOD+ZpM9KLkCAgr4BCv5Orkihh8ISME0d0kAkgM52R AJobcXpU6irRUsj6qrQVIe6anha0NyCsA7dQChMFhwJhHQRASK AQZNUmBCmAVOHeaEAFLXmDrqjEJUqoM26EKKzs5N2Nepf2ZGCU 3eYShHgIWFQNCtzv2rmME0zhhVWgctALt4XQOFssJqm0S3UakF 8kXMHUAKBgGalgVFNPOqlKJcrLAaFI6HonI6OjoSEBHIN4RwnA E6fPq1p2g9+8AMuLxDzCPSA1IDCwsKamhr+rWmaDz/8sKZpHo+HX/cwQDmDDAOUM4qmaXQR4vTmzZtXWlp6//33FxQUXH/99WVlZWoNrfNKhmqBpD0WqYD29nYhRFJSUlVVVWVl5d13311ZW blq1apgMLhz506HwzEMUFguWIDSlxtsF4kSiXiBkG52AD4E3Wi swOky7Nr+1MxLXv/SV3d++Zot2XmlM+b+bWrJm/kXvzz7svBTG3GqHhUNqG9BVCBiBv0hEwgBIcAAICRMAii6Dl2e ezPPkAAUVXmyD6bKf1BGr54zQlo1dFQji7CqwLD8gz4omlKEj/7E9gWVVIhxQxngLQYCUGhpDwQCqpVH3eScI4BCF+cU+FDAGT8v NSkYDLJ1RmW8uJfIXsOGufb29k2bNkWjUY5w1jSNqh3x+RzjXV dXB2sMwHqbLpcrBo+qIJJlGKB0yTBA6UcIJtPQoWFdVlZ29dVX G4bR2Ng4Z86ct956C9bgPg8X5iFcINWpaxjGzp07Sf3t3LkTwF NPPUWc6r59+1Rl9L9cLhiA0k36CdKh4zoQiAQbEWpEoBEnjry2 fOnvrr7i4a9c+kzJ7JeKZr82qXD35JJjk2ZX5BYfyZj44bhpb0 +/dNPMrz/z1Xk4eByN7egMIxCNRg0FoACmhDAFdOPCASjqrzikVlppSNiWE Y1Gjx079sYbb2zevHnTpk0bN2586aWXtm7dumXLljfeeOPAgQN ut1u1gwSDQcqsOliAwtAE3Z1k7Xa7UEorkysM/SQcDjNhQ0cGYugZoInHZrOFw2HOeMauwfT1XAMU9eIqdcTCQTR qrRzGE9zmmBVEKOECuq5TNhfOlw/Lcsd9zkLRxeSlpwLEYYDSnwwDlP7FNM2EhARYPO2DDz64ZcsWu uDp06fz8vLoOBsvzysZQgYF1jMyXw1rIyiljEajvPk7D4HaZyU XMkCxRFr8iuQ/RWB0IOKGt967aeOGWZc/WzD397Mva96yGY2V6GhA2SHjqadeGz99f8Zkz/SZJ9InHMuZuSvz4j35X9s4ec6J//kNGtvREYApdCAMCAmY6IrogS6hfwqOskMFUHhF5HWdJkhra+uu Xbv++Mc/XnXVVZQ7n8J9ic8g2wGHAY8aNeryyy9/8MEHDx48qCYBU50qzuIBmUFxOp1kg2ablLACYsnfk4HLACdvXw AF3Z1kedn2+XwqeCI5dwCFYnBcLhd5sKK7iyv/hMgt1QbEf6U/ffjhh/S+nnzySQYuDQ0Ny5cvP3HiBPcDvUoiwFT4VVdXx89C0cuRSMRm swWDQT4+DFDOIMMApR8hZM0mno0bN2pK8TBWNJzAcUibPwQy5A yKWq6T9wHC8u+jSThwV7t/erngAYrsCVAMIATdjbaK6F+e31A4a3fhldtnzcPOD9HWipAH6E CoGU3V+Oube2ZesveiZE/u1Lr0aXUZhcdHTy+bctlfC76yff4PUNuM9k4IGYGVKcUEhLzgA IpqH6HBf+rUqUceeYTAQXFx8a9//etNmzbV1tZ6PB5a4ciyQxqptbX1+PHjL7zwwq9//evi4mJSKatWrTp58iQbjlUZ1APy2ul0OsvLy3nx5gbTs7OlCQP Wk/0DFG5qT+ShKodzB1Ck5SRL9EbMcwmrQI96nJWYtJxk9+zZo2na 97///Q0bNmia9sQTTwghKioqiouLi4uLKT+slFKN4oESXVxQUDBz5sz q6mo+GI1GH3roocTExMbGRr71MEA5g6jAdoAAhd3LvV6v3SpMV VtbW1NTw77TzIwR4SktuywPIMMw6HY0YQZu/hyICCv0F0AwGCSm9CyibMhPLS4uzuv13nLLLd/73vcaGxt5z8RDmW6n1rGEUm1hCBdsLgNBd+RkCZx7MeZ8l8ule uSdtfGFc2vyg9O7o+NxcXFkVSUfnTNeR83/KJUMK6wsqJ3SShFBqt80TSJp2HkQ3QGT+hZYVJJcrfXF7049E0 oRdnTfUcW8SvWrruvUYDJUQ1FSmuXbzw/Y62v67IVRCEAApeuAhDABCiQWEhRko/vQfhof7XipcMb7U2d+OOHS8v9cjuoW6LoZDUjopvQj3IrG03hl 467J42rGjXWnj28bndv2hYnuMUWHs4tenVTS/Ns/oqIOkYjJViMDkDClYeDTiIYbFEDhl8iGEh6r6tJ+8uTJu+66y2 azzZkzZ9WqVYcPH+7nXUvFGsJGlmPHjq1evZpWrBUrVpw6dYrd NpmEoPGv5laJSVbG7bFZBXooFZjdqm/Mn1X3lJ6ZUfrvvb4ACotKTvQqQwtQYn6rWbUeB5IFLkaZUH9qm rZo0SKK33n44Yfj4uKqq6sLCwuLi4tra2uh5MMlUS8ipWxqanI 4HARfqCXx8fF2u/25556ju7A25lJKUHTgMEDpkkExKLT68lDWNG39+vVSyp07dx48 ePDtt9+mPF1r167l7pZWYoCeU0jTNL/fD2tVGEIShUaY3W4nbETL29ktzxQHX1hYuHnzZl7VpJJlGUAwG NR1nY0dfBo919AOL4YItEZSB6pzg5y5qBk0bRiqG1b577O7Kb1 NikvkxETovk9i8NSXqFpACEHth1J8i/5tb2+n44FAgNISoLsfDHU4fWDcxsNM13XGDdRytfQXLTAcFkiM Kyxynr4ySIJlyaIP4XBYrT0Ga9yy01woFGIcRoksKYkO/SrGC/J8kb4ACiCF9VchIQ1AR7AVtR+9819f3zt54vGxU8vGfWlH0XUo dyPQlevEb4YFghBtOLXv1He//vG40bWpKYG07NAXxkbSp1WOnlSWN/el6XNx6Bh8AVM3QJYeHZAwgCjEp4DgBgVQeFDRV0IVVDeO3nVb W9uKFSscDseMGTNefPHFjo4O/i2jGZVaiPnKhAqNvc7Ozo0bNxKhsmrVKo/HQ6NX9efo6RLB+0Y+zgBF07S1a9fa7faqqiohBMcVw0r0zlPvH 2dQWC4ggKL+3Ov1wrLsSyVRp8PhKCgouOSSS8rLywFEIhEq7kP tZ33IwQQAQqGQ6F6gh1UWszi0Tg0DlD5lUACFNTK9OUoQotIJa n1Iwyr8CKuikk2pCR4XF+dwOBISEmj+2Gw2soYOidAwpf2rtMo 0nAWTEY1GGxoaHA7HsWPHaGEjuoL/qm7Qw+EwRaa5XK733nsPwMGDB7UhDbulpZonITEotBLzhkzd9C clJanQEGfLVNH6yteJRCJJSUmMkCgVUiQSOSMgMwyjra2to6ND XacNw/j444/pM1fnoiqgUKY0P3soFIpEIj6fjzCBsHzvhRD19fX8jPTDxsZGO o0egfzU0B0nwUIbKoVDncyQrqmpiXESDarjx49DIW8B1NTUMN4 i30NN03gN41x/56MTsQJQJIRUAQpbeYQJaUCE0d6AF59+syD7k4mZldnjKrIKdo 2bg/V/Q00AfiBC00GH9KHteHD1nbunffFE9n+0Z4/xjk73XZTZfFFO3fiL306d1nLv79DuhRAw/g5QIkAQ4lOgUM6CQSHhhEAMGt5///2ioiKn0/nss88KJdNGTzKvL4AiLdoVyhLV3t7+7LPPulyuKVOmfPjhh4zC 6a+6rjNhqRKQKkBhmsThcITD4VOnTtGSyY3xer2868BgFsJ/MoDCGWhg8aYq/SmEaG5uTkhImD59ekVFRQw0TEhIUB9B9WKBYk4yTZNTwxG5zoH KvCyq7RwGKF0yKIDCBSHZOYPXLV3X7Xb7Lbfc0tnZeeDAAXT3G lOLM9H5zJow8c6b5n9caBdCzq0x9pdBCZkVnE4nM/+8k0aPtAf19fVk22pubiZy6JlnnqE99BCKupTS2qxqT3IsD4fD 1NWMynnaqNmfBi70W5WOpivTemyz2dRUCmzF61VuvPHGO+64g0 6mVm3fvt3hcFCpC2lBvdTUVHJM48vSlXlD853vfOcb3/gGW3+klKdPn/785z/f2trKjJ1hGIWFhffeey/nbSQFLa2KG4yTGKao4xnWynHPPfdMmTIFAFW7FUKcOHFi5MiRp 0+f5hUiGo3eeOONd955p1TM/Lw9pS01vbULFqDogA4RQHNNw7LvfzAuo3JsatPY7IYx+Z/kfvnV4m/iRACeKCJdDiRC96HtNF58ZHtJetmk5KactObk5NYvpvlSxjckT 6mZdvlfi69AdR1Mw0r/BkiEgQA+jYyHcjAABYo2k4r6am1tfe6558gWcPr0aVh7Bj6TvS J6bYBQBMrSaFip7oUQjY2NCxcudLlca9eu5VnA57M64kEluwMU 8kEhLdTTXsknq1bpgWyo5D8XQIEVialOXrJc02fS7R0dHaQfiK wFEAwGyQeZGBS+CyMbAiJ8F2bd2IjMOHKYQeldBgVQoOxxqYrS s88+a5rm9u3bd+/e7XK5QqGQodSsgdK5zKvzHVXG3uwt0+JZi2mazF6oAGWwIhRfF jUsHt3zBxCJZ5qmzWajg/Hx8bC6iHfV/7ioT6HWzqDEA6pDBoDa2lryomcUTxD+LIY7aS6ebKZpxsfHM29 BdyHw2o+KB1BZWXnZZZfNmDGjqamJCbZ58+b95Cc/eeihh6SUdJcXXnhh8eLFxcXF1GCfz0fgVVp7kWPHjk2fPn3GjB lcsss0zRUrVjz44IOPP/44a5nS0tKvfvWrmqZR0CYraDVfZEdHx4cffqg6QnEQJq0Wzc3N iYmJV1xxBQVU0yP/+Mc/vvPOO1esWEEmLWLarrjiiqKiIm5qJBIhnMqrFFv9zjvpA6BIGi 0SgICMQkZg+FBXtSOvxDM+vzU9q+Wi9PqUqUfHzv1r3v/Fy4fRRmljodNy2dGEtze+M3PcJxMz6samN2aktmWMbU8d35wy+ WTKjHfzvoL9B+Hv7AIogskU43wz8fBfVW0ZjUZvuukmp9P5xz/+UQ3foGlCapAPqtNTvRqDftE9CQePGRo2q1at0jRt8eLFHE+nk tnokWyNLs6xQk6nk5E3jUBCzIZhqBHOA1eS/2QAhX/FWiIcDmtKJhWXy0Vp39jJkq/JB6FYGMgAhO7+mlDUNRSAOOyD0p8MCqDQ4CZ1L4QIhUKE/lwuV01NDdGJn/vc58jQQ1OUuG7VssATjx0b6eUNoezYsSMpKclut9fW1vLg6+zs FIMUHoKdnZ0Ey5jnhwWqmAGiSfvcc8+tW7eOuH0Adrt9aIeXqR QvZe0GyxWD91L19fUFBQWaptHGjqmCcDjMqnPgEtMAWKCNWAr6 zHs45nh6yrJlyw4ePLhp06a1a9dSY3bs2HHddde1t7fbbDafz0 dcSGFh4YkTJ370ox+9/PLL6paUR9GKFStefPHFLVu23H777XSdw4cP33jjjX6/f+rUqew/eN111+3evft3v/vdQw89RE9BwZbcaT6f74477qBsLjRQuWMZpjz00EOPPfZYaWnp 9ddfT8RMRUVFYWFhR0dHfn5+RUUFDYC77757+/btW7ZsefLJJ9mQRDtX9RGEUhbkPJK+AYqgf2BAhIEQjA5UV3ww Y+7pz2d408Z608a2jck/PnbO6+OvjD79DjwROldGAAl4W7HtxXdKJhydkFU/JrMlPbM1I9uTmtOUPOn0F6ftnvYVbNsFXydMqhMIw5RSSmEOpb 98n088GIAiFFafplJDQ8NNN93kcDhKS0t5o9LTSbwnbuDrS0ti 7qVyITTZ6ciOHTucTueiRYtoDLPpMMZoqwIULuqraRpHzFJ5Gv q8dOnSntnoVZzUT+/9MwEUPoE7v6cp3OfzqfljYPnbqZBFVZVEgzGohWIopIWPvw4Dl P5EDJJBoTB92Z29JBUcsYTmMOESXs/4NbD867/+K2Ea9R0PiTz//PNkeaUBSh/odoMVrgbOEggEeJhyPwQCgfLycqrum5CQ8Nprr/EeeqgeioVuShUiGECwiqFVdt26dVQ/k9zIaStgs9nI9WewncBe6HwR9bnYkYjuxYxlTyGOLRqN5ufnky f8jTfeuGfPHgC///3v16xZA2DDhg1kAzp27JimbGLo7izkUzJlypTKykoAP/vZz3bt2gVg69atq1atEkKUlpZ+/etfB9De3s75NJ1OJz3LiBEjuMEOh8PpdNKNEhMTNWtM0rBMSkr y+/3hcPjKK688cOBAKBS6/fbbX331VV3XX3/99aVLlwI4evTolVdeCcDr9WqaRmZpujhtptlxof89+mcmvQAUI SG6KgwTfSICQABGG2pPvzWtqG5iXk3qf7SkX9SQmn0sI3/n1Csq/98j8LhNGe0KRjYl2pvx3tZtF08oHze+LSW7LXls6+gsd2pu7eg JLeMveSdnJrbtRiAMAQOIAFFhwhSI6OdhNWOVEm5tbV2yZMnnP ve5vXv30pLGvDJtYNjwyjTnGQEKuyjRr0ij8ooohNB1fdeuXZq mLV26lJRwTwMot5bUAvkC0lCMi4tbuHAhtTYQCLS0tOTm5iYlJ amGVDHgUMd/PoDCKj0QCBC3QZwTBYGqZ3LsHiyihR9BWJ7OtEVhdwj2cYkJla LWDgOU/mRQACXG3QHKNGPHdY4lUVdxNW5CKH4MUgl7GcKdpZTy97//PadIYL4AACAASURBVL1y1af17C6lWY6urCykEhwLxc2FxtnHH3/8+OOPAyDP3/5n6aBEWOm0o9FoTFJ5agxpyW3btk2aNGn+/PkPPvigVDwqKFLxLIa7ui2TUoZCoaSkJOZFHA4Hu+L2/xKFZSDbsmXLo48+Wlpaes0119A129rabDZbU1NTcXEx+Z8KJUZ GJR6E4smxefPmH//4xxUVFYQPAPj9/osvvtjtdt9www07d+6k52Wila/GCqK2ttZms6nOrXwL6jRWK7t3777iiitqa2vz8/Np/fD5fMXFxUeOHPnve+7evWsnFfKlfjBlFwlhdi3xMhqNCi6M16N j0D1/qwSbWECVa8BHup3cFXFjQpgQXbWApVqLWLkO0G3hl8ollT/FABQpJSCkiMIMAiEYXtSVv1hUfGTSpOpxY5oy05vSc45l5m3L/+rx//d7+NsiCFqmmgg63Sh99W8zck+PHdeWkt0xOtObnO0ZnePOzD+R Xrg97zK8sxf+KAyEDEQBQ5gwDRhRyPMuD4qKMB577DG73b5t2z b6k6HkN2NDMB1RsxfGMJFSMfGo7RHdww7oBB78O3bssNvt9913 n7S8tdDDPZZ/xQCFEsTRIKdLNTU10bL629/+Nsa8HtPOvnrjnwygoEf2AfUzrCQFalQEc+S0B1b1FcuBAweqq qqqq6s55pyt5Bj2QRmIqJNhIAwKzav9+/drmkaBlNS/tCVlN9iBjHJ16PT/DtQFA9a0ZAdJKNABVhypYRgul4ujXs8OnehWvUo1Iomtuapd2b SE6Dt1e0QuUb3626sbLDbc9N8k1mjkmY/uzj2BQGD58uXXXXcde5urYW/Scgvl5nFwU/+vjBsvLY9UypxIF9GUUuOqPTvGrxCKzu3s7CwuLr7++ut3795N HRsOh//4xz/ecsstP/7xj1WUEwPC2HxLxzs6OmbNmrVo0aLt27fDQi0vvPDCsmXLrr32 2phhww5uMUNu4OPwiiuuuPXWWzdu3Gha5Ty2bt26+JaFV3/tK0BEIuoPegEhISLSjAIGhAmCJUJCGDANSEGl8sKGBQ6EFBGIC IwwZJQAhy6g6xAmjAggEDEsZBKJIhqGNPSQ30IhRhQiAiMC3UA UIgwzCAQkQhIGhIQORAFTSFPAhDQhJaIRwIQRgQlEB+DzISWlQ zGEGUG7+8TypbumTTkyNqcmY7wna/pHGQUvF17V8vyrCPijMCLRAISOaBReD97c+u6MiSfHj6tPTe/IHBvOym3994yWjGnHx3/pnS9dj1ofgoCATglXJICIlAFKf39OpR+AIrt7h6gzF8Bf//pXTdOef/55Ol/NR6KmYEB3hwb6qobq8MBWf8KARg35URe2QCDw5z//OS4ubuvWrWrzVKBjWFmRHA4HA5S4uDhy5abTNmzYMGfOnD/84Q88efkRBth75z9A4fhQKJGnMZtkfl5KH8DQpH8miZtkmqZmB ajGYNDNmzfPnDmTjQYul6u4uPiFF15QYZCwfBzJVajXMTnYHhi IXEgAZbAMSjgcJv9TKgRFpSD9fv/ChQvJM9Tv99fX1w+kuu+gMr3Swh9DhxApSj6Ppmmq7qiUvwSDC e7v675xcXH8mVIIxDir9ozLUIE2Dy9aVgnrMOnCDuHogcN6Cj8 gOeRC8W8QQmzfvn369OnPPPMMcYyw+ocUJd+UlFGMSuq/i6SV4R6WCtCs+kTEoKhKXN1QMqDhS7G/0W9+85u8vDy1uyjv3/HjxxmusVoh/3m+Jj+4EGLt2rUTJ06EMpIjkchFF120a9culWlXFw/+LX0d+Dh85ZVXkpOTibMVllPLmIy07dveBCJCRgAjHA4ahhExj Yg0TUD+necQJoQBaUDSWmyYEoAeCkIakAaETiMiGA5JwCBgoQM BIBSFz4eGVjS3wxtAsxumDjMKIYhfMYAIhAEDUoeIACGBsAEpB QigCAFdAkAobEQp3UgY4ZBpDBSg/H1/j852fLTn5ctnvVdUtD178sHci3cXfm3dV+ahrg3hYNSCTTDDaG/G+if3zZhSNjbDP2lSw7+Pbv2PdG/qxPK0ae9kFx9YeCcagwgBAgZZhaQAIiY+M4CCPjAKM3DHjh0bO XLkTTfdxDwx/YpXPnSvjcd7AFKYbDpk31U6SGsYm3ViVkcOm+dYmx/96EeaplFQPd1R/Qk/At2Orh8fH9/Q0KC2ORAInDhxIj4+vrOzU8VAA+y9CxSgoHtqzZ7JY6B4LLA7X UwbegUorGoMw1i0aFFcXNzy5ct37NhRXl5eVla2a9eu22+/PT4+fsGCBeTjzIBmGKD0J4MCKACOHDlis9kOHDigaRrNnI6Oji VLlqxevRqApmmLFi2ikdHc3Nz/pQa+MPBGgb0u+O0yUlEHTWlp6bx585KSkvig3+8/i9dMyQM0Tdu7dy89LNmYSW2ptAq58TOv+MEHH1RUVHCIfENDg2 blXU5MTDRNk5QU+VXASm3ncrlWr17dTzt5Xvl8Pg4djEQiTU1N d99993XXXXfkyJEY3kJYVpWY2EJp5ZozrRR2qv9vjHDxMw6QY5 1CU1R0z5HKeUQ43J/uxYwR51Bh2xD1JCXqVSlWFs4uxRqcIZfX6+XwMdImPPaYcqcLt rW1sWthrwzKGbFsQ0MDR1LQ+W63O6KHQ5GgNIUR0slnwwjpMNB VX0aazHaYEAZE2NAFZDSsd7lrRAGrSp4BSAg9GoSpwwihw4PmO tRV4cDBF+dc/ZeCr64ruRLHa+HtRCiMKBAFIoAO0fXbrldP1IkuIU0IQeG7CAF hoB1oNWQUMIGAETBhnLE4XzcOzAjCX4PGj7Z+//9be+mcP1921Ts/+DHqGhAMikgQ0oQATBMIoPGk+dv7D04YfzojvWl0Wig5p+3fx7 VkX/zRxDmbZlyGd/aiLYgwujimLo7IkNQd51j6Wgz4r7K7CYYG6sqVK2fMmEErPUfu aFbCDCjWATX/kBDCbrdzjFtPARAfH6+yICpi4Ouom4ri4mJysWITZEw5MCEEYS BycSgoKCgpKaGWM9D51re+ddVVV8nu/qED0ZMXKEDhc8jRhL1JWLcIy4ZOZ3Kqkr6aRJ1MPcwb16eeekr TNMpZ2m3iAO+8847D4Vi5ciX/HMMApX8ZFEDp7Oz8whe+wJwhJWpLSEhYtWoVvRuHw0Gujg6Hg/fcfcmgFgY1i6LKQ6qpFaWUhw8fnj179rx5895//31iEc7YjH6E2ma32+fMmfOLX/xCXduk4tlAbTBNk7TMjh07CHns2rVLSrl37979+/fzCCYdQYF/ra2t5O9GaK+lpcXpdPbDsqpesawW33rrraKioo0bNzLCID9lab EXnIeDUBrNT56H9Iz9oBOSQCAglHLwmqax8xfrF05dRXeJoVJg 6XTTirZl8oZBEmuNzs5OajztNtQNK0Mrdf0g4c+qRw6BJG45PS nTuRjMOGQWR+XqTCmo1B0EYMLnDZq6VVzGAEwpCaNIQa4VJoQB U0JASIQM6IAOKaxyNKYOIwyfB231qD2JuhOPXjX38eKpb5dcfG TqnIM5M7flX/bs3K/D04ZQqAudhIEwpKArwSDWxoQhoUtISXYcRCCiiEZgeiE6gaCgl PKGoQfPCAi6qUgZBdohmtFajuYq1Dag0QNdB3SYBiQQFdDDkO1 oOFI+/zsfj81uzhnvTR8fSctv+uK0j8fM/FvhVW/fshx1LfCHYZiEqohY6p7T9hxK/wAFCg/BAJoqeP/lL3+RUqpzjX7OxKS0DATRaJR9ZtnDQHX44K+6rmuaJrvnpzaUy gwqfUixQjt27EhMTHz++edj3Fy4zera6XA4ampq2OKTmJjI+VE OHz6M7j6bA+y9CwigSCU5k9fr5Qvquk5JAYweVRJ5+9ETnaA77 LBZBSDpNQWDQU3THnjgAVgmPzqZliHTNJ955pmkpCSVzRoGKP3 JYBkUKIGmNMG4ZGU4HI6Li6NFtP+hSTIoBgUARVXEx8e3tLT4f D4a2Xa7nZY9sgG9/vrr+fn5y5cvP378OF8zGAyqyacHLlLKcDgcHx8fDAbvu+++goI CykEHK16XfO+5DzkcyeVyfe5zn2MXNprPiYmJdEJLSwslnCUcQ 3SITckn2I9Q9IphGE6n0+PxLFmy5MYbbzxx4oRUCgurni7cgcJ KxUHHab8VU/WmL2EaRkpJiVnppdP0o8LidGV15ZaKXwtNcrqLalSieRsfH0+q c+/evQA0y6VJs9ychRIYjO6uPPSV9kDMlr/wwguwVCRlS4OyxVS5NwxmHLL2J96I5M9//rOum3HORKfmHBE3UtPsBFZMf8TyVZUQsoseMQGJiAhHEQUAA3q wK0O8TgSItwPNjThZhg/3vjTn4lem5G7Pyz1QMOnIxPG1aePLvpC9f8rMF+Z8GVUnYQQgD UjCNdAhIzB1RAWiMHUYktxzIQAhICOQAZgB3ec2YYRgCkg9FIY eJceYfp66hxhARI+0QgZhRODX4RdGMCjMCCT0iCEBSB2dFTj45 pt5E0+Pn9g0ZnzN5zPcyTPKM+fsmH71+kv/Lxq8CEcRjUJEAV1Cj0IYQFdQ87nHKIMCKISPb7jhhuuuuw7dE5 bruj5q1Ch094elD2r2M+JNoXhioruvw4gRI3hAqlYe2VucKp1z zz335OXlqfQnD05h5VDnkD1+CrJAkaKgxINqm8+4UeRWXYgAha 9mKMXLYvhaNqip9p2ebeAjHCFIZx46dMjhcBw8eFCNMFdfHAX6 Pf7447xFHAYo/cmgAAoPaFj7ZgpdYQSqWXYfTuTVjwx8YfD5fLTJALBt2zZN0/bs2bN+/XoAjz76KK9ANOva29u3bNlSUlJyxx13VFRUMHV5dmVQTCv9mt/vP3nyZF5e3v333+/1ennMxWyDAPzsZz/TNI08M9g4BctEkpCQEIlEyJOX5jlFI7/33nvvvPOOpmn9WILVkapp2qxZszZs2KBGoOhKhRpY2jAmOZhpm uy5ojrx9PO+hOVvS5iMAIG67VBvoaoDoRT+UJO+E5rkn1O/NTc322w2XdcpLKipqUlYQUNqM7jYDQC/36/6LNOIoggFwzD+67/+6+GHHwYQiURIg3OGWXW8DRYoU6vIM0kIYddsMOHQ7BDY8d52R 3ycSWZsafEoAjDRxW/ogAkJw4QeiQYgBUwBXwAtHWj1o74FJ8vXfmnO1lmztk3P+6Qg7 0h2ZvX47NNjRtdmpAQyxvnHTTueO21zdi7KjqC2Ek1NaHKjsRV NrWhuRks9mmvRWIPaOtQ2oKEZDW7UNaO2AQ01qK9CTQXaPWhzI xyAFOT2inC4f0DQi34kzkiahil1vYv2MMIhmBBhAwCiXrSWla1 ctHtSTvXYiQ0Zk5uyZpwc+6Xdk772wuxv4UA1fDqi5HajS4R0h MPQDVh99VkDFNldDMMgxzsC0LwNoJHJc5aGIk09tTYTAKfTyQs hr3k8TXRdt9vt0WhU1VFCcZuAUtFJWHbegwcPJiYmMhbnBZg/c6j8yJEjDaveOF0txm1ODS35p8mD0qsPiprqghYOn8938803cz qDUaNGUaES9G3iQW8AhY5s3rzZ5XKRglUZFFL41P9Lly796U9/imEGZSAyWAZFt8S0Ahn4OioUGEifDsrEYxhGXFxcQ0PDkiVLeD REo9H//M//JHotBghHo9H169fPnj379ttvJ7VyFinGo1ZGf6ZqA4HAb37zGw ouFZZTBTumEIG0d+9eGrWPPvpoIBBYt27dpk2bVqxY8eijj/p8Pqrs89Of/nT//v2NjY0Oh+Po0aN2u725ubm2trb/KU00smEY9fX1iYmJ1dXVHDvDyz9NCfqXevXJJ5+kuffQQw+RIy rNqB07dtBl1eJh/fQ/LDdh+nrLLbcQjxIKhf70pz/RLTgqp7Ozk2nSmC2j+o7Yo6Wmpuajjz6ix+fkDevWrWPwoUYbs eJmXMWWssrKyo8++ogihzVN6+zsrKqqUl3h1IRy9GFQ45AfR9O 0Y8eO7d+/32Gzi0AQ0ti5670pM6ZU1VdGZcSEEdRDAlLKLtuOIbsCgmECUp jRABCBGYS/A55WHCzbVHL5X6fN+bDgy3tz8j6ZkPfxmJyKsTktWeNb0jNb0p O9Y8fU/8vnO9LH1qSOLZ8w7ZPpM9+ZUPBu/py/TZ9r/feld6eXlE4r3j2tcPeUoh1TS97On/3W9Nl/y5u9La9kW/7Fb08venl60ca5l+FUOXxeGEJETBGO9m9VUVXz3z8LIGRQ4Zyo CQMwTQkTCAERCRlBezW2bXqjYFzD1IL65ImN4y7ekzzljYmXbP nyt9EYQXUnfAICgDChRxAMIxhG1IC0+qf/lzAE0utiIPsQXdfvvPPOyy67zFCyDPPPadCqMy4m3hBWSgVppS dgEVbOAk1x6lIdpEhUdzcoQSjf+9735s6dS7VEYkgCAJTghyYm gw/6a0dHB6tQteDoGfUAd9SFCFD4vdBj2u32SCTyi1/8wmazrV27ll7Wd7/7XaqqyOhE9HCSRW8ABUA0GqU8WLAWBRVx8k9++MMfLlmyhLHmM EDpTwYFUDheDkr+GVhKn/NGSCUTQD8yqJ2rEIKKC2pK/AjBYXKF4ZMNSwC8+eabM2fO/M53vsMbmkEJM6XcSzTKjxw5Mm3atPvvv19N/A9rsNrt9sbGxkAgQPmRiCMh8EHJu2AVdyCuD1Y9GlrgB8KyslW bu47NFqxoqLXRaNRms1GskMvlqq+vf/rppwGUl5cTLcnasP+dk2EYTELoul5fX//zn/+c2kAuwLqu/+pXv6JwOwAnTpw4ffq0urOkUcF3YSs+bWuoo1paWlRrDodSwwJ n7CcLxeGXfYM46L26utrn89mUaq5SStUVrqcuGCBA4duRVc5ut 9fVVkMaNRWntDit2l1jIhLWfSb0sAxzQhJKRGaAPhlob0fID3c TKk/j1MmnZ81+M3/mBxOLTmYXVKRNrsuY1J6TVzs6052a05aS3Tp6TFtqhnfMGF9GV ssXk70Z4xpHj2lIzWkaO60qY2r5mGnlWXnlWdOqMqfUjpnQmJ7 blJ7TlJ5blzGhImsKHa8eM6k6c0L52ElHxk7dXTz3D5dchvpGB CMU8Nx/7WC1o3hSR6MGTMAPRGECHVG9y5YUBoIGdB8ay6qXL/xg2sTKMZNr06cfzC55Z/plh3743zjZhJq2Lq/eiASgQw8iFEI4At2AeX4CFAK769evJ6B88ODBjz76aMOGDS+88 MLWrVudTufy5ctXrlx511130aResWKF7E7UaUp195hm8CoVozb VdVo1GxlKDZ1du3bZbLajR49CQf8MU2h80r+LFy+myEreIcjuh t3+jbw9e+9CBCiwzMFQCNe9e/e++eabsBYOerQB1ieR3WsRSynff/99TdMaGhqkZdkxlFTjQoiOjo6RI0dSTMkwQDmzqKB7gD4oQyXq whCzRppWyg0ou2RN03bt2jVjxozGxsZt27Zt2LABwPr16zVNUz 3kaRnbtWvX1VdffeWVV1Ki0rPO0iaEiI+Pp6TFHJ5KC+0vf/nLoqKiQ4cOMRNwroXZXfK3gBIyx2FK6kLL8w3W+i2sCh1qNljO RAIrCSYrL2aJeD8BhRB2OBysDh577LH8/Hx6p5qmORwOjr5jLz9Wx8IKt6b72my2urq6/Pz80tLSmpqaBx54wDCM3bt3a4oPChSmh01OUICOrus2m62xsXH GjBm7du06efKkpmmhUKilpYWbASWaiZV+z3HYl/D+MhAIJCQkBAKB22677ZFHHgFEIBrU4rQIokAkGGyTiEZEOAoR gogAfjMcpZIznT40NuNkOY6XP180+2/T53wweeaR3PzjYyefGju+YmxOdVZ2Y0a2Oy27LSWnPTmnPTm3L SXXnZrjTsv2pGa1pWZ6UzK9KRntKZmetMyW9KzGjGz6rykjqyU 9syUjw52e0ZaW5knLaMrIbMrI8qRmtadkeVMyPalZ9RkTPpg44 6nZl6K2HuFQFAgDkUHiAQlE6Sc6YMCA0WWdkYAOdAbhb8T2l0p nzzgyZdqh1IkfT5zzSt5l4T/9BfVt6AwibHQFLhldrjNhGCHoBkwBK9vcuZe+AIrq8MG75/fee8/pdDY2NpKrLG0ziJygcU6FmX7yk5+sW7fu5ZdfPnHiBBQlxsZfF V5DmUcEJkwlN0FMQIBUfMtYIpFIIBAoKSn5+c9/Tkd4XrCFV7NyMTudzgULFqhVF0i4DCprsH4wuto/tPzT4/cEOrQh1KwUl0wsqXFJqrUl5i4xAEXdRatSW1tbX19/8uRJIlDVBnDubJfLpeIDtVc5uxq7BxmGQQjj6NGj6qa0L7VAL4 40Kr07cjF59NFH6YSYxGBCiFdeeUXTtA8//JCPUB/GdMIwQOmSwZp4hlB63bnyTj2qFEAm+xEZFEpLSzds2ECEBEl9f T2PoXA4vGfPnnnz5l177bWU+xwKtXN27VQ5G1gLud/vN03zk08+KSoq+u1vf0uu9eIcC23mqA0EDmhqcRgwLF3GHFJra 2t8fPzevXvXrFmjaRr5Z3R0dHg8HnoE6jfSXLyES6uSMytTagB 9pvTPQgjNKsdot9svvvji2tpap9N57NgxSrrg8XjIUUNVrKJ7I AMzTwDcbvfdd99NHU5rwL59++i0aDSqFmziNqtetxRPIaWsqam 58847AWzYsIE2UgRSOc93DBYZlJMs9wnR5sFg8Je/uj8qZKehO0clGRDBgBdSD/haASMswxEYnWYAiCDQitpKlFf8ae7lW2ZdumXc5OOFXz6ePrVl TF7t/8nwZU9qSMuoH5NZn5nRkp7pSc1qT8n2Jue0J09oS57gTp3gScl tS8nxJmd5UzK8KWntqSltaSmetDR3eoY7PcOdnulOz/SkZbSlZrSnprWnprSnpnjSMjxpGb7kjMDojOBFaZ3JGZ7UnI/H562fdQlqahEORc4eoIgufxEJA6EIQgbllwsaCPrRePzQHTe9N yO/dPyk0qkzt395Hg5XoS2EQCjc2SGEAQBhE2GTktxHgQg54wijK+ Lp3Etfu1VYa5JQ2I7Fixd/85vfFBZJeeTIkYaGBqaTHQ4HoQchhAqmYYWtAiC3KihjVf1KJ7 ACgTWXOeIMiq8lfeXa7/fcc8/cuXNNKx8j428mL2+++WbNSn+wePFiNgETZJfdi2j2P/6hEDCaUqXENE3apHE/wIqZoKfgoGt+Fur2XiMD+mJQeIZSVTVK/E9tKC4u5rqhLpeL9jxs3mKQR33CdfuYoN22bRtHYGiaNn/+fNalgwIodPB//ud/NE1rbGxkazgdD4fDVMD11ltvVeGgaiRiGQYoXXJeARSez8y2AW hsbOR9gMfjqays5JEkpSSA3NTUVFBQcPz48QcffPCiiy7605/+xLQ/ZTFS19dBSSAQoOWTkm2o2geWBfdnP/tZfHy87dyLZiVTYerS7XbDmkhkBFG5IurA+Pj4LVu2JCUlzZ8/PxqNxsfHE8/JPU9up6T+mNskRcbRARySwOY8KaXT6YxEIm+99VZCQsKePXt27 95N5jYOrUpKSqIMJegOTQwrWx0HAAsh/H5/zF2gOBvCAoWmFaxEBzm2GcpM5rJtrLVVJEdH+BYDByiwFHRUSa 9nCoQlgpROxABMgVAYpoAeNkQkIkISIRg+lH303Fe/9rcZsz/ILTw+fnpNbt7J0dmt4/NaUsY1/FuqGD/N8x+p7SmZbamZntQsd1qWOy3bnZrjScltS57QPnqSd/SkwBdzO0dne1MyPWlpTWNSGjNTmsaktWRktKRntaRnt6Rne1Jz fKNzfKOziV9xp2V7UrPbU7J9yVm+5AxvSqY7Nffj8dP/PPMSVNciHDS6SJDBAhRhwjBhmF2xzH4JvwQlxhXwebD7zc2XFL 5ROOO1i2c3PvBbnKqEN4yIhGmYMmrCENBhGOQPa1UCoDdlCOiC ShufYzkjQOFzqLDD888/z74avOTE5ARiy2OMw4dhFdRUxyp/oLHKbeClizUhkxywYArfKBQKkecWL89QVkT6oc/nu/XWWzVNGzVqlKZpCxYsiNmq8f6BMc0Zey8SiYwYMcJmWdj5OGfO FZbxgo/zNOdgOlWtxSCSngAlppiGYRgJCQk333xzOByuqqqaMmXKiBEjS JlQewi7uFwuyhfFXapuyah5paWlcXFx8+fPN03T7XaT07Fh5fU +I0AheGFTYoXcbndRUdHkyZMPHz7M7454OIfDMXfu3NraWoaSp C1tlpGIZRigdMl5BVAAkOoXFvNGYeV/+MMfALz++uvktEGOGnFxcadOnbLZbC0tLVOnTl2zZg0NkX379l 111VVUyRaKljmLFppKdC43L8ZYQNcPBoPy3AurHqlUCKIMJUzS 0qpPWpJ4EbKVrF69evny5VDqg1OlZdVpVFqOGrwXlMoGi+Ejsy aalSf7iSeeoDlWU1MjLNuztKxLsDZn/BboQWK+CitIh1Eghx5QY9iXhV8EJ9+UCjSBZV9Xhxb3Cd+l/3HYq0StQkjcY4ZhRHUZllaydgHoEqZExIQp9GgY0MPBFnQ0/Olrl782ZUb5+KL6L+bW/3tmx5jchosyGlMyfNkT2jPGtf5Huu+iTF9yljc5q40BSpehJ5c ASudFuZ2js9tSM1syMhrHpDWOyXCnZ7rTslrSs8nvxJ06wXfRh M6LcttSctxp2e7UXE9Kbntyrjc5pz0ly5Oa1ZI24ePx058ruQR VtQgGKQP/YLWfhDCgG9B1mEZXptsARVEbohPu6tP/s3JDXt7T04v1Z5+nBG4I6xRkbcCIyoguQqYRpqgfinKiRG2m/IwBSoyjPc30qqoqTdOorhP/hMLHAPh8PkoIySpCWlQBjVUaUbbubi4c38HXZDssXYrC6ZkIYV ENmvSBEi68/fbbfCm1AXR+KBRasGCBZlVOXbRoEccx0Izo6Tneq6g7Pc0q8UP 7t87OTrYrwcozRFmdYgKwpbWQ2ywXmb4AIn9lPoN5KWoAs6Ee5 2VlawAAIABJREFUj4cuYhgGxUMRGtM0LSEhgcMG+ekoHDUxMZG us2DBAra+SSUXg4pR+uqTmCge6p/GxsZvfOMbmqbdeOONd9xxx7333vutb31L07RFixaR+Y/1zDBAOYOcVwCFhgJvdukgl5PQrMAwYlBsNltlZeWIESPsdvuvf vUruiY7o+zbt+8b3/gGwRS/399P7G4/IqwUYZzsS1VhQgkwxjkYRj2FNKZh5cRDd5UaCATYj4R/ErPb432MqSTwhsUJ8dVk95xRMVsuNaFIjPYxrWpElLMIFhRg1a CmnKKDjz32GOW2AUDRQHa7fefOnbDSwe3YseO5557jHxpK0XNp 7UtcLhdZ9JgxJoxCg8fhcNTV1akN0M8qkyz9VTUvAoiLS3A6Rw qBkC8io9j4/AsOm32E3XVg115IwNChB9Dc8PyXL393XH7lF8brY/ID46bUpaR7J0wu/8JF9akZTalZLV8c05mR603Obk/JbqP/UrO8yVmdo7N8o7PbUnLcqbl00JNG1pzMttQs3+hs3+ictpTclr QJjemTWlIntY+e5B09wZOS607NbUue1JY8yTt6Qntyric1uyUt pzF9wsfjZ2wouQSV1Qj4IUyYEkIOikKREBHoOnQpTUhTQheI6o gKBCHaUH9q08xLX5xxqfjLq2hpg6cVgaAEQoAuhSEiuhm2iBvx 9zBsASFhSiFgyvMJoBiGsWfPHqfT2dTUBGsCMuxgYx8rCp5fqk JDd4dQl8tFAcBkx2TlRjflxZj2PFAoGWZc1CNCiMsvv3zt2rWq t4qahMOwaupS2B3da/78+apVFwqv0z9GgaVjXS5XQkICbXXoOPtbcP+QuuboQtPsVoZG s5xDzwhQeG5KZTdI9iM+ollxNHScOpZTdQN45plnnn766ebmZt J+hw4d0jTN7XZTIw3DIFAorVRPupUVs1fFzgdVeMFJQUm9vPvu u6tWrVqwYMG11167cuXK3bt3s6LmbhkGKGeQ8w2gxHhoUj3rhQ sXut3u6667jgw9jzzySDAYrKurI+70hhtuWLBggdfrZTXBs/e9994rLCycP38+BummTsLOU1CUDm84aD/NN/0UAIq0TBsUxcOsCVFNsAy0ND1YMaF7wAurCXJVYfMHPUs0GlWz KKqpnKJK8tlwOEzTjBxByC+PY5q405i3gKW/1EwM1IyVK1faLA92TdOam5vJjwwAwY65c+e63W7SxfwgfNkVK1 bU19dXV1fzJiYxMTEUCvl8vk8++YQO7tixw2azETkkFV85kkGZ eACMGjVq27ZtnZ2dCQkJZWVlpimd9nhIuN2tuq7/4v5f+v1+d32zU7OHgzokEI2gqenhi7/04WVfPzk2rz45pyo1qyF73KmLRrtzJjZnjGv4YqY/c3LTv2W0peS0xQKUTF9ylmX0ybKgSaY3Ocs3Orvzohzf6Nz25A melAnu1Anu1AltKbltKTnu1BxPak578gTv6Am+0bntyTnutOym 9JzG9AmHc6dvKLkEFdXw+yENmCbMQQMUHboBHaZJ6eAMQEdUwg u9Hh/v2lh8+aH//BGqPPB0QhcwBGWBkQAghIxG9YBuhExTh5AUsyMlDECXgkDPIFp zttIrQFEXQmnF1GzevJlGIyMGrtVCv1ItFMxewDLxqLwCja5gM EgzV62bAaVMlWEYjY2NlGypvLycNBsP+3A4XFZWxncxTfPWW2+ 94447oOxMaObyNKeD4XCYeBRiF5YsWUIzna2ovMfoq9N0pegp0 QbkAqIaofiOnZ2dmpIhBpbygUXWDhygoAd1RH7HDz30EL2IV19 91eFwUBV0TdP8fn9CQkJCQsLIkSPJQ8jn87322mu0V+G0kN/97ne5qjNn0aQlht6d6rbc1/hRaxFzH/r9fvohUz7suRzj/jwMUM4g5xtAgbKIktGXUukLIWh7zYlraQQ4nc5gMHjTTTeR/xetzbQKbt26taio6K677tqzZ8/ZvWPiBqGUfaEVnTAKL5afTggPCe3q3G53XFxceXk5lBFfV1cXg w/YRk6btrVr1wYCAZqcTqeT8oXwzIyPjydtQv0MgHL2U9H2xsZGA EII1VlVDf8hIUBD3cKzlM+hfzkYR1XxsExC77//fn5+fnx8POWvmzZtWk1NjbqDZALcNE3WraWlpU6nkwaM3W5/5JFH7rvvvrq6OnLXvfnmm2NM0RxQgEGmuqdGPvbYY/X19U6ns76+XprCqWk7tr9TMHtGEOGOUEezu+m59c87bHFdeVFN wOtFU/3vSopfKy7ZM3Hqx9m5leMmtuRMrU8Z502f1Px/0r3JOZ3pE9tSssmyQ3DEk5pFkTttqRltqeQMm9GemuFNIWNQdl tKjiclty0ltz05xzc625uc5UnLaMnIaMnI8KRlepOzfaOzO0dn e5Oz3OmZjRlZ9RkWQCEGhfLLDxoQCAkdQocuEYU0YAgIGYH0QF SYx3Y+OfNKPPU2miMwYUQJlkBE9XAoYBhRCUNy8LUgDsZKYkfe KINkdM5OegUoXY+n0PtCiNWrV5eUlMSQKzSzOG96VKldqlKP/Ffei6s0A3q4VlCuxT179vDK7XQ6CwsLa2tr6WSv17to0SLNck6 nVj3yyCNFRUVqRkR1vgjL44r2GIsXLyZDj91unz9/Ps0gnkcDZ5o5iocnLz34oUOHXn/99aeffnrlypWapj366KMvvvjiRx99pGoGXm5sA3OSVb/ybvDxxx93uVxPP/20aZq1tbWFhYUFBQWwlIlKWfEPA4FAe3s7ocPy8nL2aGY9D0WZ c16DgQMUoqVZucVoOf7AbnnoAVBiaN2Yew2VDAOUAUlfPihQXg nBFDVhM5OiNpuN7Ii03vzyl7+srKwEEAgEXn/99WnTpt1xxx1k8JPdkw0PSgiRsG2SrTm87rKiGcjm+x8U1c6ta VphYeG6deuoWlg0Gi0pKbn//vthkZPcSNM0HQ4HGSZoWQ2Hw/X19ZTAjZ6ourqa2r9q1aqFCxcmJCQQB1tRUeH1em02W3l5uVTi CNgpVY1WUN8aCZ+vMlv0J6rXRUdcLhcHOxQXF5NbNACbzZafn1 9dXU0/UVPvqJ75vBtje/+NN97IWT55q6eqSHU8DBygMM1jt9spGX9FRQUgEp02h12raCrv lAEtXrM7bZpmr61phEQ0ImEA4TDaWtBUg7KPn71kzuslX3p7Yt 4HU4o+yc6rSJ/SMiavJSXXnTzenZrTkp7dkp7F/xFr0paW1paW5klL86RltKdkepOz2pNzPCm5TWkTGtMntKTlelJ z2lOy21My3elpLRn0X4YnNYucZNtSst1pWU3pObVjJn04YcZzJ ZegqhJBH+WYP4uoGSmt5P06YMA0IUUE0gPjdPW7m9bMvRavHYT HMA2YQMQUMMyu9HSm3uVoYuqmEYYwpTRNQIfsAiifaR4UdHcOA KDr+n//93/feeedzC7wCaoXdszF+bfqoOLEXGw7UCP5OX1UU1OT3W7/3ve+RyO8urq6sLDwzjvvpJF///33k++nurgyxwOLO0FvicJIAoHAggUL1KIctF1huMArbj/CwIKzvPv9/ieeeGLWrFn8p7vuustutxcWFjKOeeSRR9TU3ipA6QeR8ITl3qP j4XB4/fr1zz33HJ1QW1tLjaGtCJEi7CenbtigTH9+KeoWlF/rYAGKmg8MCtLli/BbU8fGMEDpT2Ig7ad5a3VhOOt3ICyHShoWr7zySk5Ozp133llZ WamOLb1HcsYLVNhk43A4Wltbly1bdsMNN1RXVz/99NPf//73CwsLufa6qkwZ0gkheCE3TVOzqt5wLP6SJUsolB/WLoR82Zqbm0lxMEQ4C8ynsil8hJrBa39VVVVVVRWlBrfZbO+++ +6sWbOqq6s5hYOw3FTptytWrGhoaKiuruZ8fUTSUvpgAA0NDYW FhXv37mV8GQOCBz4O6fE1Tdu5cyeRzKdPn5ZSOuza9Ol5q9c8F BFRm4N3bNa6JdGVMTUcQqcX7W1obEZF9R8vuWJj8Ve25c0+MnX O0fRJtWMmtWROqvr35LasnNbM7JbUzIaL0hq/mNE5dkJzenpTSqo/a7z7i+ntqeNb0yfWp45vGjutJnNq9RjKw5Zbm5lTlzG2OW1MS9 qY5rSxjRnZ1Zk5VVk5tWNyG9NzPSkTGlMnV46dsWfKzGfnXIpT x6D7TREEdEMMjv+TVuo5iwWRENJEBNIHf3XDzjd+d/WNKP0EnUCE6hSKrp/9vWtF17/y73/p+rv8NNAJ+jbxxJAfUsqVK1f+5Cc/Uan+GDbljKIO+JhIH5WxYIutpmnEPtJffT5fdXU1ACFEc3NzVV UVJTSCpf02bNjgdDpj1lQWKGs8rDiaRYsWJSYmnhF/8PRn7GKzwncJ2ZDSeOmll6ZNm+Z0OpctW7Z///66ujq6I7Hdbrf7xIkTv/nNb6ha4e9//3sKPB41ahTXIEN377QYgMLbG+YkSJ97PB7iloSVHNLv91dWVga DQa4kz5tbupcaOjTkwnsh7jG+FzeDCyTxyXQ8Li7OtKIXaccl+ 04A8w/KhQRQzjcGZVBiKvGopEH27dv3gx/8YN68eZTHnT0q/jlEWGE7pmnSLgrAG2+8UVBQMGnSJLfbvWzZMirzbVoJs4mrcDg clHQSlucaB+ISq0z2FFraeXYlJSWtWbOmpqZG07Sqqioo8EhFP wMX2iYyAUOYQ80B8Pzzz5MG3L59OwCHw6Hr+t69e5988kk6wef zsbYlXnrjxo00/9evX0/bR5vNduzYsXXr1rGlnPAEd6DZPVB5UONQ1/XDhw+zyqPhp2laW1vbXXfdZZpmQkJCr8Q1SRf3YAoEQmhswela HD7+fNHsN6eV7JtSeGjc5OpJ0+tyJlenjXVnTmhOHRcYN63hog zvuNz6i0Z3powNpuW2pU2qSMn5JGvygfFTD0wq+JD+m5x/YFLe4YlTj0yYfGz85GM5eZ9MyNs/JW/f1Lz3p+QfmlhwbFxh2biSvRNmvlp06W9mzUFTHaJeQ4Z1MzzYz GgSiHblaqMEuTq6rDY6TP+J7W/d+61voy2EIKTfMIEApYw9z6QvBoWXeR5my5Ytu+eee+ivhpLfr x9rCP+c/S55b61enJ291DA0TgSgenHRpfh88tlitP3GG2/YrERh/Wz61eZRkC1F4TqdTp7yPYVDdWw228iRI9WVWNO0xMTEZcuWOZ3 Oe+65h+hqFnZchcVPhEKh1atXOxyOWbNmtbS08C1cLpdqJe+LQ YESAwGgurq6oKAgPj6eGkMlmm+++Wan03n06FFSXxwlRKDqnKI TzYIm/NXpdHK+OM3CKCr5xKiFRH1kbRigkFzQAAVKNkZKkkFHKioqbr/9dlqJadIyr3BBi7T8cgzDSEpKgkUqfvvb3yZ/sX379l1//fVs2GYY4XK5KisrNU0jQ084HN61a9e6det27tz5xBNPANiyZYt mucFDsePu3bs3Go3a7XaPx4PueVDO7hGYR6Xpx6YxoeRBIWG3u P+/vTMPkqu+7v2vt9lQhVTKrqxsNsTPxtrRaAFkIE6ejQDJxn4uwj MBBAQMNgQLkaeXcmJCilCODUGyHMGTi81gsDBEMrZZBQYEaDHY g5A00mgkjWYkzd773X6/8/44fY/O3J4ZprtHc3t6zqempJlebt97+/5+v+89K83p/FmqmEKV07hdhJxBPP+IyoQHroSxX4c8eIX8/fgUOvuKJ9ZhMBpcF9JJcCzo64buLjjaAXt2rrnggqcXnv/i7IVbzpy5+8xZbad8puvUs3tOO7vrTz7RfeoZg6eeMXDynyU/9slDf/KXLZ+cvv2Cv3pq3rzHFy167Nzznlh43lMLCj9PLlz01ILzfj7//KfnL3703MX/77zzf3ze+Y+eu/jp5s89veCin1506b2LLoDePnByuXzKMp4H4JU48tCC4gGAcUHb YDwNhUPN5wdca0A7WXC1m/TAAgNgee5kESj82yfj/z//8z/fdtttvNDOSIGTo39W4IKhoBMKJcGwWTQo4guoPDSlh+Arm5qaL MvCWwsAePbZZ5VvgxxJoNCD3Eo00oIdsKDw15BlApf8q666KpF IPP/88+RXIoc4AGCaMakxnD327t07e/bsGTNm/NEf/RG6q5RSfJ9HGkckyDBSWCmFxSHJ6vAf//EfSqnPf/7zwDwvuJ+YNnXipAlBfcTIgoKfjvuDeiWQvYWpRolEAoUsftdK BAoy2QUKzSN4S4Fx5p7fqQcLtcEJ+I7DgtzVdAVv3LjxpptuAt 8WumzZsn379vGFmUbOO++8AwB4i4/Ro7lcjiy91KAYBz8AYA4ePouFH/jSXoZG4RkNKBR43gEwuUmTDo8iRLMQxVB7fndlYEnpeD3QB6EG 4iGxxZH5Y78OPT8BnqdoBrooGGOSySTdAQOLyCnMvNqDbBZcB5 w8GBvAcvP9kOmDnmNw8CBs+90z5/7Vr2cu3Drj3JZPzd15xvRjZ89r//PTkqf/JXxidt/HPtX96UVbZyyEV1+FD96Htt2wvxX2tcHe/bBvP7Tth/YDsP8A7DsIew9AWzscaIcD7dDeDm0HoK0D9rRD5zHIZd18Bku4 OqWWaTt+nACeA55jPK09MC5oDwC0B24evLSrsSqMY1fpwBvJxQ NDL+xcLvfNb37zlltuARZ6NRboyqT4Ux6PxT+IcnlIQNCCTQOB LAd4XSlWdcN13YcffrihoYEkuzu0WTfZWmiBJzsiLw407AyJH0 oBufzM2LZ98803JxIJqtpOWyBfkhpagxv8FMiurq4FCxbgxFJc RLVYoBSHjABAJBJJp9O4nOODy5YtO/XUU5VSfX196E7CbmgoCAIunhMBfRD+iwYV1B/clcN1Eu/myI9OBEqByS5QNCsvTXisEDs+Qkl9kxoaup7nTZs2DQufRIaGt kUikVgshl338F20guLrUYJwIzb4sxWwOy00CdBGuDmavONlgLW VUqkUTTo86wdfwC0iMFSmgH/BYJA8Vzy0k4FkCj7B8Wg1enDs1yGKD/CXE6rIgmePiheDH/k48oY0GBdc18lksAoIuK6XSUEmDZlB6DgEbfvXX/j5x2Y0vzznc1s+fc7O087uO2tO98fP7vzjGS1nzH9+xnnw4W7o PQLJbkj3QTIFgxlIZiCTASsH+RwkczCYhXQW0hnIpCGTgVQGUl mwHHCc9EC/qz0PIJf3QB/PAB4rGMrqAnhuIfrV763jWbZt5w2A64HR4LkABrLZsS7qE8koF hQcZXSFb9iwIRKJ8BzgsS8Y3tDCgNTEI+C+AT/KHpeoxsZG1AR0qdNIJJciDVgA+Id/+AcK46U0w8CR0l0BHZ0eW6VUUickx1Gl/fSnP41Goy+99FKgChSPBVZ+DD4A5PN5umtyXbezs7Ouro76BME YYlDoT7wRjUQi3P6ay+X+6Z/+6Te/+U0sFkOvNBV9UX786YmGh7iR7CNtRN8mfR1UwYEfLxXXofMw0r dTNiJQxkTlAoVXCcN7azQD4NeP28dQjLIb8VQVNE2gf5dCxgDA +MnV/f393/3ud//gD/7g6aefTqVSxq8mmUwmydgAfi8P7GoBrLQDj2lHIYL3fHhWKcQP yuq/yNWk4zhY8C2fzwdKyuJhUnYSPpXNZrm3npdzxZ3v6+szQ6tU0f jHDZLxCYYGEIz9OqRFgqrc0kfQ0VGR0NG2A8Z1XXBMIQnZYCdf cAFsNwfGgiMd0NsLe/bBbz98YsGFm+df+MJpZ/9++uKtZ3/uxXlf+FHzhdA/CKk+0HkDDngGPIO1ziwAGzAsF0whnbdQTR6MtrMZDFA1AJatC9 6aXIlpvQbAxfolWGENjmsU24O8DQMpsDQM2JAHy3ImJCmnZMxw AgXhEiSfz2O/4oGBARi6do7yFQey/XGE4r979uxpbW3dtWtXa2srXUWGFUvFLJ4HHngAjYLvvPPOJZd ccu211/LsEnRe4wi1LOtLX/oS1kHB7fAbNr7DPAyL/KHDwrWL9uHHm0qlotHonXfeSQ5fftJoBq6vr7f9Rqp0P0A2IcX iMAISxAwVKMCqT9FcEYlE1q5dm8vlSBJhFnEkEtm9ezfeqjU2N qIRZeymrwrhOhJ3Hg0qKFB4JW56i+O3T8J5jAKlRaAATHKBgm9 HXcInDlySlVL8xqXsj6gqtF+8FSM0afCTQxrp6OhYsWKFYjUAg Fl3+UigOxs6h5QvE6hbgBMf5RWXPWxoI4FIW3TA44O8JRD4dnL tl+6lu1KcjvlXT4rBZSXdgLne8UaH+6pKsqDwOkt8oqE7bKpHR 1N80UbAcQvFPnJ5Fwzk8q7jasvBG2sNxgUrB7YDmRwc7IS+Adj fBseOfu+8Cx/460vv+cIyOHwMBgfAuADaGF/lYAURbbByPP7qolAxBowH2gPjGjsHRntWvvAKW2PPv5IwxmgwF mgLuwYaDywLMhk43AmHj0JbJ+ztgGMpSGYM6KTJV2Hw17AChV8 Vxi/s0d7erlj7WWCl1UaHLjy0OjzzzDNz585VSjU1NeFt/ezZs1988cVAyHk2m127di2leCQSienTp7/99tu4gP3hH/4heQpcv8qiUurZZ5/Fi23YGBTaOLdh0FAa9iod6aTheLz//vsTiQQ1LCRImuOWFUt+JhsD3ULwNCK+k8UChW6NaBQnk8m1a9c qpTZt2oRDz3Vdy7IefPBBpRRWaKRuQZhMNO7LfDGBPcfbFYpKI c8XFFXW5rdh+IsIlAKTWqDwZZLuHugpKulmhqtVMHnhHhbuBwF/3qHlH1PX+L0+da8gkzK9NyAXaCVGGcRvvGCoBWLs8LmYdpLA1w RKzXosZ5LiCvkO0LM85sP161dyRxI9yF3yUOJ1iJdcoHAfPsWr 7o5yiowBA2C5YLl+qXcDntHGGDBgHBftHV7OAo1F0RxwcpAbgG NH4Vg3DCYhk8H6ZkM2CwDGA9cDz1Acq/8a7HajwbPBuODkQTtgtJvPgSknXVyDwQSePHgOWGAlYaAbujp+ +y//sm7h+T+Zf8Hji/7m0Yv/F7Qfgf6+QlX7KmNYgQJF64cxBhNenn/+eeMX3eGvHAmqa4DX9s0336yUWrFixY4dO1paWlpbW1977bV//Md/jEQiy5cvJ9sGN0Lw/aRbEbrY6D5hx44d8Xh827ZtwDwyxcdIG+QuGG41GenkcAsKPp5 KpWKx2OrVq8ltxEcBrzXCg0sC04vjOGhaQEcM/9BhLSjA7pdIrDz++OPKL+JCubs47aPCozyagIdrlC+uEmjg8zF FGVJ0PdBx8dkJ/AuACjiJQAHwDz50gXIiLpoTvf3qRw2X6SoEmODrBNWD41cTwUa +hfofnsYf43eoMYVmfhqMA54NjqPd4ze+2ElHg7HAy4NnYcEz4 zjgWeBp8IzxCvEu/Ec7oB0wnsYwVwhqnY8EjS+gDRgXdAb6OqBl+xOLz31x7vzXPj3 j3c/Oe3f6otemf+7JORfBy1ugdwDs4+EFgV/CYiSBQs/yxezqq6/+5je/SXEbtK4UL96BjaOgX79+fTwex/ZSuPy4Pq+++qpS6rvf/S4MVbT8vnGUnddar1mzRilFzQW9j8r/N8yD4/ltQcF30+zZswebjwKA53n79u3DLbe3t5P+3rFjRzQa/f3vf08yvfikIYolBvJAdYTlvnxEkOwoxwIs3oucR3hvhglHvFt QqdsfF0Y6xsBHB/YqMjT1fZx3aXw3d0KZ1BaUcLdf/YhAGQsTfJ0YABc81xcQxvjF3Q0Yr6BINPtBWaHB09rV2vWM9oz WWoM24BrwjDGeA14OvDzWdj0uUAp/FsQO/WCTP2NcMHkwFpQ8/xkAx/FAA1g5yHTDkT2v/++vvDZnxs6zP7v/zE+3nn7Wgb+c3Xr6vN/O/Osnm78A7++DTMEqNikESrFd4bHHHlNKoUeDPBQBdRI4Ih70Fo/H7777bvB9QxRzgP8++eSTjY2NbW1tZCGgOTmwTa578MWWZV1yy SVUpoUCM0dRNmZoiAn4vVfJDvGNb3wDd/7ee++NxWKUZnLjjTei8XLdunVKKTKmUv/wYhoaGtBnwVOZSN5VLlACcehkWTHGkAVFKYV1sQM217Fsf1wQg VIRIlBqGBEoY2HCrxMNkAfIgrFBO6A9jAJBk4Rr/MY0YFzQLtZAMw5oB1y0d3iFBjraA9cD1wNtUG1o8EB7oD0XPMf XQBq8gnXGd/poXwORIafU+c92jAGwcjZ4Dlh9sP2VZ2Z/auesz7SdfmrPGWd0nX5ax2mf7PyLz+45Y+Eb0y/WDz4LfZnAjFydAqV4icXHu7q6YrHYCy+8QKsyxkiN9HoEl8+tW 7cqpVpaWihVmFrr4VKNJcsef/xxGFqjtlidcPGBWuG9996Lx+Nvv/324OBgMpnUH5WYExAo+KDye+MBwCuvvKKUeuqpp9C088Mf/tAY43netm3bMJAin89/+9vfvvHGG/G9vLWQYRG12k9g0VrzmDa+M5ULFNomRtADk2hxH97QuIztV44I lIoQgVLDiEAZCxN+nbgGsgBpgDwYG7RX6OjLs2EKebuuV9AqNm i74JAxrgEHlQdor9COWJtCMKw2oI0xHhppXPB8vw44cDzkRZtC UIqhImul4HnGQ7+Qk4OBTvjFky/PPXv3WacfO+2UwVNP6fzjP+76s1O6//zsjlMXvvepL/T/3/+C7nTxcjtOJ7NMxihQkFQqdemll37lK19BPwUFNo70et4fDquo UTUmWqQpL9113VtuueWOO+4AtoQHrsPitV9rncvlVq1aNWfOnO J4rJFkSrFAsSzr5JNPJoHium5dXd2hQ4f279+/b98+isHPZrOtra04n6xcufLb3/42sDpAxeoEwUrQwDJvDXOQjYtA4ek5GC2Lr6eybJGiRsEiUCbT qiACpYYRgTIWJtzFoy3IW5B3IW8ALSiGjCgkUDwAAxojVTQ4Gk 0qxjXg2uBmQecwfMRv9VcwkBQsJJ4xni6En1Dv4EKgC6qTQu46 zpegAAAgAElEQVRPGc35DIDtFMJK3Bz0d8LGpzbPnt565iePnn J66pQzev70L3pPOavv9Jn7T1/47llfOLJyDXRnJ4VAgaI1nmJOX3rpJaXUe++9x1vBjSRQDGsf8/Of/zwajQayNnjNDwD41re+dfvttwfkS2BvtZ8tT5GYqVQKjRwYhBG oIzIWgWKMwY2AH7qxfft2pdSGDRvoLRh5s2XLFlplb731VsxqL v7EgIqqr6/HAt88aJSGWOUChZeT4S9rbW1F84nyy6bxUyoCZTKtCiJQahgRK GNh4mNQLPAscFyUFxoTgAsqwQsk4BhA64gLaPfwHPAs0BnQWdA O2lH8wNvjScWF/B9N5hM/2BYACpnIBs0tWEOltAlQQz4L2slZWTAOWH2wdfNzMz+9d/qMQ3/+icFTP9V7ylnHTvkfh06Z8cGZ574061Lrx7+C/lxgRq5agcJfQCuuZVnpdPrCCy9cuXIlPovxoSPpAHw72lFeffX VaDTa29tLcRhYYxB/x9qJSqn169fzIj3FG+RrPwB4noft97q6umBo+MXoR22GWlC01r h8YraLUur666/v7e1FvYKHifEcy5Ytw0e+853voL0HAAYHB3nETIDi9Cg+vsbRx QO+wDLGvPjii+jW4QcFoxaCG2X7lSMCpSJEoNQwIlDGwsRfJ+R eAQ1gPDB+2Ak4AI4B16Ck0EN+ACNPDDgFBxAU9E1Bi2gXtAbP+ BlCHrh+NK4fcIuHCJ4DjguOC7YB24BdYhqwC2A5XtIFnTc51+6 G7j1vXPnld2bMOHDWjCOnfXb/n36y/bTP7PyLz74766JH/uqrcKgfskOSZmEyCBR6Ga0lDz/8sFLq9ddf50WKhxUoJCOMMX19fUqpdevWge+PML5vBYUC+oB27 tw5eg4/qSV8+wcffBCPx9esWUM7Q66W0Y+aCxT0WDU2Nn7rW99qamr6/ve///7771M5R/Ke5PP5v/u7v1NKbd261Rjzve99b/HixcM2YS3WKDzrmNc7gHHK4uFlCxzH2bFjB7YPbGhowD7tSqlY LMb3VgTKZFoVRKDUMCJQxkII1wn5VoYIFOt4c2DjoUDRTJ1gPo +nmYlFGxQoUBAoLhco5rhA8YNqjQbQGhwXHAdsF2wNeV2yQNEA eQN5CzwLXBvSkD4ALe8+c+6iV6ef8/an5m6fuWjb7PNfm3ne4+dcYL/2LgxmwT5e+yHwS1gMuxgMu8Ab370CAJdffvmiRYuwxivJhZFkA T7oOM6qVauUUgcPHgTWZhyvtM7OTqXUN77xjY+sy8xX/Ww2+7d/+7ef+cxncCNYFRDGUD4xIFDwoHCW+M///M9YLHbddddh+WlgZZ2xBPPdd9+Nr0RvV2dnJ09HCnwE/k6jKeDhQsbFgsI3jpG8FHqyZcuWqA+Ii4fv0vhu7sTB/akAEI1Gtd85lkKx6NkyanMFCoHTZtErGYvF+PbLKJ3Oe8IBQDZ bcHXjIUQiEV5YvdSNTy7oyyoulETnR4/eIGaqUgX1cnTRz3CY4/+b4G/4qw5sjT3PX8yKzo7ycSOBHiQDHmgLnBxkPOiH1GE43PbG/1n1Xxf+z4cu+OKPLvjify35KrR3wUAGLLcKa92PtBjQsxztVy5 ub29XSv3bv/0bsNFEV06grIjnd7nq7u6eN2/ewoUL33nnHVQnaE7AlJl58+b19vZSWcJAGArqA3T60OD9wQ9+E I1G33//ffyzJFXNBQrO9jhLWJb15ptvKqUWLFhw+PDhl19+ubm5+Yknns DtP/PMM83NzfjKY8eO1dXVrV69msfTuKwVBgz1vAR2kgJHMEYE68ly 5fqRlQMNMybRZh955BEqv6uU+s1vfoNLAC+lP4ogGBfoK8Mto0 0LdykajdIn0r8iUD4C49dGpB5U+K1TEXR8TaD7VEngMMZTjBuk IUquQVJF5e0/sBLL2NQbADKZTENDA/i6p7bXZurli98mVZRKJBJUEsrzPCoSFfb+VhdiaSsN40e7AFjg 5MF2IQc6Cdk+OHYEDh6CQ0fgcDcc7oGMpVM50NUnT0oUKPig1t q27SeffFIptXnzZnyQ2kTQlcO3TF6SQ4cOXXzxxUqpiy++eOXK ld///veXLl2KAR+HDh0iEwh/u9aaemryNe/VV1+dNm3ad77zHWCX69h7jZmhMSie59XX19NEumvXrlmzZv3kJ z9JJpN33nkn+kewFuodd9yB8S62bd9+++1z585NpVI8ZZqXcgc/upafBNd1edEUUg8nnXQSFLUj5V/EsEfBhePq1auxn/C0adNmzZrV2tqKh4ZiJZFIgH+fFsCMK8CMWJiIbllWfX097ht3/BUfWuBPESgF6OrB5pMwtB+3GepELHXj3LJnfGmM4xwAlFI8H6+ Mncd9w/Ltxu+WZ4zBLi2RSITS4mtYnXAwd5GKx6NtE1gMXTodTPgURKCU hm9B0WBscB0sBwcWuFlIDUI2B13dcKQX8i6kc6VXqZ0gRloM6F mO9ptAAUAmk7nuuuvQZcOXUpzBeEdrbIdJBmkA2Lp167333nvt tdcuWbJk5cqVb731Fi3YgY/WQ9v9YFtBY0xHR0c8Hr/yyisDnfPGPjmboRYUbG/OC9UbXwmBH0yDUzfuAz7e1tZWV1f30EMPUQcJPEzeAgI3GLCgG NYWER0xGMdKa7brNxiiPSyWESQvcMsPPPBALBabNm2aUmr27Nn 79+8HX46g6YIHydLhj/F0lURgs1iEF0WYUoqHLhW/XgTKMFDXALzcm5qawL/WcbGnuocwNON8jHD1wzeL39O0adO032G8bAsHbdl1XaoahE/F43Eyt0JNrz3Y+DfQAwL8hg48em7Y0LYpjgiUkvHLynlG60J0j A2uDbks2DbYLrgu2C66jyyrGu8NShIo9DjOJ+l0urm5ubm5+cC BAwHrLy1+9Agt4bSmYk0UMo3QbRtXA/R4Op2mqfjYsWNz585duHDhgQMHAACbgcMIWT+jHDi3oACrvo9/kqeG7iRxoQW2iFqW9a//+q9KqZaWFr63CD9AYJ2T6UAwj6mxsTEajVIhNVq8RxcQhmVc9/T0YGQM5hJPnz69p6cH/Oap4Md/fOxjH6N1x/Xbs/NAnGLLSnkAKxZMNfcwJga9E1osKCVBFxY2E0eTBhXVAf/UlBEdwqELlDaL7T3xuqRGteW5HgJlCcDP4nNdN5FI4EfzHahVU J/hLIBzotaall5+wxT2nlYdIlBKwvi50FiRthDNUqgJp6181hjPg E4mk57nuW6Vns9SBQrpDPRTHD16dMaMGXPnzu3u7ga/9jwZVPCWgNKJ+QJPH0ETF8oLnIpp6eIWAuTYsWOf+MQn5s+f39 HR4bouLfb4rB5bg2UYKlDw5tD4xW2N3weeNsUTeQIhsel0etas Weeee25nZydOLFiLhd5rfLs1nUDwxVAqlbrmmmsoerSpqSlQkX bYxZsmMTxXruted911iUQikUjEYrGbb765o6MDH6de6Eop7MjD 98r7qHZFlUM7n8/nE4mExKCUiTGGDA+u6/JIY1Sa/Oa77CBZ3IJt27xfFEpLlA5oCC3jokGpjtYX3BRdmvl8/qSTTuLCttSNTyL47Rr45lZjTENDA/VB5QIuxF2tQkSglISBQp5zIQSXar4BeAA2QNKzrEIitNFgyrvx ONGUKlCArSt4kbS3tzc3Ny9YsODll1/mkwzPDAB/sdda49Rk23Yul0NPCi7q5APi1hdahvGu46233po+ffpFF13U29 vLjaCB+mxjPHA9tA4K9RXnN6IUzMeN0AgZbI4ePTpr1qw5c+Z0 dnYGDj8QlEqeLxRAN998czweR7MHhsrW1dVhW2MEhQv/nT9C4BaUUtdcc002m+X7j2E95F4BNu8FpMD4QleC8Z1ZkUhEBE r54BVA8c9U4ubkk0/GFt5QFLg0dgJv3LZt28knn4zbxyuSLlCKligVMsBorVtbW/GSpQ7XGIdVV1cXj8dP3EUZOrlczrZty7J6e3vR4Imx8ZR0h39q 36EW9v5WFyJQSsIU8p2NMaYgULxCzOyg5eQBBozb59k50Gk7X3 hD9VGSQEFDAhZvBQC813Icp6Oj47LLLmtoaPj1r3+NzoVhS8FS nXv8k19j5Hog8wCB6gT8VoWXX3753r17eTNkFBBco4zxwDXzbp CSIDNzf38/3bLyveWWdZzVHcc5fPgwZve8/fbb2WyWThRZLLixx7btPXv2XHLJJZFI5K233sLJv6GhIRKJ0Co Qi8VQqQQECv5OL6CXNTU1XX/99RRlzNM7AAC32dDQQErlREO9FROJBBVikSDZMnFdt7+/f8GCBUeOHAE2qFpaWubMmYPBp3ixlj1xa7+KjjEmk8nMmTOnpa WFnkLHanNz88DAQHkxKPxbz+Vyl1122UsvvURS2rbtgYEBpVRH R8dUWHtc173hhhuee+45KlsJAJZlzZw5c8+ePfhnGcHOtY0IlJ LAfGZsxQwGwDPgGOMVzCd5gAz2QjSuB1prV3u1EINCcyMPaMO5 8aabbkIXw969e2lwcSUBLM9F+1Em+DJ6EP/ULKLFGNPW1vb1r389Ho/fddddZAAgAwYFtNLjYzxwbkExLCA3m83yyYGKONAbKQ2T73BHR 8ctt9yilLr++ut/97vfcTMG39revXux0t28efMwQZrfQSml6urq8H5yJDERKQJfSe ZzblvSfgY1BuHiv2TM4IaZgJGmcqLRKH4cfhZJFgmSLRm0cLzw wgs33nij8Z1zqVRqyZIlO3fupAvUjCE3fVgoEAxPcSaTaWlpWb p0aSqVoqF44403vvDCC+VZaMCfKWgnDx48OGvWLGxuiSN2xYoV zz33HNT6wkx3KliqIZPJ0HhYtWrVmjVrwJ9Pa/s8lEEV1EGZXGiDmTvGKZS21cYY0KbQRcjxnTvGeH4d3LB3uQjS o4b5milecpTLgAsXCuB78803582bp5R66KGHjhw5wt0uNAfiI2 h9oR3AtBeKwCADQDKZXLt2bSQSWbRo0caNG/G9FMB3gs7JR8IXUbSgoFqybfu///u/Z8+eHY1GFy5ceM8997zxxhu7du3atWvX66+//uijjy5fvhwX6bVr15IX3nEctOxiJvMoS36xNCHjCgDk83k+pxk WZYIbP0FCZOygXoGiu6BhjSi4cjU0NOD1cCJmpEkjUCiG9Iorr ti0aROu6OvXr7/vvvvwFpwiVKCCm0u0baC8zefzq1atWr9+PW5806ZNV1xxBQ9lL RXuRUJr57p167CSkud5GzduvPLKK48dO1bbCw+NeTSu/upXv7rtttvwkLds2XL++eeTfAExEhQhFpQS0WAcMDYYB40nx8v xG3/OxRK32gPtgHaqTaCQUYSWMWB+ljFuwbAqYZlMJpfL/fu//zuuRj/84Q/37NmDi7fWmqY+nu9DMR84MAcHB3HwHjly5Ec/+hEubPfff/+xY8eAxU9UTxaeGRpt6jhOKpXavHnzPffc09TUhOcBO/ZFo9GbbrrpF7/4BRnjKexmjHN+sf+LDOcBnxcGJvOvhqQJWTJOHKi0hgWdUMVGl MBh0nEpFg/KD2dcmDQCBQeJMaarq6uxsXH37t3bt29fvHhxe3s7DI2+Li/SjWcpg38xdXd3L168ePv27bt3725sbOzq6kINXsadfeDuBAdAb 2/vnDlz3n///f7+/nPOOWf37t0AgBaFMg5hshCYXpcuXbpp0yat9TnnnPPuu+9S6FY gFE4AESglo0EfFygaHA1eweODusTzwPV/qlKgIDRk6urqcKbSI1TuorcEHvc8r6+vD5/CCkPt7e133XUXrtA33HDDhg0bjh49SguM9qtWUrYLRXv09PT88 pe/vO666zAgY+3atZgfBEwK6DGn6kwAhuUDk0MZxVYymUwmk62trT t37uzv7+/r66NhhUGytAXwE6BoYR7jRyOBKJnAIsVrPhk/yOaEQjvGA4koVZb7xaBIoxgWGe15XiKRwBAL/oLx2s9JI1AQHCQbNmy4+uqrv/a1r23atAn8bHXwh3F5qR90TqmsEP6yadOmr33ta1dffTX29S47 ryRwzaGI9jxv69atzc3Nt99++8MPP0yXBZkZag9uUu7v78/lcocOHZozZ84dd9xx77330rOSvzMsIlBKRPuyoyBQXHB0IVBWg 9bg6eMCxfN7NVcTfMHAApX07Y/u3yFIuNCLyXfjOM7Ro0d/+ctffvGLX8TqYdFodMWKFWvWrHn22Wc3bdq0bdu2zs7ODRs2PP PMM4899tjKlSvJwbF06dINGzZQM2EAwJQf/kHVeYl6nofZ1Lw+BTAjPfgCAkUMzsZlxOwHBCJtCqUP+svopNF pDPekUThz4HcOVzaO4+CkpFmFwHFk0ggU3j9Ta71kyZKrrroKf G8onqwKS8XjRUnJrsYYjGm/6qqrlixZoln5kzIULs0RmBQN/jfquu4dd9yxcOFC1Cs8vblWwZsYEmGWZd13331nnHFGf38/AJCBqnruwKoHESilYaDgvjGeMZ4B14CL7QkLAgV/PHO850/1wQcCllrHWYKHoQwLdzHQ+kdzFxWzxuXz6NGjb7311o9//ONbbrmFHA08LFQpdfvtt69Zs2bbtm0DAwO4fVpcedUicg9REYG Jh4J86Qzg44FRwyumcOcUfxkqCZqUeEGKksAKXrRNXsYCp0Tjt 3MZn+tmVIqvnIBliLKc6MXDAr6Lh/K/xnf9mjQCBZjgzWQyfX19mE1OVikYejbL2HjAaUqCOpvN9vX1kR Wr7IWTxm3AbtbX14fZ+fwTy/uI6ofPWVhoAQBs28beGWTq1FpTq1KBEIFSMoXAWM8Y7KXsCxTq PmgADBgDpir1ifYj68G3oCiW4sGh7NZhicViVNcA/8WiYQjqD9o4Fk6l4Azl1z8l0NyCcaOBF1CkJz4+UtDoBFB8WiJ +Ng1WJMN9jsViGIAS8ctY0FMkzvD84Hv5y4Y9z5y4TzQabWpqw vfi1ugTE4lEPB7HF0ciESqfcULhp4WfKHpBQ0MDXQN0vIFziy+ IxWJYPIJmpHG8t5w0AsVxHNR0uKTxEB7DMneKa6iPEdLFlKeez WapKRTZMIFVKiyJgFMWdRXfeYqCru1ePGQ8pBNO7jmMMeKKU4w oASIiUErEFMSHOa5IwAVwC8EoAN7Qn+qTKEOcDsDu0wKMbk0h8 wCNL95cjO4EeBS/8Ysl8i3gp1DfQfDjTopb5BjmigqF4tNCQamBhmvan3zooPgkjL/jTeNH3jIV7waecDKcAzPbeH7KNAy100wAemj+tmEp3Pw8ADON8 POp2ZWGL6NN6akZJAvMLEbLGy+tQ+0eoNwgHfpK0um09iPF6IM 8VvanjI3Td0+mM8MCe/ErB//areEIDLqmedQYzWWUQmn8HLZQd7bqEIFSKui38ScE0iha+xXvP d+iUp0CRRcFmgR64wWe5aIksCmKOsdnaTv4LHl8yDkCfl8RYEX P6Bd8nNJ/wG//eYIWqlKhw6epFZgNG1jdF29od3qP9Z3lvnh6ttTd4N8FmcZ5uI n2XVG0YyUe6zjABQruAA9joH0bVgrz6NpxF1iTSaAIwhQnInVQ xg8z3I8gCNWDCBRBmDSIBUUQhKmDCBRBmDSIQBEEYeogAkUQJg 0iUARBmDqIQBGESYMIFEEQpg4iUARh0iACRRCEqYMIFEGYNIhA EQRh6iACRRAmDSJQBEGYOohAqV60X7GR12SEoe0uq6G/1GSBqiTxLhhUnog3Iqja8yl1UARBmDqIQKlSqLm59jtyUQ1mKp mMxR+l4upYoK7xeAKpXCadW611JpPhhfarELGgCIIwdRCBUqXw ZhBYYdoY47oumgGwTjMuUYEeh8KwoOzgfZSocTS2EgV/yec9E6oNESiCIEwdRKBUKdjkguwl/F/wRQn2kIShfROEkcCzhLqEqzpUe7yjRNUiAkUQhKmDCJTqhfpn4 lJE6yuwDpzh7uEkgpo1uq67ZcsW7Jx++PBhalWqlAK/dWfVyhQRKIIgTB1EoFQp+XwepQk2Ou/o6MhkMvgn3v1j6InruuShEEYBI4txaa+rqzt8+PCbb745f/58ALBt++///u+j0Sg+m8/nq3btF4EiCMLUQQRK9WJZluu6DQ0NSimlVENDA1+ZMH6COoaHu 6vVD560bDbrOE4kEnEchxb4yy+/fPXq1fF4nGf0hLmvIyMCRRCEqYMIlCoF3TfGGFyTWltblVLt7e 2PPPIIALz22muPPfYYADiOY9u2rFUfCXnKXNdFbw6qkO7u7kQi EYlEIpEIPm6MEYEiCIIQOiJQJghKBqYMEcx0Hf1duJpGo9FoNL p58+ZMJnPNNdfceuutixYtOnToEEkTSTP+SPD8o0yJRqOO4wwM DDz//PN46rTWqE5gaP5UtSF1UARBmDqIQJkgqMYa3qDzP4eFBI1S6ut f//q1116L8Zuvv/76xz/+8bvuuotvs2rv+KsHCpK1bfv+++9vbGxUSt13333gJ0PR2l/Nak8sKIIgTB1EoEwQVHgNADABhyqwDQsuqK7r1tfXp1Kp5cuXr 169ev/+/bNmzWpra7vqqqseffRRALBtm0qgCqOALjMyOFFkMZXlxQBkfGX VahQRKIIgTB1EoEwclmVRDg6hRwAA8vk8VWNLJpO7d+/O5/OYY2KM6ezsRH0jWTxjATVHNpul3GyyUWmtBwYGMEI24IarNkSg CIIwdRCBMkHgukj1TPFPNSrRaBQjN6PRaH19fTweTyQSSil8EH/HjYtGGQuk/NDsRDYtyoTCcm0kCqsQESiCIEwdRKBMHFT1lTwI8Xh8lBgUYNG vuGpSqVM0w0QikVwuNzg4GM7xTDZyuRzanMhSAv4ZTqfTWBavy hsbiUARBGHqIAJlgjDGYG8/rj/IBFIMBtJi4gmVaAO2gvJ02ap1SVQPFNND3QFPOumkVCqFj+OZx CopUMWtA0SgCIIwdRCBEgLoSoBRBQotP7RY5nI5fJCSgJRSnud V7WpaVVAFNjqxVPUEpR4+XuUNBESgCIIwdRCBEiaoMMBfbLC8K RVcB7+YLH8EnTvo66mvrweWfiKMDuZpU7nYeDxO1fBQrKTTaRh bfZqJB7/9+vp6DJ1Bh1Q1l2yZ4lDyP11L+A0KgjB2RKCECVlQUHagzshms zipkRah0M6AEFFKkTFmlJIqghl63vBPpZTxk6pisRgF/VAiT1WB1wNeMLjPEhld5eCdg/Fz10EKKgpCiYhACRP0LOCd/SuvvFJfX4+/G2Pw5nj79u2rVq1asWLF1q1bAcC2bcuybNvGZyORSBXe61cnPG 0HALCeLCXsKKUwCdwYk0wmQ97X4dBa5/N5UrS44OERCVWIKSqfOHrKniAIwxDWABaAhUEAwK233op/UjBEZ2dnLBa7+uqrly9frpRKJpOBOAmlFDos0DckjAIwaUIuHv wWstlsU1MTPo7GCSyjV1XgrsZiMbKrGfHrVTH47aB/1nEcz/OUUvF4PNTJXhAmG2EP5CmNUopScowxiURCa033Xq2trfPmzUNj ycKFC5VS2NOO+htHo1FsdBeNRsO8hiYJdXV18Xg8FotRa0CtNX ZbxGeVUvX19cqvNFNt4M4bPyCp2OUnVBVoDSWampqU31dLEISx IAIlTJSf3Up/otEeBUpPT08kEvnBD35w3333KaWOHDkCQ636/PUTHRMx2QA/BtayLNR8ZEExxjQ0NGg/1rg6TyYAuK5LnQ2MH5UyUZeqUBqB4HcAQHUSpsIVhElHyON4aq N8C4rxu+ySGwIAHMf58MMPly1bdumll27fvh38/GRM7UGjMQBUZ8xEtYGLRDKZpHxjPNuoWhKJBFZvw8jTKky4MMx Yks1mLcuSAJQqh3LE8LuLCIJQIiJQwkQphTfEjuMkEgn0L+BTe mjmjvYjJ9CfTYIGfPdQeAcxOaD0HPBtJNFolM4bV+pVm2ph2zZ vmCA5xtVMYEg6jhOpSr+hIFQ1YQ1gAQCUUrTM4C/GLzJLv+MdmGbFTkiyRCKRMPZ6UqL9+GIEFSFqO6015k8ZY6hWS tj7K0x6TFFRAEEQSiOs0SuAf+OObgW+dho/zRiYiRiYiAERKCVCGcVkhOBnT/lNA7TfRzqk3RRqBxEoglApYY1eAVgMCoaVwFD/Avp3stlsNps1xlAJdhEo5eF5XjKZNH7aZ11dHQq+TCaDzrLBwU HqJyAIFSICRRAqJazRK4AvUNLpNHlwsKIJZWcEmu4iAYEiAShj h/oYk4EKrSaGldXCTJnQdlGoFUSgCEKlhDV6BWCxmVpry7IoTgKT dBB8Af9TBEoZOI6Tz+cpVBZPMp5zkiyu6+bzeVEnwrggAkUQKi Ws0SuAn8VDEQ/YmjjgYuDpJ4i4eCohl8uhswzjYSnrGPwwIJAgWWE8EIEiCJUS1 ugVwLegWJbV09ODX0csFgMADJXQWu/YsePOO++88847d+zYQW4gEShlgEk6FPGDD5IdBfzy9gDguq5k8 AqVIwJFEColrNErAEszXrly5TvvvJNOp+vr6z/44AMMieju7o7H48uXL1++fHk8Hu/u7h7WxSOMEUzkoXNIMgUVCaYcY2OjUHdTqBFEoAhCpYQ1egUYm t3a1dXV29urlOrp6cGpraWlZebMmZlMJpvNNjc3U6cxrOcWi8W i0Sh2kFFKRSKRWCyGjyu/6SDGsuC6S0lAU7awG+Zvt7S0oJkKAH7729/iGTtw4AAmeIPv7hGEChGBIgiVEtboFYA101FKRSKReDyeSCRQT 7iuOzg4GIvFHnzwwXXr1imlenp68F2YewxDQ1gsy6KOLY2NjTC 0BD4uvel0mrcImVKgy+zQoUPTp0+vr6/P5/MdHR2xWOzo0aM/+9nPULJg8hTqmLD3V5j0iEARhEoJa/QK4FtQsGg9Vj0xxlApjkwm88Ybb3zpS1+67LLLtmzZAr6Tgrqk 4tspRZZKuim/ByEVfKPWLbhOT802LrZtU2PaHYsAAAX7SURBVJtANCMppQ4fPj x//vxIJOK6bjwex3Zub7zxRtg7K0x6RKAIQqWENXoF8E0glmXF43F s1YEVw4D1aid7SS6XC5TxQFnDN4gxFieddBIMzU/BX9DWEnjLFAHL9SKNjY1oXlJKzZw5880334xEIslkUim1ZcuWw 4cPy7gQKkcEiiBUSlijVwDm4uFNAcHvZgcA2WwWVYXruiQsLMv yPC+bzSo/CQifxRe4rhuJRCgaFADS6TQGo4CfwDI1NQoAOI5j23Y0GtVaf/jhh/X19Vu3bsW+0LlcTvkxyxSkIghlIwJFEColrNErAPPFgF9DltrB UO8Y1B8U2cpb8yjWyodTV1fHnTjU/Rj/nbJZKnhOotEo9jHu7+//6le/qpSqr6//2c9+lkql6OuQcSFUjggUQaiUsEavAABKqXQ6DX4JdpzRyLlDab Fo8CCRQRU7qJIsZaPQ14qZPvQVoxkGwz/JPDPVGBgYAN87RhE5qAhzuRzpP8niEcYFESiCUClhjV4BWKE2/NP48CwbWlADSbAY44kv7u/vX7Bgwa5du+hdnuf19PTMnz+/ra0N1Q+5daZgCg+w5jv4C+Zg46mgtB3btvG7mLJGJmEcEYEiCJ US1uidmuCiSNXry/vK6urqMKIWLSi4pm7evHnp0qUkYowxK1eufOSRR8I9XkGYsohA EYRKCWv0TjXIboG/UFRsGdvJ5XKob7LZLCoeFD233Xbbxo0b8ZFXXnnly1/+MvqPBEGYeESgCEKlhDV6pyDU5AX/zeVyZdQjQRcPxkzwxB8A6OrqUkp1dXVls9lZs2bt3r17PPdeEI RSEIEiCJUS1uidaqAW8TwP/S+UElzqdijNJ5/Po1jJZrOe52EuzxNPPHHDDTfcfffdjz/+eCCWRRCEiUQEiiBUSlijdwqCooTMJwMDA2UEY6K4oSiW/v7+wLNXXHHFmWeeyevcC4Iw8YhAEYRKCWv0TjWofa7rugMDAzw ZpyQohAVYskl/fz9aVhzHOXjw4L59+7TWU7YamyBUAyJQBKFSwhq9Uw0UE6lUip fZKENDGGOoqAnmx5IfhzrvkCNpfHZdEITSEYEiCJUS1uidalBM K/5LHQHLg78X9Qp9Cv2JqT1lf4QgCJUgAkUQKiWs0SsIglDDiEAR hEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhAr5/1Xny9vHN9jQAAAAAElFTkSuQmCC

ANDREAS
02-11-2014, 09:03 PM
Hi Andreas
I wanted start to produce the PCBs and have a question for the transmitter PCB.

In the schematic, is a resistor R7 drawn, but on the PCB is it not available.
Is that right?

Best Regards

http://www.longrangelocators.com/forums/ JekjFAAAgAElEQVR4nOydaXQc1Zn3b3X1opaAZM6ZnDNf5sPMm cmcmTcG72u2ycxwkglbAiEJScA2CAgQcLzbgGEIewzewQHDsBl jbMy+2wYv8oqNsPEm2bJl2ZZtWUu3eu+quu+Hf+qZR9WSMOqWW pKf3wedVnd1dW333v99tqu0IAiCUGgcx+H/KkEQvi7Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far0dYVmW1jqbzeKvbdu2bVuW5ThOIpHQWtu2rbWOxWL0uiPS6 TS2yWQyWut4PI79Y5/0E/SjgiAIhUIEiiDkS7FabydEo1HtygutdSaTcRyntbVVa51IJNLp NFp+Op3GR+2STCaxB0iQZDJJu4JeoZ/AzwmCIBQQESiCkC/Far0dASECPZHNZrPZbDqdhoUjnU7DcKK1jkQiZ7O3bDYLk4l27 TGWZaXTaeyZfgg/KgiCUChEoAhCvhSr9XYC/C/k2dGuC4YcOniTxEe7ZDIZbG9ZViKRgNXEcRzsCi/oh4p1poIg9FdEoAhCvhSr9XaEZVmwbQAcpM/nMwxDKRUKhXw+n1LK7/d3fl6lpaV4EQ6HTdMMBAKGYQSDQXydnziETjHOVRCEfosIFEHI l2K13s4h04hSCoEjeB+GENu26+rqgsGg1rqjGJR4PK6UCgaDgU CALCgtLS2IQVFKUfhtEU9TEIT+iggUQciXYrXejshkMsjW0Vqn 02k6wkQigfcdx8lms8OGDev84O+///6lS5e2trYqpU6cOIE90KdKKQrCJfkiCIJQKESgCEK+FKv1dk4m k0mlUlprpVQymURThzTBi2PHjpmmyZ1BHmpra23bjkajhmFUVV XhTewqmUzixFOplEgTQRC6AxEogpAvxWq9VIaEKpGQtyWbzTqO Y9u24zimaXLLB8JmsXFJSUkqleLZyPzr69evV0r5/f5AIAAnEVczhmFotwfx9COCIAj5IwJFEPKlWK0XJJNJy7JSqRT ybig9R2tt23Zra6tpmtrVHLFYjNdVU0pRAg7UiWVZmUwGn/r9/traWq57eCwLFyiSxSMIQsERgSII+VKs1ptMJrliaG5uxotsNgu 7CKkQcsTArKK1tixLKeX3+xEna9s21U0hOwqydQzD8Pv9+BTBs/hUBIogCN2KCBRByJditV7Ctm2Em/AqsdrN/lVKkTqhIFmqZRKLxaBasA2ZXlDeDduQcYWXPBGBIghCtyICRRD ypbitN5FIkNmDDCSRSIRKu4ZCIYgMiBj4fTQrXkLfIi1C9hJkE dN3NesyRKAIgtCtiEARhHwpYutNp9OQDqj6mkqlYrFYRUWFduu gZDIZwzBSqRRFs0Kd7N+/f8WKFRUVFVAk5NbhpU2qq6tXrVq1Zs0afBSLxRKJhAgUQRB6Bh EogpAvxWq9UBVUFtbv92utH3zwQdM0sc5OKpWyLCsYDJKAwEI8 n332mVLqZz/7WTAYXLJkiXZDaLENNt61a5dS6qqrrvL7/Y8//jhkUEdZPCJQBEEoOCJQBCFfith6W1pa8DqZTKKoSV1dnVIK4SZ QMEop5BvTt+67774bb7wxHo+vX78eOT6a1ZNFHvL8+fPLy8uTy eTGjRsDgQAWCOR1Y0WgCILQrYhAEYR8KVbr1W4DpmwdvOPz+Xh iMFUx0a4naNGiRSNHjqyqqpo7d+7IkSOxMeJO4BhKpVIvvPDCk CFD6uvrFy1aNGjQIOwNGgWvpQ6KIAjdiggUQciXYrXebDZbX19//PhxrTUMJ1pry7J8Pp/WOhaLQXngX81SiCORyBVXXGEYxo9+9KO1a9ciQoVSdSBBGhsbr 7jiCpzgJ598woNngVhQBEHoVkSgCEK+FLH17t27Vynl9/vD4TCECK1ajG1Qkz6TyZA6aW5uJtdPY2Mj1xbwBFmWRdYUpVQ8 Htcs5UdcPIIg9AwiUAQhX4rVehGyeuTIEcdx8JeydfBpa2srPD 7arXCPnGToiXA4TCsb41OqeR+LxfBaKZVKpVA9xbZt2kCLQBEE oZsRgSII+VKs1ptOp/lCfY7jRKNR7WoRqlwSCoVoaR7aOJVK4chhWaE6KLwUWyKRwDb0 KyJQBEHoMUSgCEK+FKv1ApS0R/6w1ppW0oF9JR6PI2aWSq6hDopt26FQKJlMkjTBt6jmPfZgGAZU Szqd5gEoWgSKIAjdjAgUQciXYrXeTCZDBWTpL4wcvG69UsojI5 LJZCKR8Pv9sLXAd0P6gza2bVspRQXvtdRBEQShBxGBIgj5UtzW y2NHENDKq8E6jmMYBr1DobIIgNUsbUcz/UErHmMpQfIWYT94LQJFEIRuRQSKIORLsVpvR0BGkGoxTdPv9+N QTdNUSpWUlCilgsGgUgqFaDvC7/dTWhD+0vtU4Q3FUUSjCIJQWESgCEK+FKv1dkQymSTjCtYlxvuQ EZlMBrG0hmHwoNd2UUqRNQUShJtbqECt4zieCBVBEIQ8EYEiCP lSrNbbCZAg2WyWsnIgIEhSpNNplMbv3PKBVGSKn0U9FdoV9k8/JwiCUEBEoAhCvhSr9XYE9ASVpacEH7ygmrDKTTPuaD+UZpzNZv FdCkahvZEviQq4CYIgFAQRKIKQL8VqvR1BjhusZqy1jsViVBwW VdcsyyopKYlEIp1bUPx+PxVBSSaTsLgkk0moE8uySLJ8pbdIEA ThayECRRDypVittxOi0SjqxmqtaaXAxsZGfMpXOUYNt3bRWiMS NpVKoXqKdmNQaO2eRCJBBeIEQRAKiAgUQciXYrXejoBVA7aTTC aDmFkoCe2aVWhNwU5AoTbtChry5mBXyWSSMpZ1W++PIAhC/ohAEYR8KVbr7Qiq0sazf2ktHrzQ7irHnceOGIaB2irQHzC30Fe wf0Sx8KL7giAI+SMCRRDypVittwvwmrOwjgCPjQSkUqlgMEhRt GIjEQShJxGBIgj5UqzW2wUogkS3FSitra28pCziYbUbp4L3YTi ReieCIPQMIlAEIV+K1Xq7QLsCBVokFoshsgShtVrr1tZWxVY81 jn9hSAIQvchAkUQ8qVYrbcLtCtQEDObyWSojBvyh2nFY1pQUEr aC4LQY4hAEYR8KVbr7QIduXj4UsZYU1BrnclkcHZU6g0Bs4IgC D2ACBRByJditd4u0K5AgY0kk8mkUql0Oh2Px1tbWxEtGwgEYFx JJpONjY1UDUUQBKG7EYEiCPlSrNbbBTqyoOBNvK+UCoVCdHahU Mjv9+OdAwcOSC6PIAg9gwgUQciXYrXeLtBJDAp9ZNv2hAkTXnj hBb7xM888M3XqVNRBKdrRC4JwLiECRRDypVittwt0VAfFtm1au MeyrIaGhtGjR1dVVeHf/fv3jxkz5syZM2I+EQShxxCBIgj5UqzW2wXataDAaoLXlmUhYPa tt94aO3asbduJROKKK654/fXX8S3J4hEEoWcQgSII+VKs1tsFOopBge2E0om11tlsdvLkycu XL3/mmWdmzJihtU6n0xSnIgiC0N2IQBGEfClW6+0CHVlQIE1okZ1MJ mNZ1tGjR8Ph8IABA+rq6vCVWCxGle8FQRC6FREogpAvxWq9XaC TSrL4iGq1QbIsXbr0nXfe0VrzQviCIAg9gAgUQciXYrXeLtCRB UUzgcLXJUbhk0wmk81m0+l0KpUSF48gCD2DCBRByJditd4u0FE MCuwleD+bzWLxHQSjNDQ0YBuKU+n5wxYE4RxEBIog5EuxWm8X6 KgOCt6nSvY80AQGlWw2KwvxCILQk4hAEYR8KVbr7QId1UERBEH obYhAEYR8KVbr7QKdlLoXBEHoVYhAEYR8KVbr7QIiUARB6CuIQ BGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQBEHoK4hAEYR8KVb r7QIiUARB6CuIQBGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQB EHoK4hAEYR8KVbr7QJSB0UQhL6CCBRByJditd4uIBYUQRD6CiJ QBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBRBEPoKIlAEIV+K1 Xq7gAgUQRD6CiJQBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBR BEPoKIlAEIV+K1Xq7gAgUQRD6CiJQBCFfitV6u4DUQREEoa8gA kUQ8qVYrbcLiAVFEIS+gggUQciXYrXeLiACRRCEvoIIFEHIl2K 13i4gAkUQhL6CCBRByJditd4uIAJFEIS+gggUQciXYrXeLiACR RCEvoIIFEHIl2K13i4gAkUQhL6CCBRByJditd4uIAJFEIS+ggg UQciXYrXeLiB1UARBEAThHKEvCRSxoAiCIAjCOYIIFEEQBEEQe h0iUARBEARB6HWIQBEEQRAEodchAkUQBEEQhF6HCBRBEARBEHo dIlAEQRAEQeh19CWBorVOJBJ4gQou8Xic/mazWSqUYllWJpPBlplMJpvNcnEjCIIgCEIvp88IFNu2oTkcx0m lUoFAAJojk8ngI8dxIF/wvtY6nU7jK5ZlaVEngiAIgtB36DMCBXYREhmGYSSTSVItra2t2 Ab/wqZi23Y2m9VaJ5NJx3Ecx0mn00U7AUEQBEEQzpo+I1BgBYnFYl rrdDpdVlZG70OdkBzBlnhNiiSVShXjqAVBEARB6Ap9RqBAcGit I5HIa6+9ppRav349GVTS6bTjONFoFO+QZwdixbbtdDptWRbtRB AEQRCE3kyfEShw8cydO3fgwIELFy5sbm7WWqdSKcTAkqWkubn5 2LFjtm1blpVKperq6rRrR0kmk0U8fkEQBEEQzp4+I1C01rFY7P XXX7/iiituu+22AwcOwGuD5B3btpVSpmmGQiGlVDAY1Fpfd911paWlm UwGthOJQREEQRCEvkKfESjwziDQZP369b/4xS8mTpy4d+9e7cbAlpSUZDKZVCq1Zs0apZTjOKtXrzYMg7w8R T4BQRAEQRDOmj4jULSrTizLgrNm3bp1sKbs2rXLsiyllFLKMAy l1LFjx2AsUUpBoFBZFHh/bNsmj48EpghCR5B7lKyPFMsFkyRaFt6hViYUEPRg9IL/S6/PETzlrHjtCZ7jKRScjq6tbdv4iEqUFZY+I1BisZinnEljY+PCh QtN01y+fLnW2ufznThxYsSIEbt27ULMrGVZfr8fG8Mf1NraytN 5UENFBIogdATUPF7TeICWiGR+7bpZRZ10E9TjoadKpVJkTuYCB ZUUinKEPQCdKU4TXbfWOh6Pk0bRbqCh2MsLjuPieZ9EMw2jhb3 4fUagaK0zmUxLS4vW+vTp0/PmzVNKPf7448ePH9daZ7NZ0zTT6XR1dfWwYcMqKyu11jCrIIUn lUpRndlMJoPnmCZ/olEEoV3QakiC2C7omNLpNCYD2FiS+bsDy7LoIlNPhcC7c2okRj eumTLGrB2pEpr158U7xnMFrldILILCXv8+I1DwLDY3N8+fP98w jAULFpw4cYI+hRbRWqfT6Ugksm/fPtu2/X6/aZp81Z5MJoNKKrZtp1IpyJR+PO0QhDyhCod8so5xgoy6ra2t55 qvoSjYto1rnnWBfYv3YE4/hU4QKoQmnNFoFM5HTET78RUoLvwBw/yEnkC6I3x5mUI9831GoDiOk81mx48f///+3//74IMPNHPB4rk8cOCAUioQCCAGZfPmzYhKCQaDkUiEIlRuvfVWh y3ZIx2rIHQOpu8YCG3bDofDPp8P6XI0OiLV3xGtX2jIf4Fra1k WlcnGxfeMH/0V6qs9/TY5eujfc8qqVBRIo5Bnh9yOkCwF/K0+I1C0q5E3btz4i1/84r/+67+2bt2q2VqABw4cqKio0Fq/+eabSqnPPvvs8OHDmUzGNM3q6upgMJjNZltbW5VSdDU182gW88 QEobcCKyMZS5LJJDykSJTTWn/66adoTW+++SY8sEJhwYjLC2TzYdhxfT0U/t8voZPV7owUXTc+5avDptPp4h5qP4bbVPAOxSbT38LK5T4jUPg jGI/Ht23bdskll1x22WXr16/XWkOjXHDBBbCU7Nq16/Dhw6ZpBoNBpdTJkyd9Pl9paalhGNdff73WGiZrlEjR4rYUhI45 c+aMZquFazfkS2udSqWWLFlSXl7+0EMP3XzzzfCfCgWE0qMct9 qTYRjwXJum6ff7fT6fYRg+nw8vVD/F5/PhhWEYhmEEg0GcL04Z1wEblJSUFO0o+y+41D4GXXzTNFtbW23m aizgeNpnBApUcyaT4QnDy5Yt+6d/+qeZM2ei6c6ZMyebzR4/ftxxHKVURUVFNBqNRCJaa9M0x44dO3bs2DNnzvBQPqmSIgidw2 dIFCerlNJukuEvf/nLb3/727TQhFBYqLu3LAsRdTD60n0517ovPmoqV5HQp+K171bIfEJhK Lj4lN9XWHdEnxEoWutEIkFtsqamZtq0aYMHD165cmUqlUqn08q 1OeMBNQyDr8ijlEqlUuPHjx87diz2xjtTeaaFcxxeyIRiMDsZ+ ZQbk7506dLrr7/+0UcfHTduHL6Ob+Hr/B2ha/Ceino5ckxj5tZjNmDPjI4Cj+j9njkSHAAeQngZ6JD4krGaXRly U7Yb+9kL8ZwRQW2K/H3tfh0nSGXAaCdUgZ223LNnz6uvvrps2bLbbrvt7rvvnjt37qp Vq3bv3o25vW6v/Ax2i1BlPJN8GlNA+pJAwZWtrKycNGnSRRdd9MYbb8RiMZpJwOb JLYEImMWcA49yIpFYtWqVZu2KbqEgnONQgJvNCp90RDgcxtC4d u1avHjrrbfq6+vp6xgPKMOiSOfUH6BO3zMYUHonDTY97KqmWBA asbhA6dbhnwQKl9HozOkdLMemXbECt37v1yWAt0G8wLlQAh1ed GKu4IHVeIdHsFqW1dTU9PTTTw8aNEgpVVZWppSaNWvW7bffPmz YMPLgzJ8/f/fu3dqN7MEvkjrROc/kuStQHMdJJpO33nrrP/7jP65cuTKZTFJ4TmtrKz180WiUvhKPx6nkZTKZxGvEe/PEBAlAEQTuR0ilUvF4HFrfOAswJSgpKUGCj1IqHA6bpgn/NDe/C12gXYHS2NiotVZK+f1+cnnw190H3fFAIICBjar52ax2XM8IFO 0a/JDF+e6772q3Ytbvfve7WbNmISqgrKwsEAjw6asnkKI3Ew6H6a9 mTRUSoXMLCjezIUQMl2vVqlXDhw9XSs2aNWvjxo3Hjh2jXaFqQ GVl5ZIlSzDJnzdvnsfuwpPLlAgU7V67Xbt2TZgwYdSoUa+99lp rayspErpeJJ/bdYlhY4pGJsuVzPAEgWbkra2t2u39nQ5Adg+ld2o334dKZtFHP p9P2ldBcBzHMAzqr1SOIumZsRaZB36/n37uG9/4BvWlPSxQ+EN7//33YzStr6+/6KKLAoHAhg0btNYIUkFivK8tvVadQNn7/X7cYvwluU/R6J0sMcEtbdrVKJZlJRKJmTNnmqZ55513ouq6dtez4+WO0ul0L BZraWn5y1/+4vf7v/e97x04cEBrjYAK+nURKH+F26b27NmjlDp48CAuBxm78KTGYjGH lT3WbvAKZWzz7tKzvIUgnLNgdCETLi202S42q4CC75I5HaEn5H 1QSomRMn8wBsBhTXF1Pp8Pc1xyZ/fM8EnRqYFAAD9dLIFCP4RCYXPmzFFKfetb3xo0aFAkEkmlUolE wjAM0iimaSISoNdKEwJCUCn1zW9+E9JEKUXZc/RIdNRI+XSCtolEIjfddJNSasWKFXQlcTG5NxaTf9pVZWXlhRde OGbMmIMHD2InmhkFlAgUgNqvuIKGYcTjccfNxiaNwuvG8OWjst ksIno85ZClAoogaKbRoTxisVggEOjc8kG9JEWvYx5GBbWwuvh5 550nFpT8wRjg8/m0e7OU64DrGc8OoHHd7/djBEVxh2IJFJphIvrks88+gxYZN24cxtFsNkslxfGiT6gTUpyU ykvHTKE/uBQ8/z/3gaGJBK7PbbfdZhjGzp07sQ0FPOi2JgB6AWNqJpOpr68fPHjws GHDGhoatBvQo0Wg5IIpGr9PdHVwDxCdR+9ApmBKR7Xteb0j6T0 FgUcXAtVp7Ai6J76EKYl+dGoUjtD5foSzBCMNJtC4UxQkpNk6j j1JJpM5//zzMZrS+NTzFhQKx16+fDkqXX344YdKqYsuuqi+vj6bzUKylJaW YizndN8R5gm3i6BlKebigcGyc8M/P0Hcl2XLlhmG8eGHHyI6k+d/4elKp9PUihEOQeNpOp2ura0NBAI33XQTzUwQyikCRWs3l4w6RO UmmJGCJqsyRWxRh0s+M82WbNCuD8iRGBThnIdmWuSgCQaDvOF4 iEajPPkQfda+ffvi8TgWyaKeDmETPXAK/ZtcgYIAVa7/ejLFF/dUubEdxRIolKFTXV3t9/tRE8txnIMHDw4fPnzixInaNTUpN8I0dwGjXgtPwAkEAjgL27Z5 RcTOg2TxSCQSiUgkEgqFpkyZ4tkz2jgl6egcp4/jOLS6wgcffKCU2r59O7ksRKD8H/wS8CUAuxUqNUuWNAptEYR+A5+Coz/y+XzpdJqKLuBFMpk8efLkFVdcoZQaOXLk0aNH6evPPPMM2aWbm ppohufz+cSRmg+80+f9HrkDijjW0tjvyfWlRAReV9PzgnwQtDd 8l0tezbzwyGH2bE9RopZl7d+/nzJgLctqbm4+cuSI1ho5OzhInpidu+ZJu2YVLrl4XR8np/hK5+TKfbtt8Xh+XjpnsMe99gx83APAKw/xn8Pt+Mtf/qKUqqur066w4HBngsVWz+ZiFP9eddVVV155JbkmtFubRwRKm4v VYwIl9wB02/UvBKEfoF0jJalwmprDbGm7fd+sWbMGDRpUVVX129/+9uqrr6aBpLa2tqWlxbbt0tLSyspKvJlOp8PhsASh50MvFCj0i 18pUDTzBfB1W2zWmUMHYxK/fft2nNTy5cvT6TQcDeTXsF3LB15DFmDGyNVGPB4nyzrCtCGdNV uph+aZyWQSMaEdCRRyDOm2ywDRkVCc+NlcOkRDYp/U4uz2LDrtChTF4oJxBchjQGfEfTd4Exdh0aJF2vXAOu1Bbdyz5 BMOD7t6//33lVKIliUfrggUrYskULLZbCaToWClUCiEF2dTH0IQ+gqqbX0L yhog/H4/evmSkpIHHnhAa7169eqhQ4dqreG6RieFjU+dOoX+ly8rKHSNPi dQMLDheYAg4LN5Ho5NkRBgx44dSqlHH330gQceUEo999xzeN/v93PRY7t11imnnfZAa6HYzK6AhXuUUviIYrq5X6MjgWK3XS0Zc oSqV/BVU3CyHV2xdk0sfIZwlgKFPwBcC5IgwwHzEim2be/YscMwjJ07d9LF6WiOTaGvTU1NZGfiFzmdTvv9/vnz52PdUC0ChSiKQAGG60fHI4iEIEHoN9A0FA0tkUiEQiF6/h13kmdZ1rp16/x+/7Rp05RSL7zwgnY797q6OuRNhMPhw4cPkzUeYRNCl3H6oEDBI2G zSpitra3kJc+1qMXjcSxXMnHixHg8HolEJk2ahFOzbRuxJhZbq 5nSdvjiDLTneDyOLpqm+Eqp8847T7sVRHB43E7gaQ782KikFmQ Kd/FjJw7Lt+8cMsBQTPrXFShI4yL4F2EagXgiPYEXzz33nGmaOHJu x2oX7IffTfoX9VFnzpz5m9/8ho5QBMpfKYpAIRsjCqjAQNczPy0IPQmms5ZlQWeg3+EVEWjuu HPnzjfeeGPLli2azUefe+45iuOjwpSpVMo0zU5mlsJX0ucECkE T+paWltyd4FnCM2a7Qa/0vNEqdMlkMhgMOq7hhGwGNN2nzAnyVOq2ZhU6SDKEkJmBBuOOB AoltpA1AjuHAPLUBe38RpCUcVh4x9cVKB4XD10QbMPHJl50Y9q 0aTfffDP/0XalCfl04KulZptIJLj8euGFF8LhcCKRwPUUgfJXiiJQHMfJZD Kohkktp+d7BEHoVjKZDIoMUXfvaWLU96FPpzVB0Bbw4tChQ9Fo tLGxEa2GhE5Pnkj/oy8KFM0yengqCiCbBN8nLCgos6G1jsViyl0ml4xw3NqB4Zl+Do qB+yPI1hIIBKhOPA3qvJoI7cejTvixYbNkMkkNAVYQOrWzv3rY G5U174KLh19hfBdSz3aDSMhMApkyY8aMO+64g9QYrUneLh0tP0 k9w6pVqwKBAD8wEShaF0+goOVorZPJpKdIjiD0D9DF4PFuampy HMfv96NHow7LccP6ePFsx3ESiQRlT9B0kyzhEoOSJ31aoGBU42 GklBdJr7nRbtSoUSdOnEilUp9//nlZWdlDDz2kczQuFxMkHegAeJ0xHAMOsqysLBqNLl26NBKJ2La 9ZcuW7du3Y0TvXKCg/CDej8fj7777bktLSyaT2bRp0549e2ggb25u/sorRlafZDL5wQcf7N27l8TWWQqUTlw8nsrpkBq4LBMnTrz77rs 1K73R0fWk62azWBb+rWw2u2LFCuXWIdMiUIiiCBT0xeFwmCRqR ypbEPouuVZibkzmAwx1tZpNUrU7I9Rs6gzzuN/vz+0ThbOn7woUqjCm2yqS3PEY/x4+fHjUqFEoXuI4zoIFCxCXHQ6HPXZr/jqVStGwzW0n9KNUOvbaa68977zzMMwrpUKh0Nq1a3XbEdpzYDy k17Ks8vJyxVYY8Pv969ev1yzT7WyuXiqVeuqpp7Cfdn+33cE+1 8WDhkbqyrIsnBci3IPBIC+Qj1h40zRRd7iTYHntLqbLbxZODTr yrbfe8vv9dBgiUP4KvwQ9HySrO3huBKEfwGVHPk2sULtD1goAA CAASURBVPsRiN4sUDDmwQPucVXQqGaaJkWEUK0OmqzTVxCx1ND QcPLkSdrJ3r17E4kEj/Ow2Pqv9EVyBmmmEsiPY7hr8ZimuWXLFtgVMplMeXm5YRjcT6SZ wPKcbCaTqa6uVkp9+umneLO5ufkPf/gD9xx1ftG4xlJKPfHEE9BVDqtux3fSiUDpHLLK0KVYsGDBiBEj bHdNGCcn5buTibftpnNrN5vpwQcf/NWvfgXnkeM4tBooF6lfeZBnSV8SKEXs9bhAkemg0P8QgdJr6bU CxXEcmovzkdViyyakUinlFqTnPSct2koPDAK0v/jiC5gWNm/ejOEwEom89NJLmzdvtlk+LTkTIUrosmA0dRyH9p9KpRC7XVJSw lfitW37008/VW0rrDhtvS30wnLRWre2tpJP8+OPPybv/1leOgrysG3b5/PhaPF1uj7tBhJ0WaBks1lUgEVZRayqSLfJo6va1WfcHKW1Hjhw 4H333UenYxgGv5WFRQTKWSECRejfiEDptfRagQLTBY2aMEuQnY ACNoPBIH0LcaZkPiFTCmb2mzdvVko98MADf/7znw3D2LFjh9Z60aJFhmFUVFTQuO60rTgC1wa8D5oZMxKJBBXq UEqVlpY6jlNfX9/S0uI4zpo1a8Lh8IMPPqjdLBXyZXCB4gna4MlBCMW4//77z+aKcQ+Xdq07XNhFo1EuuXSBBAqIRqOhUOjRRx/1rPqSa/XxeN9Ir9B12Lp1ayAQWLduHb4uAuX/EIEiCN2ECJReS68VKNyC0u60G34EpVQ8Hqd/NbOmUEl1rXUsFvP7/ePGjYOd4/rrr1dKvfLKK6FQaPbs2Tqn48XsH8omFAo5rOy9ZpGeWCwQCwZt 2LDB7/fTv+Xl5a2trZSWTF/xWFDIvIE8fNu2E4kEAlAGDBgQi8VIk3WypAPtkysVuHgikQj/IgX8FkSgOG5qz6RJk77//e8j37u5udmjTsg+xH+UJIjjBrtoradPnz5ixIhEIkHeInHx/BURKILQTYhA6bX0coHi8/koRpUPrplMBqGjfEyNxWJ81AeUeExbIl/yW9/6lmEYY8eOJSGCj7hDJJvNtrS0cE+NZumW+EsXyjCM3/3ud9FolFa8pxPpSKCQ6KExmALG16xZwxXD2Y8L2DIajSo3uJin xfHLy7919gKFTo03xtraWqXUk08+ScdPmoP/Vq5A4RlSGzduVEotXbqU/5AIlL8iAkUQugkRKL2WXitQNAuSxRCOYY/WmNRaRyKRb37zmygjS5Xm8RFqpVOqSCqVCoVCJFxOnDihlPrpT 39K1Y0zmQxV8qBFevGvcmvO8kpllFYWDAaDwaBSqqysLFcEYOG ejlw8mvllWltbq6qqKMZWa/3RRx8FAgHa4CtL3ePsaP84bJRnpSOnAyiIQCEVYlnWI4884vf7 N27cyI/KU++EizbuJ9Jat7S0DB8+/Ne//jUuLHncxMXzV0SgCEI3IQKl19JrBQpZUBBLQR1jIpGorq5+773 3nn766RkzZiilnn322TfeeGPbtm1QGChsTxtToR1YYjCgbtu2j eI6eVgGRvRMJnP69Olly5a98sort9xySzgcnj179htvvFFVVXX y5EnNLDQo+AZM06TjxK/wyBUakrlAcViKzbFjx5RSw4YNO3HiRDabXbhwod/vpyz6s7wLvE4donP4Fz119PkXv5ZA0UyjOG49t1gsNnr06Isuu gjHTx/RD5GXh4ARBZVzb7jhhtLS0s8++0yzNQhFoPwfIlAEoZsQgdJr6 bUCBUGyKJ6BiXh9ff2SJUu+//3v48BCodDkyZOVUkOGDDFNE7m+ixcv3rdvn3YXdsEObbfUvVIK VV+VUtheKRUIBBx31ZszZ868/PLLI0eOVEoFg0HDMGbMmOH3+4cMGUIHs2DBgpqaGiQBOY6DKBn UCFHuysaAEn3pGnqiRKm3xxhfXV3Na40sWrSosbGRNut8aODFh KgYiXKTgPiP5m9B8ZwUKbyjR4+OHDlyxIgR9fX1ZH/q6Plx3PiVZDJ57bXX+v3+NWvW0KeUaiQuHq3dS0xWQaVUTU1NA bUCdzHiL/kFly5din6Bxzc5blQUKU3sx2IraBfq2AShuymgsKCdWO5SbQU7 ynMPbnLXbOVFpO9irDUMAy8QDoLXoVAIQym8MDSm+v1+w128ms bszvH5fKYLSQe8xkcQKG+++eagQYNCodC0adM++uijaDSKJwEh tPF4fOfOnU888QT28PTTT8diMQrVJKcJeRx4F0od74oVK0aOHG kYxqRJkz755BMsGWPbtt/vdxynqampqqrqT3/6Ew7pySefRGV6OpHcGmXtnq9nA6rzhq/j9OnE6ZrgUzi8+GXv6FfyhI4K8IOhsmz88PAiEAgcP3584MCBS qkPP/yQlAQV5OUPG96sqan57//+b9M0UdTOzlktmXcUBdfKfabvoOiqbDb77LPPBoPBESNG1NXV2 QWi3TI7mUzm2WefVUqdf/75tbW1FDBFwed0P7ASRK4PkstYQei1dIflg6bFeR/dOQ2PCVBKkfJDUVTPEEiDKKBlaDA+0VfIONERfJ98LDcMo7S01 LMTn893xx13BAKBO+644/Dhw5TfobVOp9MlJSXwCNBqunPmzFFKDRs2DItK5i4ITMYVx11c 17KsWbNmKaUmTZq0f/9+myUBZTIZ5QbJYj+tra2PPfaYUmro0KEnTpyAnuCGk6+ECxQq 8oZ36KxxHQzD8Pv9iHHhqqWTm1IoSGKiaCzJqdxj8Eilurq6W2 65RSk1btw4Xq2fr1Nh2/aZM2dmz56tlPrhD3+4fft2mpPTYykCpQ1UZuehhx7iF70gIPGM 33t6oMvKynBTKY7JcRws2413cDvpOG0W5SR2FKFPUECBwl34Wg RKgUBnopSy3XxX9E6wmqA/NE0TI2UwGKRxFMMY79/wmkaysxkFTYZSqrS0lAwGePGNb3zjnXfeQbwCRbDSUvB0Fqj2k clk9uzZM3To0JEjRx45ckS7Wb70XQoTodpo48ePV0qtXr1aM4M KzfjpJ9LpNMSNZVl79+4dOnTomDFjlFvbHuaNTmwnueeO8y0pK fEIDowOkD74CFcV1584myv8dcFoxY8nEAjwW0wvYC0jhYqLEA6 HcXnffPNNeMq+853vzJkz55133tm/f//hw4c3btz4wgsv3HTTTUqpCy64YOHChWfOnNHMvuJBBIrWWkMQU BCTUgoVkQuFZ60Hvsr2888/D1clZgCJRIKHMsXjcUp7o2gvHm3Uo5dJELpEAQWKuHi6A3QmuC k0ftP4FwgEaHUYctx4fBA+n6+kpASbYUhTna7JQsMhVAigMdsz o0PlLppec1uyYmvxaDaGVVdXDxkyZOTIkSdOnODFZ8m9nkqlMA McP358IBDYsGEDvY89WO56wkopTyAtPj169OiQIUN+8IMf0Bnh LLhS6RzyZCmlgsEgP2tukoEIIBlE6+CQCuzatLnd+8Lvbzgchk AkHx/ZcsjwQxvTRUDRXrjYPvnkk3nz5gWDQQr9gWVo7Nixa9eubWhoc NouHGi764BS5pEhAoUgV1kgEIBkKeyebduGs0a37WeVUtwfhPf T6TTMj9A3VBXRduvbFPDwBKFbKbgFRQRKYfEIFPRXtPoMrVAD6 UDjqHaLlsICQboBG3cyYeM/arv1MChhFfGnmUxm5cqVfr8fy9MAy10Bx7IslIRHgIh2Iwg1G8 aQSzxu3DjN1IbtlqtHZ/v8888HAoHVq1eT7HAch3ppfIWeVZptaq3ROR8+fFgpdf311+u2 IqndM83FdpcTgg6gRQFJTuEddPjw/uNNnhHdyXX+umjX2qS1jsVikAjpdJpSu0mooaQ9TySGkAqFQja LmNTuxPvw4cPHjh3bt29fbW2tdv0ANBXHA2a1XbcIiEDRWmvbt skZadu2YRj0jBYQ2iFvZtFoFPeAmhC5SPGYkk+HugmHJafl3lF B6G04EoPSu3FcFw91MuigMERROVTNilvgyqdSqddeew3GA80SW T0FMDrBMzcjUGrsgQceoIGZekjq8Wx3JT+aTyJwxHYrqr3//vuhUOjjjz/GSO9ZhiYajQaDwSlTprTb29tuZgMuC4kGlCrR7uJ2a9asMU1z4 8aNEBZUfOxsumV6hhHF4jBV5LjxMQcPHqypqTl06FBVVZVmY4d mqzef5aX+SjzHHI/HcdOrq6sPHTpUU1NTU1ODB8BzozOZDJetuJtQNtqtRNfU1KRZV ToqZ0emLAJixaMOcw8vf/pM34HnCWtEYQ13zbLY88dxdTfmB7hDsVhs1apVI0eONE2THjLH cQwWfPTFF19UVFTgnXA4DJuYZkr27DsCQSgWhRIoPDLAkRiUQk C3hsegaLeHQY0KbMm7mnQ6Tfmfx48fb2ho8Pl8sO3brHpp5z+a C8YzDPxPPPGEYRhHjx4ltaHby8dRLBEaB8AruVmW9fOf//zyyy/XTMRgqT/Lsh5//HGl1OnTp+l9WqjPchfc0VpjOCAJRYOFdueHl19++cUXX4yzhkY 5S4GCnyAPDo3K+PvKK6+MHj0aYwF8K0OGDHnppZcwmnArVwHBe dGyR8uWLUMoCTl0Ro4c+dJLL2lWURdCCv6mkpISklbavdHZbDa RSLz77ruJRMJxbWbJZHLr1q11dXVks4FS4epTi0ABPEYkk8kYh lHwG0/PPZ7dFStWfPvb3160aBEq/1DDTiaToVBIax2LxXbu3Onz+T755JPq6mqttVLq4MGD3FFK7UQ QejOFEiiJRAJLr5HhUARKPtBlxAty8XhqkJMohKOZSrxrZpOgG 0HSod3UxVzIZw3TNfaWTCaVUk8++aRm2QBcmlB3iq/QYMnXGcY269atU0pt27ZNs8BY7S5EPG/ePM8+6QWNCMqtGU/xf3QkeH/Lli2maVZUVJylNOEulWw2S8EodJrZbBaJMJMmTdq6dWt1dXVlZ eUXX3wxbdo0pVR5eTk0nM4prJI/dGCpVOrmm29WSk2ZMmXz5s27d+/ev3//tm3bpkyZopS64YYbqBIMzoIyjekBgOSFZQV/x48fDxGp3bUboXs0iyuCRKad9E+B4nmmbZboa9s24ne0e1G42b BQ9mcP1NQpRGvz5s0XX3zxlVdeuW7dOs1ajm3bvCTAjh07Tp8+ TbFL8AvSoRb86SwgtFgGN8yS35FMSkJvgFyKpNTPfoX3s4FHOK Jfw4Qbv8V722g0eumll/r9/ssvv/zw4cPaTZ3AZjfccAMPfdAiUPKGdyCefo97Xmy30rx2p3NUNIV7 fLi7gVuFeYd84MABbhUAiCpFZXfLsr788kul1N69e3NdP07bEu nkH/ecF4mq5uZm0zQXL15MjnJs8NlnnymlPvvsM9stQk8/xB3rXDZ5OlvsCo4MklMUQcK3J7XHXWYERbnSZs8995xSasOGDT gSKojlOM7q1auVUvfcc49mTn9As9ZTp04NGjSIxpEbbrgBbql0 On3DDTfwYNi6ujrdNuiYumUcQ0VFhePWitVuZ/7RRx8pd6Vlx3EoPslwS8OREU65GdrZbHbz5s0+n2/VqlVa67Vr15qmeeONN5JZyxPjotsbi/uPQMHTGY1G8Rdvwr6ES4ByyFygFNZB7sFjONXuAPDJJ59cdtll l1566ebNm7Wr0PFYBAKBHTt2QIRivU1EgXmafWGPs1CQiS8ej9 OA57BSLjQj4Wck9Ab4A2YXCM1qDGqtMT/Gr1BGPT76n//5n6FDh3755ZfXX3/9NddcQ0UwM5nMuHHj5s2bFw6H4XvFrMNga8oLXaAjgcKzBBx35 V7NBjOlFCnLaDQaCoVoNshHetoJ3abGxsYRI0aMGjXqyJEjXJv abkCJbdvPPvtsWVkZovFogKRD5V0fGXKctoXV+QHMmDHj2muvt W2bL+P38ssvoxg8njESJVys4LGkZ5V2zidX+N1Zs2aNHz9es3k jnk+edEkn68k5Um66NSkqwzAee+wxmtdRbwmR8fLLL5eVle3du 5cuLLf9WJY1YMCAUaNGHTx4UGtdUVGhlLruuuu01uPGjcPgorW uq6sbMmTIwIED+e2m+9XQ0BAMBufMmUMTFS4dcAyBQABTCBo0I VBopu04TklJCRxn2ENpaem6des2b958wQUXXHPNNXg/EomQGYY8XOeEBcVxnMrKSnj4DMNA0/rtb3/r9/vpueGWFd1tAgXPPT0Ezc3N9L7W+tNPP/3P//zPK6+88uOPP4ZgT6fTW7ZsUUrt2rWLMss93pzeLFC01ul0Graf mpoax3HgpYYNEMY9rXUymbz55pvff//9Yh/suQ6UInUxVAihgOmLFFkVCAQ89RuQwkAlHx5++GHbttevX89jN pVSc+bMoTlZc3MzmgPiA4Qu04kFRbOCCA0NDbZto3YqDauamUL xXcwG0bs6bQs10b+WZdXV1U2ePLmhoUEz61o6ncZOMpnM9OnTb 7nllpaWFnyXdph7ePQA0Ke2a+yhvv3ll182TZNGQfTDEyZMKC8 v16505sGtdlvLdDAY5O4MGilom1Qq9eabbyqWjIlPecgUfpQsf 5i52awGP1mkdu7cSTKCF8eiiwl9j1V/ybZB0TO2bYdCofr6ejJXf/TRR7NmzdJaT5s2DcG82OGRI0ewflBrays/X9u2d+zYoZTaunWrbpu5Q8fT1NTk8/leeOEFOgbDLexGx6OZgTObzS5YsCAQCKxZs2bTpk1KKZrEancU purAdBi6vwoULvMPHTqktd68efOxY8csy/rwww+Vu7gDxYfr7regaK158DPVO2ltbT1z5sySJUvQBWv3piYS iX379lVVVZEJFE8wF/uFPcgCQhYsmhLV1NSg3Mv27duVUuFwOJPJjB8//qGHHir2wQp/xTAMxy3Qqd3pY0HAo06lDhKJBAKtACZM+NH3339fKTVz5kylFL o/gDQHFNigbEyttWmavKcTvi7tChTcDvoIybRXXnkl6p7V1NRccs klpAyy2WwqlaKHxxPAodvGdpBxAn4iHoFru6kxlmXNmDHjj3/8o2YFGvgOHWbkUEpBJNnMj++0zUWHetBtU6Zvv/32mTNn8mV+6fDo5/ApdyPmmuvw06+//jr0tN3Wwk2HTWv4eUSbdgUKgo4ty3r77bdN0yRnEN0ILrluueW WKVOmcMMSvz4+n4/X28VPQyHx6JnFixeTKtJu5jBev/vuu8rNG+eVQh3HIc06YcKEiRMnkqEIAoUeIfLA0uTEMIy5c+fi mhhuqVLDXd7IY2yj+9I/BQrIZrN4fOm6w6FAd4USxnQ3CxQKVPbQ0NCwZMmSYDC4ePHiWC xGLieKBshms+h/PeZHT3Mt7NEWBIxJsFvGYrGWlhaaTK9atQoPLtRJJ8uICz0DFe VEjCGGnML+BMY8y7LgoEHDpGkfnm1Ioo0bN06ePPmjjz7iX6S+ HilvZAqGlV7oMu0KFA46nM2bN//0pz+lofSyyy7bvXt3c3MzulZUJ8OnNotZwR7IXO8xhNhuXi51w uQkuu2226ZOnWq7YSvtqhMM3nwNYf5zfNhesWIFOiKaHzqOM23 atAkTJnhqq9OeuZnE7/fjQeWCg3aOB3j58uVcc2umeEg/0bcwANOuuEDJZrMkpwAJAs30zaRJkyZMmED7pNggvEPFSGjQga anAjNa66eeekop9cQTT2CWzoe/bDaL1HHddhU5/lta69tuu23ChAl0UtS9O6wKBkJzTNO89tpr6VKvWbPG5/M9+eSTODWsoPTRRx/xnGTdvy0olmVBMAaDQcqUw0iPeONUKhWLxbho6FaBollwLpKZj x8//sgjjyilFi1adOLECVKvfErhcVXyRkh42kwvIZlMwmtQUlICpXX o0CHTNOPx+NNPP20YRjAYrKysHDJkCCr2Fvt4z3Ug4tFFUidVw PuCNUttNwhAtxePSfqbvsLnfJr1v7q9Ol1C1+hIoNCM35Pfq91 ISeqdcJv42E+jI1cJFivggRJqmECfOHECO1m2bNlLL73U2tpqW db06dPvuusuGo+5nYBj2zbyWnEwXFVz08hzzz1XVlZGZ4TjnzR p0p133snHZpvFjtDBx+PxcDis2+tp+eO6dOlSiDNsRg4jAOMxW dA9+yEXD3a4detWn8938OBBshJxteQ4TjweLykpWbx4sWaDApm acB8p+I8yQjDw01QEZWEfeeSR3Cchk8lUVFSYpllTU8NrrmAlA fwbiUT8fv8TTzxBx0YeW7o1iUQCJ75x40al1IUXXlhfX5/JZD7//HPkVNP4a5rm/v37NROj9FH/FCjazYlXSi1evDiZTJaXlx84cAASkvQpj6nuVoFC4VHkiZw7d+ 4//MM/PP/88x7TFgYGeo4pVK1dF6zurQJFs0k5Dm/37t1KqdOnTz/22GOIQohEIuvXrx85ciRqCwpFBJZbCgzy1LMqyP4dN0S6qakJs 9LW1laPOZ2PENotn4A98LphDnMNKMniyY+vtKBoV6xgZsU1h8O M04A6OtjJ+M4p7C8Wiw0cOHDgwIHV1dUDBgwYPXr04cOHKysrl VLoDx3HWbx48cCBA2F4JtMFjXx8t62traQ86IfoUzw2jz/++JVXXgktQkP+woULR48eTVvSo+gwK3XWrZxJ3/JYJmjUePTRR3/xi1+QQYgbdWzb9vv9FqsQY7npP9hAuSX/8dOnT5/2+Xz/+7//C6FDp0OT2GXLlimltm/frl2RRJYn2iHdXJKYJAhgvLFte8GCBdiSsoTot86cOaOUWrJkC XnE6JRxi1977TXDMCorKyFVbdsmfw1XGEqpTCaD1K0f/vCH//Zv/7Z79+533nlHKTVjxgytdSKRQN7y66+/7vHV4nf7p0DhcT20bAGlw5mmSQqAi3TdnRYU7T4HZJzcv3//xIkTR4wY8corr1D8LD8YzWLQ0BfQHaLm2h3HmT9Zt5i0z+fz+/3kWcONiMfjdIU///xzaGehiKC9IDCIxoACPl30PHuEBf0EvU8NkwIkacrLgxuo5XZT Uz136Eig4I7QiOVRihbLMHBY+rHW3igNMjPQ32PHjimlEMV55M gRpdSGDRsMw7jppptQbFRr/eabbxqGcfToUZ0TKMpFLVdITtuYXG5sGzFixN133+3Z5oMPPlB KNTc3W248L5cU9BP84D1nzbcZOnTogw8+yPtnepHJZGDn445+f pWUm8VD0nzy5MlKqZMnT+Y6Vvbv3x8Oh8eOHavbE4goUgc3Osb 7VCq1cuXKBQsWZLPZOXPmrFixAj7TdDq9bNkyTBR1W78YLsidd 96plDpx4gSNNfRbhw4dKikp+c1vfoN/0dsrd0Ue2hJv0kkdPXr00UcfXbt2bTqdXrhwIV/ZZ9GiRdxYwFt63xYoNGzToVNAMp0qWYZJ22JLnplmt61hjKuM7/LCz3kWh+DNg369urp6+vTpI0aMWLVqVTweT6VSp06dUkqVlJSY pllfX083MhgMRiIRON2PHDkybNiw/fv3d15QjiY0fCmffE7h7KGmRQ8rnyvT/cLdIUGTSCRsVqjx64JulG4TWQJoKkaGKClw5yEej/MobF1oC4ouxBygUPsRiHYFSqHkae5O0AMHAgHqFgzDuOiii777 3e/S4i+2bbe0tJim+ec//xnfos7cM0PTrBYI9e3YjBIgUO8ESTHcTNLY2IggDHQ+pLE6MR/S9JIGBXxr27ZtWDPIY8WhjigYDFL8DRX8IEmELLaSkhLtOrOi0 eiQIUMGDx68detW7ilDEZQxY8YgWlm3bRG2G308depUpVQgEKB FpydOnKi1njFjhlLK7/ejbFogELjrrru4rKTRIZvNtrS0XHjhhaNHj968eXOWlfnHMfzw hz9E6X06R+VWY3OYm4ybuzp/ojzGOVqah3xG9FEB+6VuFyjc0pBOp8khQuUTQDabpbr1aAM0cl N3TM4XrbVpmtwGgxcUJ9UFmcJjweCP1221wnvvvTdw4MDf/OY3tm2vXr0aRQnfeOMN8uohZRe+27q6ugEDBjz99NO4c50fD4Z 8vPY4j7sPuAnI/MOPAaTTaZQE1e41z80665qWgj0WMwmH1R6g3ZLoFAjbTYjg4eQ FvEoiUHot3SpQPD+EqQim+HQrA4HA8OHDacSlonwTJ04cM2YMF SnhFXF4cB6f6vAysvS7kyZNGj16dCqV4v0kNps1a9aQIUMoTYa GD0pQaPcULLYGHl5MmTJl8ODBPFnGoxjofGnJevoVBOpBozhu8 IplWSdOnLj66quVUpdeeum99947a9asyy67DMXNjh8/rt10J3545OuJxWJ1dXWnT5+Ox+ORSAQFUbTWkUiktrYWKfqRSG Tfvn28NAsJPuonT5069R//8R8+n+/HP/7xXXfddc8991x11VWmaY4bN+7QoUO2u6gk5ZlDo9htQ3lIEXaC nVPIkSw6uQKlgHS7QHnppZcw7bMsa8mSJVjK+Ve/+lVjY2N5eTkE3fTp07X7KJMow6WESQq7yrC1IsPhMC4uOfMoD7 7LM29KbLbYKg+WZe3Zs2f69OmDBg165513aJlKeEZwy23bPnLk yPDhw9etW4fJh2maCxYs0DmVBNv9Uf7k4SL0WNaM4zi7d+9ubG ykhxUBy19++SVtgOOHIMO1pSvThePkhZjoTfRoiUQCO6TCfVy7 nOOg3wyHw9TFF9bSJgKl19IzAoWPWNlsNhAIaHdOUlJS8sEHH2 iW2QCqq6uRmMr3A5niuHHcmlU9oQOmgTMajW7fvj0UCr3yyiv4 yGqbMbRz586ysrK5c+daloWDoVEg9/TpFMjbiK9s27YtFAq9/fbbOPiWlhZ8F9G+5P7QrnZxXGsNDMZIuYf7mw5Mu0VHtm3bdu+ 995aXl1922WV33XXXJ598QsYbjzGeBgLqNj05FtTv5a7MR5vxB YZodldRUXH//feXl5dfddVVEyZMWL16NV9zANvAax8MBmluT7fbysl+6ghPfA/WSCKTTLs3ahzQrgAAIABJREFUJU+6XaCgTB7OH2F3W7Zs8fv9d XV1SqlsNjt//nz4/5RS77777p/+9KdkMonQYt32UfA4BW3bDofDqDzD5VvXvDzkOtXu86S1rqysv PvuuwcPHvzqq6+i6K125fY111zjOE59fT0egkAgsGnTJu3WXf7 lL385fvx4PNyauYdzoVKMeIJpFvKVkjZPYCDJZDL//M//fO+99/IYrqeeeurv//7vUfEJbamhoSEcDqPohadRfd3fpXuKToT+6rbNidJWBYCnSLlV IAueZuyIQOmtOD0lUPjDhqpOyi24HgqFAoEARjiHLTV3//33K6W2bNli2zbVG3VYM6dOO5FIICuT1ANMJmPGjPnRj36ktaYl Wj0GVPzE7t278S9tk3v6DhMo2p1BJZPJUaNG/fu//zs6FgpH5c3Hdivkatb/8ArauA4+nw/9M/WBtKw9LghFI/B4IB43k3VLy1iWxbfJZrPc149zQV11fqY8/kO7OoZ66aamJj5j5MMlDphuqJ2Dw7Rju9AlxelEo1Haf98WKFp rrE5k27bP59uwYcPgwYPRzyqlFi5ciKUHamtr/X6/3+8fM2aMYRhkUistLeX1iChMHbn1jrveRDqdxvONe9YFjUIda2 NjI95ZsGDBv/zLv7zwwgt4AnCTILHxo/F4nCIzlFuMSGttGEYsFisvL7/55ptjsVgn6kSz9DyqXUtT5G4Fp7Nq1arbb7/dMIyWlhY0yFQqNWLEiEcfffTVV1+l45k3b96UKVNGjRqlmZWyy 34o3hhgr6qsrES0ncNmWlQoT9Bu30fzPHKTF2r/IlB6LT0mUDxjlcUyWWwWGkj5sVrrpqamn/zkJ0OHDkWxTe06i2k+yd09AK0eluPx48crpQ4ePJhri4VMwTg9 YsSIgQMHHjp0CK2Adsi/hQuCUyDjLpJDlVJkEubDdk1NzYsvvrhs2bI//vGPpmnOnz9/2bJlO3fu9GQaJ5NJVBBBVXhcokgkknGXZOHPvKesqM5RFQT1oh 7Liic+j5QBv4xc3/D3eRwrxBOPL6RkabttnvbZwIdg6p8pqaUPC5RsNuvz+XCZgsHg 8OHDEVWqtVZKjR07NpFIGIYRiUSg71paWnAdaQ9khbNZSDZkIL +Fmi1E3IXj5Hofw+TBgwfnzJkzaNCgt956i9fZhP1TKfW3f/u3yq1/TBWgLctCAcd0Ov3ggw8eP37c+apV93iMMEV1daRkCwUu3eDBg3 fv3j137tyFCxfiR1euXDl37txoNDpgwABcz/r6+mAwGI1G77jjDlhiqSniyL8WOGWeaIC60SNGjDh27BgSQ7gl ueAn3kfB80/1Kx3HoUelIIhA6bX0mEAh8wb2TFM1gBxau22yjOM4VVVVQ4cOH TZs2JEjR2w3hg9foYLC1N65sL7xxhuVUljjDJM9/LonPFFrffjw4VGjRg0YMAALy+v2pHmu0bGpqQkLDm/btg2NCIdx8uTJ559/fujQocFgEMnD06dPRxeEoaekpOThhx8+duwYvqXZKjZ8GNJuP4 YptGciSpfRUyXIcpOK6U3SEOQR0+0Z3bmZ2XNf6I7gHHkUo80i figsQbPemws7u9OJMX3quK6l/iBQbNsOh8OIgQ0EAq+++ioKgh09evS8885bs2bNnj17MKL7fD6 ESZ9//vnclI0cMIpApmeIVgyhiryQtx6xefZ4nidYTRobG1FvmG4PSUg y7mFCQPUEqaWhPXc+imBLxHL7fL4LLrhA9SAocBSLxZRSJ06cS CaTgwcPTiaTyWTyiSeeWLFihdb6iSeeQIH/w4cPK6XKysqwdlJZWZlnxZazxO/345bRyeJf0zRxHfCvwEHlaUQGZLNZclcXChEovZZuFSi0E49A4 YEU1ONl3cXw8CllEhw5cuR73/ueUmrDhg3Ij6UxMlfQaK2rqqouvfRSpdS2bds0i/zgHiLbtmOxGOXanDp1avTo0Uqp119/Xbd9zNpl7969l19+eTAY3Lp1Kx9ZV6xYMWbMGKXUpEmT1q1bhz jWbDYbDAbR7+3atevxxx/HiDN79uxYLBaLxdDjYTEHpRT1e/B/IbDjm9/8JrXWkpISWggauzLcBYqxMW/XcJwptnY0Ii95N4gfAp7ukf7F+lzoQvFzGCLxGj/K/8KLZ5om6t/TSj2dgO3JZKD7QZAsrgVqDB84cACevB07djiOU1lZiU+PHTtGZ gntJp3zq4DHlByfjpu6TNpTs1I2ukvxg6RLbFbDh7vZaMvcn+C vSR3zNtl5MKnjOIa7UCLOseC3OReaB6C7WbJkyaJFi1atWkX57 o2NjSNHjjx27JjP52tpaeH3guZJXTtO9Hr8Mq5fvz4YDJKd4Cu 1/LkJBg+agYkF5RyhWwUKb2jcPEDWaOpjuavds43jOLW1tRMmTFB K3XLLLXv37iVvBXUy2L62tnbOnDmGYYwePXrHjh20T6ryR82fn u1oNAp9gGWeMGTA8tGRlKeVZWiRS3w0YcIEn883ceLEgwcPkgP LdvPjNCvqmkql5s+fb5rmsGHDTp48qdoupYkXpaWlnmMIBoOwU tCR8C96VrdRSlGaBR0kVaygN+mUPboEe8PGfr+faws6BqgT2jM 2oy0Nlw71SFv4eWk3ZqhdgVLA8auXFnnkljr+PgVq2G64ic0yk LVbwb3gAzxuSTeJxB7Yf7tQL4OUeqXUoEGDUNYafcRjjz02fvz 4RYsW0Vd4J1XYTGAl9UaLytcVFu0aKcnOrFkqhNzZgoDOEDfFc 4VJZPSArM9xpPxfL+04zquvvjp48GC/3z98+PDFixe//fbb+/fv37dv3/r165cuXTpu3DiM4nPnziUXhsOWNSbNzWNLUdOdhl4yCfCRno+4 NAZzNUDlRjZu3MhL/uNFxl2CW7NOOBqN1tXVDRs2bOjQobQHGqSVUuedd55yl/jmxg+8Jns//0ou/BTwFTpZfJFEDDfecM3Bd0XrjfP9tGuewQvoIX49+f5VWyFIV4B iNkDfLtT2dfFE7ti2nXXBIwvv16FDhyKRCH+HAqp1N1wmLiC6o xfo7v3nQuEj9M4999xzww03aLamdnNz89/93d+dOnXKtm2atTuOAxVY2EOVYay4dNnywUNkPBYdPjcV8iRXo HjSuJy2dVp75njI4EFG4ng8vnPnThQco8IbGOHKy8tXr17d0NA A4ytlolEkh86xTG/YsIFGR6QRKWYjaXe8BxjOS0tLMTDjHZ/PhykuT6/Vrp9Ct7Uh2badSCRqamp+8IMfwIEFAoEAzogfA3emcBGAg8G/JJ44OE54Z2hv5513HhmKyLtEyz3CMkS6gV8WnDK/IO2qnNw3Yfuhg8e/dHgkU8gFz5+3c06g4AX6O25UaGpqmjNnzs9+9jNco0GDBgUCgf vuu+/TTz+lr/OqwAWk/wkUgKsdj8epfBBfWogCyGmuxgP7c8sQ5YMMY8WlCwLFaRsw6Nk VvZA7WxA8AoXKNVGD7fnahmQ+IZ9vc3OzzZJZotFoZWXloUOHj h49yvsT6uJw8GSXpfhQnMuGDRtKSkp8Ph8GaQ43FbSrUXjAIo3 l9Eh7ilbY7oIMDisGQwZm1N689dZbaWOqKUoX3zRNmrN5hjCq4 NAuPB+HvohvodDDypUrn3766UmTJk2ZMmXatGmTJ09++OGHV6x YcfToUR4JBChVmy4m/mIbyItQKIRbQHN+Ps/XbGEjzcKcyRqK68mv3rklUOjSULo8XkNKL1q0CMHV6PVOnTq1Z cuWn/70p1OnTj1z5gwfXAt7VP1PoHDXbyaTQeYq3qSZGY8Xpqg36hkL e5FlGCsuX1egdKRO+E7ExVNAPAKFDy00CvbA6hBclHBoTki9hG 5bexpvYmjP9Uk5bqAe6ZstW7ZQCOqQIUOam5upPltuD5kbD0A9 G7JEy8rKIGgQFkP2HjoRTw+MMs2wHNu2/d577wWDwU2bNsFOX1tbiyIIjhuWh4ccYzwiaTqvLpFL1q3ojX2 uXr160qRJSBxRSs2cOXPGjBm33nrr9OnTR44cCZ1x5ZVXPvvss 7BFxeNx7jUjuOghzw7eodotkGsnTpw4cODAgQMHUAY3mUzyur2 4pMFgECkstE99rgmUXDdNKpWigE3LXSCbrrLWOhqNPvfccw888 IDWmt+nAtL/BApZialJ8HQ4JIwopbZt24bGvH37djyX6A0LHugjw1hx6bKLR7 t+WI+9UwRKYcl18ZBVn9JHYe3vVto1Vxg5sSCweXzjG9+gN8Ph MAVtKFb/Dd+l0gyWu3QOvlVaWvrd73736NGjWFibLkXuCw/UQT3yyCPYFVw8nnXHeBoEd3mTDCLv9lVXXfXf//3fOEhKukRKDuXCwK5Dt4zWBPjKm8vr81ZVVd10000lJSUXX3zx smXL6uvrdduaKJFIpLm5eefOnePHjzdN86KLLtq1axe+S2MfLS mq27ZEXG36LSQDrl69+l//9V/5HRw0aNCbb76p3VwK2w2Fxqco1kc7ObcECuByOJ1ORyKRhoYGX nYGjxry3zzlT7hDtFD0P4HCzSSOG1ZCNkOllOM4R48eRcWaioq KoUOHlpSU8PT3bDZbwEJqMowVly4LFO6Kzf1Iy50tEB6Bks1ms VipJ221ZyBdQmkmpmkisoFiJjDVDgQC0CUAFTgposIwDNM0sYF 2rbMoPg4fzfDhw6uqqmg4cNji9tqtJ5trziHDUmtrK48thQwCn qxPdHRcoPBHOplMfvzxxygX7jhORUVFMBi86aabUKwslUoFAgH SEJ46FLqDkAP6CV6XdsOGDT6fb9SoUe+88w7epAkkCvPjTZJNN TU1F198cTAYnDNnjmdvdMUcdyUd3LhgMAjjELZErbx77rln7dq 1VVVV+/fvX7du3cyZM5VSv//978n7b7vhJhBn/IfORYGCh4wLZG6Uy2azfr+fi0oqO1Pw6BPQ/wSKblsXjsp/0aBimib6CKy3fvz4ceWONN1R4FXJMFZUvq5AoaeUqxNakpqbUu TOFgSPQHEcB+GfnrSLniTXsgKNAk2AQzJYbKYnUZYbVJSbqgrb CU5t2LBhp0+f5qKB8n06uUp4gWF1z549ihVeMtwaZdx2go0hUM gtknXXjqUuMZ1OK6WeeeYZvIPjHDdunEeF09E2NTXhRe5smVt6 eIHQTZs2KaWuv/7606dPY5ijlcuw2ItmASJUqCaTySxatMjv99PK0jSN5GU4tBtB gouAgfLFF19USq1evVq3VVHxeHzjxo2hUOi+++7T7nAMTxaeN5 4+dm4JFI905fOzLFu3RbmKW7v3g5R1YetDgP4nUPizS088GmQ6 nQ6FQgMHDnzjjTdQvAizNPQ+VLiwsDJFyTBWVLosUCjULplMnj 59GutP0dRWy50tEB6BorVWrplB92CEbOcjkMMi2+gJ4etv6xwn PskRrTUCDZH4+t3vfhcrnXnsIiA3/snJQWv95JNPwqJD3ZdmkzE6SJutxaPbhvHSzm3bnjZt2tixYyn cB2sQXnvttSiDTuMUnyeTAaOjQ9VuyMuBAweUUrfccgtF4FItf CqoQWZvfBGOIfzu448/XlJS8uKLL+beIAgyxNnAaoX9xONxn8/38MMPU6unIQC7ffHFFw3DOHLkiOOuQELS02Hl0c8tgdIJfFp2l vbnQsEFRMHvQQ/s/+xB6zIMo7a2dtSoUWvXrtVui4JwtlgJ5wIeqgxjxQW3OOsuoW5 ZVllZmeO6n2G1xpQuHo9PmTJFKXXjjTfSCiyO43z66afKTa/AevFFaar9D97K+MUko4XFVqMl2wAvE0VQ5gEfg/kUn9aEJ8M+PRWY+FnuYiC67ToyHvOGp4oBr7JNe8CnngpjYPjw 4fRonaX2op/DAeNXbr/99htuuAEBIvgJj7LxyGjbXWiMTpBPmF977TWlFLc0rF69miqR8 L3x2ru5N5H/S2bsSy65ZPDgwQgKyXWbttvTeibzDz74oFJq3759dNlhbiE7EF 1nfGvbtm2lpaU7d+7UbZ8H3H1cQ6XU8uXLSU6RxYsfhgiUv9K1 CL6C0P8sKB2B9oler6Gh4cUXX0ToTyaTwUIE3LRYwN8VgVJc+J QIY5tSqt1cjHnz5g0ePHjTpk1Dhgz5+c9/rt0ndvPmzVjjNBAIVFdX00BI+xG6RrsCJZ1OU/1Q3C8+smLR+Lfffvu11177+OOP4SjxrM+i2XismS2BD1Se3BzA Y/7IG8JVDj6NxWKffvrp8uXLX3311crKykgkwkNB6VCpRojhFtsY MWLEyZMnv25nyK+S7aYKT506Fevs4ELxGBTNUnhsd7VXbvuhJQ OJl19+GWuDcOd4bW0tVB23cPCL5rRdkdizT3zx1VdfLSkpOXDg gOM4ub/bySnTBg0NDbZtDxgwYNasWfgUzdZ2C6PDggKwweuvv66UgiSCg oQqInVl2/Ztt9126623klATgdIZIlB6hmQySUuS2m78tmbLV1Lh6rMJUD9L RKAUF15jG8GPWF2cxxaAcDi8cuVKrfVbb72FKanWOpVKoSI4+q +mpiaHxTMV+dz6OB1ZUCikA/8mEgk0yQULFii2BExJSUk4HH7yySdRJLpdwyeVYeR9rGbuGERo 2myZYofFBdKIjg4B65dBcFA9EsMwFi5cGIlEHLdqPllQKIoFD8 +pU6e4j/4swwo9CgDfmjJlysSJE6m+mWfU4AKFtAt5rnP74bfffpurbZQq oU+x3iFOraWlhQ/z/PCctiG9KN9w4YUXTp48mUo5cGNYJ8OBR8HYtr1s2TKl1MmTJ+l HyRjjOI7hlprFR8uWLTv//PO1WzyMh5VArziOM3PmzD/+8Y/0WyJQOkMESg/g8RB7VgiiyRP34xYEGcaKi2JplrjLZAr2zP9efvllwzAee+wx0 zSXLl1K44fP59u+fTs9vRSpZxiGWFDyoSOBQgM/BYQ1NjZiJbynnnqqpqYGX/z8889nz56tlEJUBzd18LqLWutoNPrwww9TKdIHH3wQNzGdTs+e PRtjG5I4YAvx2FfQJ0QikdGjR/t8vsWLF+/atQsD9pdffvnss88qpQYNGnT8+HHbTfHFqKnYsjWlpaWIDE2lU hTedDb9DEZQPMM0rk+aNOmWW27h0cR229wLGuDR/2BiRvuE5RivU6nUa6+9Bityc3Pzvffei9VS165dS4ao55577u6 77+Z2lHYT3LhG0Vrv2rVLKfX5559zRxjfrPNTdljGUH19fSAQe PbZZ2lX/OqREMQ7W7duNQwDsjWdTlOKMhVnwyKyyA/yCBSSUFoECiECpQcg6whNcWKxGBkeydbHTSkFQQRKcQkGg1prx 3FoDbBQKIQZHs2VLcvCyLRy5co777wTdhTHcZC8w7MD8OQgRqG srKyI59UP6ESgYLSgoWjq1KkjRoyora3F+MTn+keOHBk8ePCPf/xj3TYQBC+w5fjx430+386dO7PZ7NatW5VSt956q2VZ1113nVJq w4YNmUymoqKipKTkpptuIlevx3Txhz/8AREkPCdWa51KpXbv3j18+PBrrrmGIi201pSoTGvoaNaxdD5Ce 64SGQzIDDB79uyf/OQn0Fv4iY4EinbHeFpZhcfK4Hjuu+++Sy65RGt98803m6ZZUVF RXl6ulNqzZ4/W+pFHHvH7/QsXLtRugTjuLPMcKoWGZLPZt956y+/3kyzQLIKn8/GeHz8NjuXl5ZMmTcIGLS0tfHsuUFKpVDQaVUo99NBDmk1Hs+7y 0el0+r333gsEAl988QVK0pENRgRK+4hA6TEowg6tFB0KBaNQYH kBEYFSXAKBADdKQ3DkVuSz2YrT5CyAeOWhjnA3QLtQ1oDQNToR KKjPhn+rqqpM00R9LTJpWG5Rc631+vXrlVKffPIJts+dXZimiW VDMplMOp3+7LPPbrvttlQqdf/99/PlRFCnBK/5gKq13rt3r8/ne+utt7SbFUgPFdi4caNSCnvDs0SBsRj84HTQzN909qnFum3ca CaTWbt2LT2Tnhpluq0lA1eDVAL2AxGGE9FaDxo06JFHHoFxcf3 69Vrr1tZWpdS2bdvmz58fCASeeuoprPXDNVDuw+8wtNYTJ0687 rrr6DbxBQHOXqBo1879/PPPK6VImjisXBsvJYc377nnnnA4XFNTQ++QqD127JhSauzYsVT AVwTKVyACpQcgEU1tlS/lRZGP2LiApnsRKMVFuWWCaeKI6aZ20zcoLJpWFMccEc+Jp045N sALubN50q5AQVEKBJpg0Za1a9eapok65Q4LddRaQ2hqra+++uo//elPPJtUu4Yu1PnQbuvm6TlkVMOouWnTpgsuuIBCpyFPMcxDf9T X12Nc5EW9MclxHOeyyy6D14DyRGjY4xqCZMHXuj50XvhuQ0MDC shSLTvPF7mrhX5XsxRf0l6bNm0KBALvvvuu1rq0tJRkh1Lqscc e8/l8CxcupDxqxA7TNnZ7qUP0zsSJE6dOncrfp7BWTwxKriWG9gM9 l8lk3n77bXpIaDpB8oJfYcuyGhsbBw0aNHjw4C1btmi2yNq777 5rGMb3v//9kydP0o0QgfIViEDpGcg4SS5q242K1yxYnWrSFAQZxooLZauS/xsVJ0mMegpbwdfDnxO+Mi31zhiBevpk+hcdWVB4gqvW+pVXXqH XiB3hYy32M2HChMmTJ+Pf3MbL3Su4s1Rgft++fag4UFlZaZrmN ddco1m8LY3iy5cvDwQCJFmwWz7KxuPxu+66a8KECbqtBYVcPKZ pUnyb43qgvtKQQC/4kgs48cmTJ1OwTiAQ6MjFw79Ivh7aeTKZnDZt2tChQ9ENKreei m3bOOa5c+fyq0rX1lNZn6B/LcvCEoBki6JvQXDw29SJQKFvvfzyy4qVe6FvOW64DwW2Yy5aX1 9/9dVXK6Uuv/zyu+++++67777qqqtM07z++usPHz5MQk2LQPlKOroo3YplWV98 8QXdVLK/FWr/GPsDgQAf7wtbA408NQVfAaCAyDBWXJRb74sURtfuCPVQtm1jkk 3dmdA12hUofLxBv4E6NE1NTdxuwUPKtNbf+c53HnnkEeoHKG1E a51MJmlBHLxD/QaqpobDYe4ooZKmNKjbtv3OO+9wCwqN1txKMXz48IceeghvWu4 KdoqtOazbdvVduFz0xUQiUVdXR8V2sYIb906ikDw3HHJNQMakz z//PBgMrlq1CqM+rV2stVZKoTwaLzzjMS2T0OfVXUmpTJ48matG7l Lh56K1Ngyjkxga8MYbb9BoRRYU+joPkqVdJRKJLVu2PPzww7/+9a9/+ctfTp06dd26dXzuQZDU42+KQPkrRbGgYFHN8847j6LiodPtAq G1jkQiePI0k96F2r/ntxDU1guzKkSgFBcEjuAJhwObhoqvBeV9oJ9tamqSO5sn7QoUz cYb27az2ezx48dDodDixYs1WwAEWyKQaM2aNUopGPN1W8MDr36 k3WgGyt3z+Xy///3vY7EYdghnjdY6lUp5kpZra2vD4fDy5ct5lh8dRjKZ/OCDD0pKSjZu3AjNxAUK1VLThRAoJJtisVgoFMIyij6fL51O567 WDvhqKlTO1bZtx3EGDx588cUX0zSPTD6q7UqNSinYHWnPdK0cN 5aczgt3zbbtP//5zxdffDE/gObm5rMRKLZr2LZdLZjJZB599NGysrJEIsGNN9pVtKQvPZE9Ds sYisfjZCz3jEoiUDrDLoZAmT17NhVL/pu/+RulVFlZGZ7IghAKhbDil+GuhU0hXQUBOwwGg8gPBAV/jPJHhrHiov4/e28eX1V1ro/vM2UCem+/9/ZWMpIQQpgTQhIDBbHVVq1DRb8d7v21KCDSWilSK+Jtr/3aWmtLK2KLQxWVKkgBZ6tWFAiTKIMKYcw855wM5+TMe++1nt8f b/bblZOBhAaF3rwfP3jOzj57r732Wu961vNOVgEwUlXk/Xd2Jjz2qyVbIVU5GZazlr4ACntvwLLpLFu2bO7cueTzSCwscye nTp0qLi6+4YYbeCVTi8DBqjWze/duvv7u3bu3bt0qhLDZbLT15yWNYoDpMy1jhmEEAgFd15cuXVpQ UNDS0oLuBfmklNXV1YWFhddccw07wAore9iQAxR19eXa7DabjU AAl7Yhb242Qkkp6dHYzB0IBBYtWqRpGvUqs1Pq45Oth4c90ZDC ij3mZR5W2BQRV4yTXn75ZafTWVtbq155sACFIdGtt9562223oX vCCBKtRzVjEmqSeiN6HNU4SB+GAUp/8pkAFMMwKIJfWuZ5Gn+D3Vn2JUKIjo6OxMRENuuo6dGG5Po02p iSjYuLE5+1m0tPGQYon61QggfVdyE+Ph6DZ/LULbW0Mkyci+qS/3tE9gtQSDXRjK6vr580adKsWbPKysp4jkcikaNHj5aUlBQVFdX V1aGHBZkTMBIZoCl5V2+66SZYy9KoUaPUfH1QautIxXmuvr7+y 1/+cl5e3smTJ3kjbprmyZMn8/LyZs6cSdiFf8JmoyFnUHgtZwxE5qeYUkEkBL9i/Dba29tvu+02TdMOHz6sulgRL9JryjtCPHxNNrGxvy03D1ZFs5q aGpfLtX//fgY0nFqNzySx9W3ikVKSPUvTtFdeeYUiLlVrkRBC656tTirWHx JhhUTEXF8OA5SByGcCUGh1d7lcUkpa5of8HQAg42gwGGTXwiG8 OCEeZhfZQnleyTBA+WxFUxK10b+s0wclnH9ds2q7D7/Zf1B6BShCCO5qWtho1WxpaZk+fbqmaUuWLNmwYcMzzzxzxx13O ByO6dOnezwejsCCYuBQM8O+9957R44cAXDixIl9+/ZxCrhwOEzuEeyE12tSabKMnD59uri42OVy3XbbbRs3bty6devS pUs1TcvPz6+vr29ra4MCQc4RQIFCchCLTLS3w+H429/+JqzUt/Qgqj6k2OzOzs6ampprr71W07RDhw4Fg8EYOKK60IZCIfbckop/Lv2rhrlB8V1V/U+vvfba+fPnA/B6vYzyBwXJJ7rtAAAgAElEQVRQ6LKvvvqqzWarr6/v2SE9AQoJLXCqL7zsXlZJbcAwQOlPPhOAwqGSDB0CgcAQ5nUQV jpw0h26rg9h/ngoqkRa7GViYuIwQBmWGKEJRRsvKHmv++bmehdGOXQp0n1DC7j/t0mvAMU0TXaDYKzA6+7LL798zTXXOByOxMTEa6+9dsOGDV6vVw 1O4c+cOEB1yKD3HgwGeaMPZfXltVb1xkX38J/Ozs7169fPmzdP07S4uLhvf/vbmzdv5mFAuR9hMSi07J0jgCKlJCRHVp5FixbZ7fZbbrnlgw8+ gBJlw/4lUsr29vYnnnjCZrPl5+cfO3aMHXTY6UTTNCohRPg7Pj6eDlJe f2ahuBYBOcGwijO6Vy8SQpBn68cff4yzNfFQs6dNm7Zy5UoonI 16KU0x8fQfxR0DxYYZlAHJZwJQSOx2O/EQQ35lYmX+5V/+RVUcQ34jguR08fMTCpyfrfrfIzabjS3xortn3KCEYYp6ZBig/CPSK0Ch9YaWQ9UFgQKDGSYyaoFSGrDn6+B9f4zzAS2lwspoIqU k1oF/SAshR77Qn3iLxRs5crsmFcppZGmc2M6Nk6zKcKjEnmmaL774Yl FREeGPNWvWvP/++8eOHSsrKystLd2yZcvChQupGWvWrFFD5ekiVAdABSKEUeLi4 giCJCUlqRWINE0bMWIEfUhISPjd736nrvfUt5TG5oYbbrj66qu JryIANyiAAuC+++5LTEz86KOP1H2C7MNJFopDDM96rpFEQhBnm EEZqHxWACUYDLIWULOWDZWQrkH3oPmhujg1lR1QIpGIy+Uaqos PoQwDlM9WOAJTSsm7q7MYh+rmVc2GMsTN/d8kvQIUWJYLlUFhOoQ+sD1aTfJhWLUIpMLkCyU4llEFMyLCCu5 QW8VJvegrYxTOAqduiqQVKMTj4VxH8cQAFEIM5FAcjUb9fv/+/fvvvfdeIkIYZ2ia9oMf/ODNN99kuwxfgc/klPwMUGJMVDYl3IE+EzxyOBwOh2PNmjXonhuGPnz44Yeapt133 328zJ0RoKgn/PWvf3U6nU899RS6z8FeAUpfS4y6wqrC83cYoPQn6qj9lBkUm5J IbcjfwTm9PlOp+Iy6boAyDFA+Wxnu//NWYpYoXpM0pbSsVGwx56fwft1UkrgbhsFltG02W0JCgk1JxI6h UIZMNdEtYri9aDTa2tpaWVl5+vTp5uZm1UmWG2la6W41TaNwZY IanDledcJVJSaakkHS2rVrVRMqI4mnnnpK07RHHnkkhoiC9WY1 K5Me7x+IcdmxY4fL5brpppsYIzIlBsXmxaCKnzEGxPDORPXnVZ lUfjS1h4cBSpd8hqusCiDOhaHn3F1/GKAMy0BkuP/PW+kVoOi6Tut6QkKC6uH4GbXxzKLaDqSV1szv98fFxRG7QNaTT w2gqIYSMrIYViVUJo1YNMWzRHUjZbDFP+yrGeXl5fn5+czT3Hz zzZxmBgolv2rVKpvN9sMf/tDj8cDy8qF/dV13Op2UwRlAZ2cn3fH++++Pj4+fP38+e90yqiAKk2w3kUhEU3 xQGHYwp9WzpIm03G/ZZ4gTwKiPNgxQumQYoJyFDAOUYRmIDPf/eSu9AhTa1rMdQTU3nFfSK6NAuIoICXb1pUewfYoA5Yyalrqacu yycQcK2OqneXwO29E6OjoWL17stGTx4sWdnZ0c/sP/vv7660lJSfn5+Rs3buRLkbGJ7LCwTGYHDx684YYbNE177LHHOJ EEIRg2ojEQoZ8zxoJiA1Lrr9EHzXI54J/TB6KObN0tTbZhgEIyDFDOQoYByrAMRIb7/7yVXgGKEIIAChkObGcVE/4pC9tE1CP0geiTUaNGfZoAhfkPYZXlU28nFedu+jnRPEQn9PUT 9bMKUIio6OjoYCdcm8128803B4NB1SuIfnLixImf/vSnlCD03nvvfeONN06dOlVVVaVp2okTJ3bu3Pnwww9Pnz7dbrd ffvnlZWVlsHLbkHGHYsLZIYmz6nG4NbWQXaEJ18bHx5OvDL8g8 lYkqoauYLNq8QwDlF5kGKCchQwDlGEZiAz3/3krvQIU9irQuke02s8/IdbEbnmJ2iyXUlovXS6Xmv/tXAMUdhZWT1BNY6r3CbfEZrNxHBAfZxJFWr6DMQClp8EoGo0Gg 8Hvf//78fHxhAm+/e1vHz9+nH/IYVZCiJMnTz788MPf/OY3nU4n9xWlHZ84ceLq1au3b98OgPLe8s9VzoOtNnRZ7gduJOG nwsLCgoKC06dPs3czJWnsGYKu9ZZJZRigdMkwQDkLGQYowzIQG e7/81Z6BSi884biQIDu0R/niQhFOD8H5yKjxVXTtJEjR34KDEqvl41RubK79SccDnPAVFxcH PmoDsTEo4palMfv9z/22GNMIH31q189deqUtOw46F5JAIDb7T558mRZWZnL5Tp69GhlZ SWAQCAQ00giURoaGt54441oNOrz+TZv3tza2srn8B2FFVFMx1t aWqZOnTp79my3281nCqu+jyox3UgyDFC6ZBignIXIYYAyLAOQ4 f4/b0X2BlDoK0cC82b3M2nhQER2d5KFYpWAsrn/1ABKDH6KySfLwuEzxFE5nU72FyHpKy292gBpmZNgxc5QBRUOXx oxYsSpU6cAkFcKn+nz+bh4EAC73Y7uCempKqemadTO8vLySy65 hA1STqdz6dKlra2tUrEJxuh/4lc8Hs/06dMnTpzo8Xh0XWdtEA6H6Rb0mNyTwyaeXmQYoJyFDAOUYRmIX LD939dkEd3/60Uk/092fTEBkz7Kbsf73ib/Aw0fsPQKUDjOQiqJLoDzkUGRlgritGBSSkYn9NWmBPHiHPugxF xT/Sr78H7lJV9V1Ge8r+zOHqlJz6SUoVDooYceYrcPcvjgnzBMoRd NwTjkJCstIxTnuaFWUWDX5MmTm5qa6Ou+ffs0TSPoA8UgiO4Rz gAMw6itrZ01a1ZeXl59fX1iYmIwGFQbwNWaqBNk9zHZa2cOiVx IWkkO50HpW2i0SSu7gFCK79AJpBGklRTufJOhapW0/Ndg5afas2cP2cI3bdokhFi3bh1pw9LS0iG54z+HnJ+j4kwiAKM nEJEQEob1XxQwTEl5I2BETUgIQ5oCJilfw4QpYErDlBEgBBmBF FEdRte1TQGDLilNKU0BU0AKSAiGM+dWel0MeOEf1EViFn7+qlY qRXcmho6wdwL/lokEDhvp3+TRT6sIoNAk5XHIziLMFnCr1GYM5BYqQImBI2o3Ci u5CB/kP2mKxFw85oIDbBLDoJdeekmzqlKrDi7owYepqpsNNMRtUP1X6 kZS/pznnskVfgqn08lPF1P9oKGhgRBMQkIC+9tyn5imGfOOSIYBSpc MMyj9CAezsc8UT2zO2yOsuj/n4hH+QRnaBZIxCgCXy1VZWVlRUXHPPfccPXr0gQceEELU1dU5n c7zmRL/lOWCASh/V4DCAiiGAlPoFAIoOqADejjil4BOFL4EDJMuEomEAAEjgnAIQp eATw/7ZcSAgARCJiJAFIYpTZqbCkCRUvZNzQz1Ew8FQCFhewRny+DUZ JFIRE0OS24ibE1QdQinAGGgwBlEYpb8gT8grYsxDpisptgfIsY rYiB6rH+AwnCEyBW1yJqaLvzcAZRIJDJq1CjybiGcoQYG0wcqw QiADEx83DAMelmalcCNPnC36LqelJQEq8Yye1LDgqT0yLK7m3A 0Gg2FQmTrQfdyRcMApT8ZBij9i5SSUvLz12Aw+G//9m9lZWWRSETXdbfbvWLFihEjRpyHC/MQLpDMFakx/VC2iZqVtvJckGEXqFzIAKUnUqDjOmAY4QjhDQMwTQkJSKGH/NBDkIRgImbYB0R0IyhhAIYRDgX9AQDRsAkJXzAS0g0DMCC7oIk 0IaSANPBpDKChBSj8gQkP+qwSFT1VEC2o/JlmFq1tsNZyapLKQAz8ATUlS4pKadBnWiMp25i66R/4xXsCFNnd/kLWk5jL8tdzB1BIafdsnrBKKdHXYDAYDofZlAMgFArx64uPj6c LxsfHUyCPEELX9b1792qaVlZWxo4+FJSu2gcBNDc3l5SUbNmyR Qjh9/vp4DXXXLN8+XLWmcMA5cwyDFD6ESJa7XZ7IBBgNbRv376FCxcW FBQYhvHuu++WlJQ89dRTVO78fJOhXSBjKnDycZ/PR1PugQceOD+ZpM9KLkCAgr4BCv5Orkihh8ISME0d0kAkgM52R AJobcXpU6irRUsj6qrQVIe6anha0NyCsA7dQChMFhwJhHQRASK AQZNUmBCmAVOHeaEAFLXmDrqjEJUqoM26EKKzs5N2Nepf2ZGCU 3eYShHgIWFQNCtzv2rmME0zhhVWgctALt4XQOFssJqm0S3UakF 8kXMHUAKBgGalgVFNPOqlKJcrLAaFI6HonI6OjoSEBHIN4RwnA E6fPq1p2g9+8AMuLxDzCPSA1IDCwsKamhr+rWmaDz/8sKZpHo+HX/cwQDmDDAOUM4qmaXQR4vTmzZtXWlp6//33FxQUXH/99WVlZWoNrfNKhmqBpD0WqYD29nYhRFJSUlVVVWVl5d13311ZW blq1apgMLhz506HwzEMUFguWIDSlxtsF4kSiXiBkG52AD4E3Wi swOky7Nr+1MxLXv/SV3d++Zot2XmlM+b+bWrJm/kXvzz7svBTG3GqHhUNqG9BVCBiBv0hEwgBIcAAICRMAii6Dl2e ezPPkAAUVXmyD6bKf1BGr54zQlo1dFQji7CqwLD8gz4omlKEj/7E9gWVVIhxQxngLQYCUGhpDwQCqpVH3eScI4BCF+cU+FDAGT8v NSkYDLJ1RmW8uJfIXsOGufb29k2bNkWjUY5w1jSNqh3x+RzjXV dXB2sMwHqbLpcrBo+qIJJlGKB0yTBA6UcIJtPQoWFdVlZ29dVX G4bR2Ng4Z86ct956C9bgPg8X5iFcINWpaxjGzp07Sf3t3LkTwF NPPUWc6r59+1Rl9L9cLhiA0k36CdKh4zoQiAQbEWpEoBEnjry2 fOnvrr7i4a9c+kzJ7JeKZr82qXD35JJjk2ZX5BYfyZj44bhpb0 +/dNPMrz/z1Xk4eByN7egMIxCNRg0FoACmhDAFdOPCASjqrzikVlppSNiWE Y1Gjx079sYbb2zevHnTpk0bN2586aWXtm7dumXLljfeeOPAgQN ut1u1gwSDQcqsOliAwtAE3Z1k7Xa7UEorkysM/SQcDjNhQ0cGYugZoInHZrOFw2HOeMauwfT1XAMU9eIqdcTCQTR qrRzGE9zmmBVEKOECuq5TNhfOlw/Lcsd9zkLRxeSlpwLEYYDSnwwDlP7FNM2EhARYPO2DDz64ZcsWu uDp06fz8vLoOBsvzysZQgYF1jMyXw1rIyiljEajvPk7D4HaZyU XMkCxRFr8iuQ/RWB0IOKGt967aeOGWZc/WzD397Mva96yGY2V6GhA2SHjqadeGz99f8Zkz/SZJ9InHMuZuSvz4j35X9s4ec6J//kNGtvREYApdCAMCAmY6IrogS6hfwqOskMFUHhF5HWdJkhra+uu Xbv++Mc/XnXVVZQ7n8J9ic8g2wGHAY8aNeryyy9/8MEHDx48qCYBU50qzuIBmUFxOp1kg2ablLACYsnfk4HLACdvXw AF3Z1kedn2+XwqeCI5dwCFYnBcLhd5sKK7iyv/hMgt1QbEf6U/ffjhh/S+nnzySQYuDQ0Ny5cvP3HiBPcDvUoiwFT4VVdXx89C0cuRSMRm swWDQT4+DFDOIMMApR8hZM0mno0bN2pK8TBWNJzAcUibPwQy5A yKWq6T9wHC8u+jSThwV7t/erngAYrsCVAMIATdjbaK6F+e31A4a3fhldtnzcPOD9HWipAH6E CoGU3V+Oube2ZesveiZE/u1Lr0aXUZhcdHTy+bctlfC76yff4PUNuM9k4IGYGVKcUEhLzgA IpqH6HBf+rUqUceeYTAQXFx8a9//etNmzbV1tZ6PB5a4ciyQxqptbX1+PHjL7zwwq9//evi4mJSKatWrTp58iQbjlUZ1APy2ul0OsvLy3nx5gbTs7OlCQP Wk/0DFG5qT+ShKodzB1Ck5SRL9EbMcwmrQI96nJWYtJxk9+zZo2na 97///Q0bNmia9sQTTwghKioqiouLi4uLKT+slFKN4oESXVxQUDBz5sz q6mo+GI1GH3roocTExMbGRr71MEA5g6jAdoAAhd3LvV6v3SpMV VtbW1NTw77TzIwR4SktuywPIMMw6HY0YQZu/hyICCv0F0AwGCSm9CyibMhPLS4uzuv13nLLLd/73vcaGxt5z8RDmW6n1rGEUm1hCBdsLgNBd+RkCZx7MeZ8l8ule uSdtfGFc2vyg9O7o+NxcXFkVSUfnTNeR83/KJUMK6wsqJ3SShFBqt80TSJp2HkQ3QGT+hZYVJJcrfXF7049E0 oRdnTfUcW8SvWrruvUYDJUQ1FSmuXbzw/Y62v67IVRCEAApeuAhDABCiQWEhRko/vQfhof7XipcMb7U2d+OOHS8v9cjuoW6LoZDUjopvQj3IrG03hl 467J42rGjXWnj28bndv2hYnuMUWHs4tenVTS/Ns/oqIOkYjJViMDkDClYeDTiIYbFEDhl8iGEh6r6tJ+8uTJu+66y2 azzZkzZ9WqVYcPH+7nXUvFGsJGlmPHjq1evZpWrBUrVpw6dYrd NpmEoPGv5laJSVbG7bFZBXooFZjdqm/Mn1X3lJ6ZUfrvvb4ACotKTvQqQwtQYn6rWbUeB5IFLkaZUH9qm rZo0SKK33n44Yfj4uKqq6sLCwuLi4tra2uh5MMlUS8ipWxqanI 4HARfqCXx8fF2u/25556ju7A25lJKUHTgMEDpkkExKLT68lDWNG39+vVSyp07dx48 ePDtt9+mPF1r167l7pZWYoCeU0jTNL/fD2tVGEIShUaY3W4nbETL29ktzxQHX1hYuHnzZl7VpJJlGUAwG NR1nY0dfBo919AOL4YItEZSB6pzg5y5qBk0bRiqG1b577O7Kb1 NikvkxETovk9i8NSXqFpACEHth1J8i/5tb2+n44FAgNISoLsfDHU4fWDcxsNM13XGDdRytfQXLTAcFkiM Kyxynr4ySIJlyaIP4XBYrT0Ga9yy01woFGIcRoksKYkO/SrGC/J8kb4ACiCF9VchIQ1AR7AVtR+9819f3zt54vGxU8vGfWlH0XUo dyPQlevEb4YFghBtOLXv1He//vG40bWpKYG07NAXxkbSp1WOnlSWN/el6XNx6Bh8AVM3QJYeHZAwgCjEp4DgBgVQeFDRV0IVVDeO3nVb W9uKFSscDseMGTNefPHFjo4O/i2jGZVaiPnKhAqNvc7Ozo0bNxKhsmrVKo/HQ6NX9efo6RLB+0Y+zgBF07S1a9fa7faqqiohBMcVw0r0zlPvH 2dQWC4ggKL+3Ov1wrLsSyVRp8PhKCgouOSSS8rLywFEIhEq7kP tZ33IwQQAQqGQ6F6gh1UWszi0Tg0DlD5lUACFNTK9OUoQotIJa n1Iwyr8CKuikk2pCR4XF+dwOBISEmj+2Gw2soYOidAwpf2rtMo 0nAWTEY1GGxoaHA7HsWPHaGEjuoL/qm7Qw+EwRaa5XK733nsPwMGDB7UhDbulpZonITEotBLzhkzd9C clJanQEGfLVNH6yteJRCJJSUmMkCgVUiQSOSMgMwyjra2to6ND XacNw/j444/pM1fnoiqgUKY0P3soFIpEIj6fjzCBsHzvhRD19fX8jPTDxsZGO o0egfzU0B0nwUIbKoVDncyQrqmpiXESDarjx49DIW8B1NTUMN4 i30NN03gN41x/56MTsQJQJIRUAQpbeYQJaUCE0d6AF59+syD7k4mZldnjKrIKdo 2bg/V/Q00AfiBC00GH9KHteHD1nbunffFE9n+0Z4/xjk73XZTZfFFO3fiL306d1nLv79DuhRAw/g5QIkAQ4lOgUM6CQSHhhEAMGt5///2ioiKn0/nss88KJdNGTzKvL4AiLdoVyhLV3t7+7LPPulyuKVOmfPjhh4zC 6a+6rjNhqRKQKkBhmsThcITD4VOnTtGSyY3xer2868BgFsJ/MoDCGWhg8aYq/SmEaG5uTkhImD59ekVFRQw0TEhIUB9B9WKBYk4yTZNTwxG5zoH KvCyq7RwGKF0yKIDCBSHZOYPXLV3X7Xb7Lbfc0tnZeeDAAXT3G lOLM9H5zJow8c6b5n9caBdCzq0x9pdBCZkVnE4nM/+8k0aPtAf19fVk22pubiZy6JlnnqE99BCKupTS2qxqT3IsD4fD 1NWMynnaqNmfBi70W5WOpivTemyz2dRUCmzF61VuvPHGO+64g0 6mVm3fvt3hcFCpC2lBvdTUVHJM48vSlXlD853vfOcb3/gGW3+klKdPn/785z/f2trKjJ1hGIWFhffeey/nbSQFLa2KG4yTGKao4xnWynHPPfdMmTIFAFW7FUKcOHFi5MiRp 0+f5hUiGo3eeOONd955p1TM/Lw9pS01vbULFqDogA4RQHNNw7LvfzAuo3JsatPY7IYx+Z/kfvnV4m/iRACeKCJdDiRC96HtNF58ZHtJetmk5KactObk5NYvpvlSxjckT 6mZdvlfi69AdR1Mw0r/BkiEgQA+jYyHcjAABYo2k4r6am1tfe6558gWcPr0aVh7Bj6TvS J6bYBQBMrSaFip7oUQjY2NCxcudLlca9eu5VnA57M64kEluwMU 8kEhLdTTXsknq1bpgWyo5D8XQIEVialOXrJc02fS7R0dHaQfiK wFEAwGyQeZGBS+CyMbAiJ8F2bd2IjMOHKYQeldBgVQoOxxqYrS s88+a5rm9u3bd+/e7XK5QqGQodSsgdK5zKvzHVXG3uwt0+JZi2mazF6oAGWwIhRfF jUsHt3zBxCJZ5qmzWajg/Hx8bC6iHfV/7ioT6HWzqDEA6pDBoDa2lryomcUTxD+LIY7aS6ebKZpxsfHM29 BdyHw2o+KB1BZWXnZZZfNmDGjqamJCbZ58+b95Cc/eeihh6SUdJcXXnhh8eLFxcXF1GCfz0fgVVp7kWPHjk2fPn3GjB lcsss0zRUrVjz44IOPP/44a5nS0tKvfvWrmqZR0CYraDVfZEdHx4cffqg6QnEQJq0Wzc3N iYmJV1xxBQVU0yP/+Mc/vvPOO1esWEEmLWLarrjiiqKiIm5qJBIhnMqrFFv9zjvpA6BIGi 0SgICMQkZg+FBXtSOvxDM+vzU9q+Wi9PqUqUfHzv1r3v/Fy4fRRmljodNy2dGEtze+M3PcJxMz6samN2aktmWMbU8d35wy+ WTKjHfzvoL9B+Hv7AIogskU43wz8fBfVW0ZjUZvuukmp9P5xz/+UQ3foGlCapAPqtNTvRqDftE9CQePGRo2q1at0jRt8eLFHE+nk tnokWyNLs6xQk6nk5E3jUBCzIZhqBHOA1eS/2QAhX/FWiIcDmtKJhWXy0Vp39jJkq/JB6FYGMgAhO7+mlDUNRSAOOyD0p8MCqDQ4CZ1L4QIhUKE/lwuV01NDdGJn/vc58jQQ1OUuG7VssATjx0b6eUNoezYsSMpKclut9fW1vLg6+zs FIMUHoKdnZ0Ey5jnhwWqmAGiSfvcc8+tW7eOuH0Adrt9aIeXqR QvZe0GyxWD91L19fUFBQWaptHGjqmCcDjMqnPgEtMAWKCNWAr6 zHs45nh6yrJlyw4ePLhp06a1a9dSY3bs2HHddde1t7fbbDafz0 dcSGFh4YkTJ370ox+9/PLL6paUR9GKFStefPHFLVu23H777XSdw4cP33jjjX6/f+rUqew/eN111+3evft3v/vdQw89RE9BwZbcaT6f74477qBsLjRQuWMZpjz00EOPPfZYaWnp 9ddfT8RMRUVFYWFhR0dHfn5+RUUFDYC77757+/btW7ZsefLJJ9mQRDtX9RGEUhbkPJK+AYqgf2BAhIEQjA5UV3ww Y+7pz2d408Z608a2jck/PnbO6+OvjD79DjwROldGAAl4W7HtxXdKJhydkFU/JrMlPbM1I9uTmtOUPOn0F6ftnvYVbNsFXydMqhMIw5RSSmEOpb 98n088GIAiFFafplJDQ8NNN93kcDhKS0t5o9LTSbwnbuDrS0ti 7qVyITTZ6ciOHTucTueiRYtoDLPpMMZoqwIULuqraRpHzFJ5Gv q8dOnSntnoVZzUT+/9MwEUPoE7v6cp3OfzqfljYPnbqZBFVZVEgzGohWIopIWPvw4Dl P5EDJJBoTB92Z29JBUcsYTmMOESXs/4NbD867/+K2Ea9R0PiTz//PNkeaUBSh/odoMVrgbOEggEeJhyPwQCgfLycqrum5CQ8Nprr/EeeqgeioVuShUiGECwiqFVdt26dVQ/k9zIaStgs9nI9WewncBe6HwR9bnYkYjuxYxlTyGOLRqN5ufnky f8jTfeuGfPHgC///3v16xZA2DDhg1kAzp27JimbGLo7izkUzJlypTKykoAP/vZz3bt2gVg69atq1atEkKUlpZ+/etfB9De3s75NJ1OJz3LiBEjuMEOh8PpdNKNEhMTNWtM0rBMSkr y+/3hcPjKK688cOBAKBS6/fbbX331VV3XX3/99aVLlwI4evTolVdeCcDr9WqaRmZpujhtptlxof89+mcmvQAUI SG6KgwTfSICQABGG2pPvzWtqG5iXk3qf7SkX9SQmn0sI3/n1Csq/98j8LhNGe0KRjYl2pvx3tZtF08oHze+LSW7LXls6+gsd2pu7eg JLeMveSdnJrbtRiAMAQOIAFFhwhSI6OdhNWOVEm5tbV2yZMnnP ve5vXv30pLGvDJtYNjwyjTnGQEKuyjRr0ij8ooohNB1fdeuXZq mLV26lJRwTwMot5bUAvkC0lCMi4tbuHAhtTYQCLS0tOTm5iYlJ amGVDHgUMd/PoDCKj0QCBC3QZwTBYGqZ3LsHiyihR9BWJ7OtEVhdwj2cYkJla LWDgOU/mRQACXG3QHKNGPHdY4lUVdxNW5CKH4MUgl7GcKdpZTy97//PadIYL4AACAASURBVL1y1af17C6lWY6urCykEhwLxc2FxtnHH3/8+OOPAyDP3/5n6aBEWOm0o9FoTFJ5agxpyW3btk2aNGn+/PkPPvigVDwqKFLxLIa7ui2TUoZCoaSkJOZFHA4Hu+L2/xKFZSDbsmXLo48+Wlpaes0119A129rabDZbU1NTcXEx+Z8KJUZ GJR6E4smxefPmH//4xxUVFYQPAPj9/osvvtjtdt9www07d+6k52Wila/GCqK2ttZms6nOrXwL6jRWK7t3777iiitqa2vz8/Np/fD5fMXFxUeOHPnve+7evWsnFfKlfjBlFwlhdi3xMhqNCi6M16N j0D1/qwSbWECVa8BHup3cFXFjQpgQXbWApVqLWLkO0G3hl8ollT/FABQpJSCkiMIMAiEYXtSVv1hUfGTSpOpxY5oy05vSc45l5m3L/+rx//d7+NsiCFqmmgg63Sh99W8zck+PHdeWkt0xOtObnO0ZnePOzD+R Xrg97zK8sxf+KAyEDEQBQ5gwDRhRyPMuD4qKMB577DG73b5t2z b6k6HkN2NDMB1RsxfGMJFSMfGo7RHdww7oBB78O3bssNvt9913 n7S8tdDDPZZ/xQCFEsTRIKdLNTU10bL629/+Nsa8HtPOvnrjnwygoEf2AfUzrCQFalQEc+S0B1b1FcuBAweqq qqqq6s55pyt5Bj2QRmIqJNhIAwKzav9+/drmkaBlNS/tCVlN9iBjHJ16PT/DtQFA9a0ZAdJKNABVhypYRgul4ujXs8OnehWvUo1Iomtuapd2b SE6Dt1e0QuUb3626sbLDbc9N8k1mjkmY/uzj2BQGD58uXXXXcde5urYW/Scgvl5nFwU/+vjBsvLY9UypxIF9GUUuOqPTvGrxCKzu3s7CwuLr7++ut3795N HRsOh//4xz/ecsstP/7xj1WUEwPC2HxLxzs6OmbNmrVo0aLt27fDQi0vvPDCsmXLrr32 2phhww5uMUNu4OPwiiuuuPXWWzdu3Gha5Ty2bt26+JaFV3/tK0BEIuoPegEhISLSjAIGhAmCJUJCGDANSEGl8sKGBQ6EFBGIC IwwZJQAhy6g6xAmjAggEDEsZBKJIhqGNPSQ30IhRhQiAiMC3UA UIgwzCAQkQhIGhIQORAFTSFPAhDQhJaIRwIQRgQlEB+DzISWlQ zGEGUG7+8TypbumTTkyNqcmY7wna/pHGQUvF17V8vyrCPijMCLRAISOaBReD97c+u6MiSfHj6tPTe/IHBvOym3994yWjGnHx3/pnS9dj1ofgoCATglXJICIlAFKf39OpR+AIrt7h6gzF8Bf//pXTdOef/55Ol/NR6KmYEB3hwb6qobq8MBWf8KARg35URe2QCDw5z//OS4ubuvWrWrzVKBjWFmRHA4HA5S4uDhy5abTNmzYMGfOnD/84Q88efkRBth75z9A4fhQKJGnMZtkfl5KH8DQpH8miZtkmqZmB ajGYNDNmzfPnDmTjQYul6u4uPiFF15QYZCwfBzJVajXMTnYHhi IXEgAZbAMSjgcJv9TKgRFpSD9fv/ChQvJM9Tv99fX1w+kuu+gMr3Swh9DhxApSj6Ppmmq7qiUvwSDC e7v675xcXH8mVIIxDir9ozLUIE2Dy9aVgnrMOnCDuHogcN6Cj8 gOeRC8W8QQmzfvn369OnPPPMMcYyw+ocUJd+UlFGMSuq/i6SV4R6WCtCs+kTEoKhKXN1QMqDhS7G/0W9+85u8vDy1uyjv3/HjxxmusVoh/3m+Jj+4EGLt2rUTJ06EMpIjkchFF120a9culWlXFw/+LX0d+Dh85ZVXkpOTibMVllPLmIy07dveBCJCRgAjHA4ahhExj Yg0TUD+necQJoQBaUDSWmyYEoAeCkIakAaETiMiGA5JwCBgoQM BIBSFz4eGVjS3wxtAsxumDjMKIYhfMYAIhAEDUoeIACGBsAEpB QigCAFdAkAobEQp3UgY4ZBpDBSg/H1/j852fLTn5ctnvVdUtD178sHci3cXfm3dV+ahrg3hYNSCTTDDaG/G+if3zZhSNjbDP2lSw7+Pbv2PdG/qxPK0ae9kFx9YeCcagwgBAgZZhaQAIiY+M4CCPjAKM3DHjh0bO XLkTTfdxDwx/YpXPnSvjcd7AFKYbDpk31U6SGsYm3ViVkcOm+dYmx/96EeaplFQPd1R/Qk/At2Orh8fH9/Q0KC2ORAInDhxIj4+vrOzU8VAA+y9CxSgoHtqzZ7JY6B4LLA7X UwbegUorGoMw1i0aFFcXNzy5ct37NhRXl5eVla2a9eu22+/PT4+fsGCBeTjzIBmGKD0J4MCKACOHDlis9kOHDigaRrNnI6Oji VLlqxevRqApmmLFi2ikdHc3Nz/pQa+MPBGgb0u+O0yUlEHTWlp6bx585KSkvig3+8/i9dMyQM0Tdu7dy89LNmYSW2ptAq58TOv+MEHH1RUVHCIfENDg2 blXU5MTDRNk5QU+VXASm3ncrlWr17dTzt5Xvl8Pg4djEQiTU1N d99993XXXXfkyJEY3kJYVpWY2EJp5ZozrRR2qv9vjHDxMw6QY5 1CU1R0z5HKeUQ43J/uxYwR51Bh2xD1JCXqVSlWFs4uxRqcIZfX6+XwMdImPPaYcqcLt rW1sWthrwzKGbFsQ0MDR1LQ+W63O6KHQ5GgNIUR0slnwwjpMNB VX0aazHaYEAZE2NAFZDSsd7lrRAGrSp4BSAg9GoSpwwihw4PmO tRV4cDBF+dc/ZeCr64ruRLHa+HtRCiMKBAFIoAO0fXbrldP1IkuIU0IQeG7CAF hoB1oNWQUMIGAETBhnLE4XzcOzAjCX4PGj7Z+//9be+mcP1921Ts/+DHqGhAMikgQ0oQATBMIoPGk+dv7D04YfzojvWl0Wig5p+3fx7 VkX/zRxDmbZlyGd/aiLYgwujimLo7IkNQd51j6Wgz4r7K7CYYG6sqVK2fMmEErPUfu aFbCDCjWATX/kBDCbrdzjFtPARAfH6+yICpi4Ouom4ri4mJysWITZEw5MCEEYS BycSgoKCgpKaGWM9D51re+ddVVV8nu/qED0ZMXKEDhc8jRhL1JWLcIy4ZOZ3Kqkr6aRJ1MPcwb16eeekr TNMpZ2m3iAO+8847D4Vi5ciX/HMMApX8ZFEDp7Oz8whe+wJwhJWpLSEhYtWoVvRuHw0Gujg6Hg/fcfcmgFgY1i6LKQ6qpFaWUhw8fnj179rx5895//31iEc7YjH6E2ma32+fMmfOLX/xCXduk4tlAbTBNk7TMjh07CHns2rVLSrl37979+/fzCCYdQYF/ra2t5O9GaK+lpcXpdPbDsqpesawW33rrraKioo0bNzLCID9lab EXnIeDUBrNT56H9Iz9oBOSQCAglHLwmqax8xfrF05dRXeJoVJg 6XTTirZl8oZBEmuNzs5OajztNtQNK0Mrdf0g4c+qRw6BJG45PS nTuRjMOGQWR+XqTCmo1B0EYMLnDZq6VVzGAEwpCaNIQa4VJoQB U0JASIQM6IAOKaxyNKYOIwyfB231qD2JuhOPXjX38eKpb5dcfG TqnIM5M7flX/bs3K/D04ZQqAudhIEwpKArwSDWxoQhoUtISXYcRCCiiEZgeiE6gaCgl PKGoQfPCAi6qUgZBdohmtFajuYq1Dag0QNdB3SYBiQQFdDDkO1 oOFI+/zsfj81uzhnvTR8fSctv+uK0j8fM/FvhVW/fshx1LfCHYZiEqohY6p7T9hxK/wAFCg/BAJoqeP/lL3+RUqpzjX7OxKS0DATRaJR9ZtnDQHX44K+6rmuaJrvnpzaUy gwqfUixQjt27EhMTHz++edj3Fy4zera6XA4ampq2OKTmJjI+VE OHz6M7j6bA+y9CwigSCU5k9fr5Qvquk5JAYweVRJ5+9ETnaA77 LBZBSDpNQWDQU3THnjgAVgmPzqZliHTNJ955pmkpCSVzRoGKP3 JYBkUKIGmNMG4ZGU4HI6Li6NFtP+hSTIoBgUARVXEx8e3tLT4f D4a2Xa7nZY9sgG9/vrr+fn5y5cvP378OF8zGAyqyacHLlLKcDgcHx8fDAbvu+++goI CykEHK16XfO+5DzkcyeVyfe5zn2MXNprPiYmJdEJLSwslnCUcQ 3SITckn2I9Q9IphGE6n0+PxLFmy5MYbbzxx4oRUCgurni7cgcJ KxUHHab8VU/WmL2EaRkpJiVnppdP0o8LidGV15ZaKXwtNcrqLalSieRsfH0+q c+/evQA0y6VJs9ychRIYjO6uPPSV9kDMlr/wwguwVCRlS4OyxVS5NwxmHLL2J96I5M9//rOum3HORKfmHBE3UtPsBFZMf8TyVZUQsoseMQGJiAhHEQUAA3q wK0O8TgSItwPNjThZhg/3vjTn4lem5G7Pyz1QMOnIxPG1aePLvpC9f8rMF+Z8GVUnYQQgD UjCNdAhIzB1RAWiMHUYktxzIQAhICOQAZgB3ec2YYRgCkg9FIY eJceYfp66hxhARI+0QgZhRODX4RdGMCjMCCT0iCEBSB2dFTj45 pt5E0+Pn9g0ZnzN5zPcyTPKM+fsmH71+kv/Lxq8CEcRjUJEAV1Cj0IYQFdQ87nHKIMCKISPb7jhhuuuuw7dE5 bruj5q1Ch094elD2r2M+JNoXhioruvw4gRI3hAqlYe2VucKp1z zz335OXlqfQnD05h5VDnkD1+CrJAkaKgxINqm8+4UeRWXYgAha 9mKMXLYvhaNqip9p2ebeAjHCFIZx46dMjhcBw8eFCNMFdfHAX6 Pf7447xFHAYo/cmgAAoPaFj7ZgpdYQSqWXYfTuTVjwx8YfD5fLTJALBt2zZN0/bs2bN+/XoAjz76KK9ANOva29u3bNlSUlJyxx13VFRUMHV5dmVQTCv9mt/vP3nyZF5e3v333+/1ennMxWyDAPzsZz/TNI08M9g4BctEkpCQEIlEyJOX5jlFI7/33nvvvPOOpmn9WILVkapp2qxZszZs2KBGoOhKhRpY2jAmOZhpm uy5ojrx9PO+hOVvS5iMAIG67VBvoaoDoRT+UJO+E5rkn1O/NTc322w2XdcpLKipqUlYQUNqM7jYDQC/36/6LNOIoggFwzD+67/+6+GHHwYQiURIg3OGWXW8DRYoU6vIM0kIYddsMOHQ7BDY8d52R 3ycSWZsafEoAjDRxW/ogAkJw4QeiQYgBUwBXwAtHWj1o74FJ8vXfmnO1lmztk3P+6Qg7 0h2ZvX47NNjRtdmpAQyxvnHTTueO21zdi7KjqC2Ek1NaHKjsRV NrWhuRks9mmvRWIPaOtQ2oKEZDW7UNaO2AQ01qK9CTQXaPWhzI xyAFOT2inC4f0DQi34kzkiahil1vYv2MMIhmBBhAwCiXrSWla1 ctHtSTvXYiQ0Zk5uyZpwc+6Xdk772wuxv4UA1fDqi5HajS4R0h MPQDVh99VkDFNldDMMgxzsC0LwNoJHJc5aGIk09tTYTAKfTyQs hr3k8TXRdt9vt0WhU1VFCcZuAUtFJWHbegwcPJiYmMhbnBZg/c6j8yJEjDaveOF0txm1ODS35p8mD0qsPiprqghYOn8938803cz qDUaNGUaES9G3iQW8AhY5s3rzZ5XKRglUZFFL41P9Lly796U9/imEGZSAyWAZFt8S0Ahn4OioUGEifDsrEYxhGXFxcQ0PDkiVLeD REo9H//M//JHotBghHo9H169fPnj379ttvJ7VyFinGo1ZGf6ZqA4HAb37zGw ouFZZTBTumEIG0d+9eGrWPPvpoIBBYt27dpk2bVqxY8eijj/p8Pqrs89Of/nT//v2NjY0Oh+Po0aN2u725ubm2trb/KU00smEY9fX1iYmJ1dXVHDvDyz9NCfqXevXJJ5+kuffQQw+RIy rNqB07dtBl1eJh/fQ/LDdh+nrLLbcQjxIKhf70pz/RLTgqp7Ozk2nSmC2j+o7Yo6Wmpuajjz6ix+fkDevWrWPwoUYbs eJmXMWWssrKyo8++ogihzVN6+zsrKqqUl3h1IRy9GFQ45AfR9O 0Y8eO7d+/32Gzi0AQ0ti5670pM6ZU1VdGZcSEEdRDAlLKLtuOIbsCgmECUp jRABCBGYS/A55WHCzbVHL5X6fN+bDgy3tz8j6ZkPfxmJyKsTktWeNb0jNb0p O9Y8fU/8vnO9LH1qSOLZ8w7ZPpM9+ZUPBu/py/TZ9r/feld6eXlE4r3j2tcPeUoh1TS97On/3W9Nl/y5u9La9kW/7Fb08venl60ca5l+FUOXxeGEJETBGO9m9VUVXz3z8LIGRQ4Zyo CQMwTQkTCAERCRlBezW2bXqjYFzD1IL65ImN4y7ekzzljYmXbP nyt9EYQXUnfAICgDChRxAMIxhG1IC0+qf/lzAE0utiIPsQXdfvvPPOyy67zFCyDPPPadCqMy4m3hBWSgVppS dgEVbOAk1x6lIdpEhUdzcoQSjf+9735s6dS7VEYkgCAJTghyYm gw/6a0dHB6tQteDoGfUAd9SFCFD4vdBj2u32SCTyi1/8wmazrV27ll7Wd7/7XaqqyOhE9HCSRW8ABUA0GqU8WLAWBRVx8k9++MMfLlmyhLHmM EDpTwYFUDheDkr+GVhKn/NGSCUTQD8yqJ2rEIKKC2pK/AjBYXKF4ZMNSwC8+eabM2fO/M53vsMbmkEJM6XcSzTKjxw5Mm3atPvvv19N/A9rsNrt9sbGxkAgQPmRiCMh8EHJu2AVdyCuD1Y9GlrgB8KyslW bu47NFqxoqLXRaNRms1GskMvlqq+vf/rppwGUl5cTLcnasP+dk2EYTELoul5fX//zn/+c2kAuwLqu/+pXv6JwOwAnTpw4ffq0urOkUcF3YSs+bWuoo1paWlRrDodSwwJ n7CcLxeGXfYM46L26utrn89mUaq5SStUVrqcuGCBA4duRVc5ut 9fVVkMaNRWntDit2l1jIhLWfSb0sAxzQhJKRGaAPhlob0fID3c TKk/j1MmnZ81+M3/mBxOLTmYXVKRNrsuY1J6TVzs6052a05aS3Tp6TFtqhnfMGF9GV ssXk70Z4xpHj2lIzWkaO60qY2r5mGnlWXnlWdOqMqfUjpnQmJ7 blJ7TlJ5blzGhImsKHa8eM6k6c0L52ElHxk7dXTz3D5dchvpGB CMU8Nx/7WC1o3hSR6MGTMAPRGECHVG9y5YUBoIGdB8ay6qXL/xg2sTKMZNr06cfzC55Z/plh3743zjZhJq2Lq/eiASgQw8iFEI4At2AeX4CFAK769evJ6B88ODBjz76aMOGDS+88 MLWrVudTufy5ctXrlx511130aResWKF7E7UaUp195hm8CoVozb VdVo1GxlKDZ1du3bZbLajR49CQf8MU2h80r+LFy+myEreIcjuh t3+jbw9e+9CBCiwzMFQCNe9e/e++eabsBYOerQB1ieR3WsRSynff/99TdMaGhqkZdkxlFTjQoiOjo6RI0dSTMkwQDmzqKB7gD4oQyXq whCzRppWyg0ou2RN03bt2jVjxozGxsZt27Zt2LABwPr16zVNUz 3kaRnbtWvX1VdffeWVV1Ki0rPO0iaEiI+Pp6TFHJ5KC+0vf/nLoqKiQ4cOMRNwroXZXfK3gBIyx2FK6kLL8w3W+i2sCh1qNljO RAIrCSYrL2aJeD8BhRB2OBysDh577LH8/Hx6p5qmORwOjr5jLz9Wx8IKt6b72my2urq6/Pz80tLSmpqaBx54wDCM3bt3a4oPChSmh01OUICOrus2m62xsXH GjBm7du06efKkpmmhUKilpYWbASWaiZV+z3HYl/D+MhAIJCQkBAKB22677ZFHHgFEIBrU4rQIokAkGGyTiEZEOAoR gogAfjMcpZIznT40NuNkOY6XP180+2/T53wweeaR3PzjYyefGju+YmxOdVZ2Y0a2Oy27LSWnPTmnPTm3L SXXnZrjTsv2pGa1pWZ6UzK9KRntKZmetMyW9KzGjGz6rykjqyU 9syUjw52e0ZaW5knLaMrIbMrI8qRmtadkeVMyPalZ9RkTPpg44 6nZl6K2HuFQFAgDkUHiAQlE6Sc6YMCA0WWdkYAOdAbhb8T2l0p nzzgyZdqh1IkfT5zzSt5l4T/9BfVt6AwibHQFLhldrjNhGCHoBkwBK9vcuZe+AIrq8MG75/fee8/pdDY2NpKrLG0ziJygcU6FmX7yk5+sW7fu5ZdfPnHiBBQlxsZfF V5DmUcEJkwlN0FMQIBUfMtYIpFIIBAoKSn5+c9/Tkd4XrCFV7NyMTudzgULFqhVF0i4DCprsH4wuto/tPzT4/cEOrQh1KwUl0wsqXFJqrUl5i4xAEXdRatSW1tbX19/8uRJIlDVBnDubJfLpeIDtVc5uxq7BxmGQQjj6NGj6qa0L7VAL4 40Kr07cjF59NFH6YSYxGBCiFdeeUXTtA8//JCPUB/GdMIwQOmSwZp4hlB63bnyTj2qFEAm+xEZFEpLSzds2ECEBEl9f T2PoXA4vGfPnnnz5l177bWU+xwKtXN27VQ5G1gLud/vN03zk08+KSoq+u1vf0uu9eIcC23mqA0EDmhqcRgwLF3GHFJra 2t8fPzevXvXrFmjaRr5Z3R0dHg8HnoE6jfSXLyES6uSMytTagB 9pvTPQgjNKsdot9svvvji2tpap9N57NgxSrrg8XjIUUNVrKJ7I AMzTwDcbvfdd99NHU5rwL59++i0aDSqFmziNqtetxRPIaWsqam 58847AWzYsIE2UgRSOc93DBYZlJMs9wnR5sFg8Je/uj8qZKehO0clGRDBgBdSD/haASMswxEYnWYAiCDQitpKlFf8ae7lW2ZdumXc5OOFXz6ePrVl TF7t/8nwZU9qSMuoH5NZn5nRkp7pSc1qT8n2Jue0J09oS57gTp3gScl tS8nxJmd5UzK8KWntqSltaSmetDR3eoY7PcOdnulOz/SkZbSlZrSnprWnprSnpnjSMjxpGb7kjMDojOBFaZ3JGZ7UnI/H562fdQlqahEORc4eoIgufxEJA6EIQgbllwsaCPrRePzQHTe9N yO/dPyk0qkzt395Hg5XoS2EQCjc2SGEAQBhE2GTktxHgQg54wijK+ Lp3Etfu1VYa5JQ2I7Fixd/85vfFBZJeeTIkYaGBqaTHQ4HoQchhAqmYYWtAiC3KihjVf1KJ7 ACgTWXOeIMiq8lfeXa7/fcc8/cuXNNKx8j428mL2+++WbNSn+wePFiNgETZJfdi2j2P/6hEDCaUqXENE3apHE/wIqZoKfgoGt+Fur2XiMD+mJQeIZSVTVK/E9tKC4u5rqhLpeL9jxs3mKQR33CdfuYoN22bRtHYGiaNn/+fNalgwIodPB//ud/NE1rbGxkazgdD4fDVMD11ltvVeGgaiRiGQYoXXJeARSez8y2AW hsbOR9gMfjqays5JEkpSSA3NTUVFBQcPz48QcffPCiiy7605/+xLQ/ZTFS19dBSSAQoOWTkm2o2geWBfdnP/tZfHy87dyLZiVTYerS7XbDmkhkBFG5IurA+Pj4LVu2JCUlzZ8/PxqNxsfHE8/JPU9up6T+mNskRcbRARySwOY8KaXT6YxEIm+99VZCQsKePXt27 95N5jYOrUpKSqIMJegOTQwrWx0HAAsh/H5/zF2gOBvCAoWmFaxEBzm2GcpM5rJtrLVVJEdH+BYDByiwFHRUSa 9nCoQlgpROxABMgVAYpoAeNkQkIkISIRg+lH303Fe/9rcZsz/ILTw+fnpNbt7J0dmt4/NaUsY1/FuqGD/N8x+p7SmZbamZntQsd1qWOy3bnZrjScltS57QPnqSd/SkwBdzO0dne1MyPWlpTWNSGjNTmsaktWRktKRntaRnt6Rne1Jz fKNzfKOziV9xp2V7UrPbU7J9yVm+5AxvSqY7Nffj8dP/PPMSVNciHDS6SJDBAhRhwjBhmF2xzH4JvwQlxhXwebD7zc2XFL 5ROOO1i2c3PvBbnKqEN4yIhGmYMmrCENBhGOQPa1UCoDdlCOiC ShufYzkjQOFzqLDD888/z74avOTE5ARiy2OMw4dhFdRUxyp/oLHKbeClizUhkxywYArfKBQKkecWL89QVkT6oc/nu/XWWzVNGzVqlKZpCxYsiNmq8f6BMc0Zey8SiYwYMcJmWdj5OGfO FZbxgo/zNOdgOlWtxSCSngAlppiGYRgJCQk333xzOByuqqqaMmXKiBEjS JlQewi7uFwuyhfFXapuyah5paWlcXFx8+fPN03T7XaT07Fh5fU +I0AheGFTYoXcbndRUdHkyZMPHz7M7454OIfDMXfu3NraWoaSp C1tlpGIZRigdMl5BVAAkOoXFvNGYeV/+MMfALz++uvktEGOGnFxcadOnbLZbC0tLVOnTl2zZg0NkX379l 111VVUyRaKljmLFppKdC43L8ZYQNcPBoPy3AurHqlUCKIMJUzS 0qpPWpJ4EbKVrF69evny5VDqg1OlZdVpVFqOGrwXlMoGi+Ejsy aalSf7iSeeoDlWU1MjLNuztKxLsDZn/BboQWK+CitIh1Eghx5QY9iXhV8EJ9+UCjSBZV9Xhxb3Cd+l/3HYq0StQkjcY4ZhRHUZllaydgHoEqZExIQp9GgY0MPBFnQ0/Olrl782ZUb5+KL6L+bW/3tmx5jchosyGlMyfNkT2jPGtf5Huu+iTF9yljc5q40BSpehJ5c ASudFuZ2js9tSM1syMhrHpDWOyXCnZ7rTslrSs8nvxJ06wXfRh M6LcttSctxp2e7UXE9Kbntyrjc5pz0ly5Oa1ZI24ePx058ruQR VtQgGKQP/YLWfhDCgG9B1mEZXptsARVEbohPu6tP/s3JDXt7T04v1Z5+nBG4I6xRkbcCIyoguQqYRpqgfinKiRG2m/IwBSoyjPc30qqoqTdOorhP/hMLHAPh8PkoIySpCWlQBjVUaUbbubi4c38HXZDssXYrC6ZkIYV ENmvSBEi68/fbbfCm1AXR+KBRasGCBZlVOXbRoEccx0Izo6Tneq6g7Pc0q8UP 7t87OTrYrwcozRFmdYgKwpbWQ2ywXmb4AIn9lPoN5KWoAs6Ee5 2VlawAAIABJREFUj4cuYhgGxUMRGtM0LSEhgcMG+ekoHDUxMZG us2DBAra+SSUXg4pR+uqTmCge6p/GxsZvfOMbmqbdeOONd9xxx7333vutb31L07RFixaR+Y/1zDBAOYOcVwCFhgJvdukgl5PQrMAwYlBsNltlZeWIESPsdvuvf vUruiY7o+zbt+8b3/gGwRS/399P7G4/IqwUYZzsS1VhQgkwxjkYRj2FNKZh5cRDd5UaCATYj4R/ErPb432MqSTwhsUJ8dVk95xRMVsuNaFIjPYxrWpElLMIFhRg1a CmnKKDjz32GOW2AUDRQHa7fefOnbDSwe3YseO5557jHxpK0XNp 7UtcLhdZ9JgxJoxCg8fhcNTV1akN0M8qkyz9VTUvAoiLS3A6Rw qBkC8io9j4/AsOm32E3XVg115IwNChB9Dc8PyXL393XH7lF8brY/ID46bUpaR7J0wu/8JF9akZTalZLV8c05mR603Obk/JbqP/UrO8yVmdo7N8o7PbUnLcqbl00JNG1pzMttQs3+hs3+ictpTclr QJjemTWlIntY+e5B09wZOS607NbUue1JY8yTt6Qntyric1uyUt pzF9wsfjZ2wouQSV1Qj4IUyYEkIOikKREBHoOnQpTUhTQheI6o gKBCHaUH9q08xLX5xxqfjLq2hpg6cVgaAEQoAuhSEiuhm2iBvx 9zBsASFhSiFgyvMJoBiGsWfPHqfT2dTUBGsCMuxgYx8rCp5fqk JDd4dQl8tFAcBkx2TlRjflxZj2PFAoGWZc1CNCiMsvv3zt2rWq t4qahMOwaupS2B3da/78+apVFwqv0z9GgaVjXS5XQkICbXXoOPtbcP+QuuboQtPsVoZG s5xDzwhQeG5KZTdI9iM+ollxNHScOpZTdQN45plnnn766ebmZt J+hw4d0jTN7XZTIw3DIFAorVRPupUVs1fFzgdVeMFJQUm9vPvu u6tWrVqwYMG11167cuXK3bt3s6LmbhkGKGeQ8w2gxHhoUj3rhQ sXut3u6667jgw9jzzySDAYrKurI+70hhtuWLBggdfrZTXBs/e9994rLCycP38+BummTsLOU1CUDm84aD/NN/0UAIq0TBsUxcOsCVFNsAy0ND1YMaF7wAurCXJVYfMHPUs0GlWz KKqpnKJK8tlwOEzTjBxByC+PY5q405i3gKW/1EwM1IyVK1faLA92TdOam5vJjwwAwY65c+e63W7SxfwgfNkVK1 bU19dXV1fzJiYxMTEUCvl8vk8++YQO7tixw2azETkkFV85kkGZ eACMGjVq27ZtnZ2dCQkJZWVlpimd9nhIuN2tuq7/4v5f+v1+d32zU7OHgzokEI2gqenhi7/04WVfPzk2rz45pyo1qyF73KmLRrtzJjZnjGv4YqY/c3LTv2W0peS0xQKUTF9ylmX0ybKgSaY3Ocs3Orvzohzf6Nz25A melAnu1Anu1AltKbltKTnu1BxPak578gTv6Am+0bntyTnutOym 9JzG9AmHc6dvKLkEFdXw+yENmCbMQQMUHboBHaZJ6eAMQEdUwg u9Hh/v2lh8+aH//BGqPPB0QhcwBGWBkQAghIxG9YBuhExTh5AUsyMlDECXgkDPIFp zttIrQFEXQmnF1GzevJlGIyMGrtVCv1ItFMxewDLxqLwCja5gM EgzV62bAaVMlWEYjY2NlGypvLycNBsP+3A4XFZWxncxTfPWW2+ 94447oOxMaObyNKeD4XCYeBRiF5YsWUIzna2ovMfoq9N0pegp0 QbkAqIaofiOnZ2dmpIhBpbygUXWDhygoAd1RH7HDz30EL2IV19 91eFwUBV0TdP8fn9CQkJCQsLIkSPJQ8jn87322mu0V+G0kN/97ne5qjNn0aQlht6d6rbc1/hRaxFzH/r9fvohUz7suRzj/jwMUM4g5xtAgbKIktGXUukLIWh7zYlraQQ4nc5gMHjTTTeR/xetzbQKbt26taio6K677tqzZ8/ZvWPiBqGUfaEVnTAKL5afTggPCe3q3G53XFxceXk5lBFfV1cXg w/YRk6btrVr1wYCAZqcTqeT8oXwzIyPjydtQv0MgHL2U9H2xsZGA EII1VlVDf8hIUBD3cKzlM+hfzkYR1XxsExC77//fn5+fnx8POWvmzZtWk1NjbqDZALcNE3WraWlpU6nkwaM3W5/5JFH7rvvvrq6OnLXvfnmm2NM0RxQgEGmuqdGPvbYY/X19U6ns76+XprCqWk7tr9TMHtGEOGOUEezu+m59c87bHFdeVFN wOtFU/3vSopfKy7ZM3Hqx9m5leMmtuRMrU8Z502f1Px/0r3JOZ3pE9tSssmyQ3DEk5pFkTttqRltqeQMm9GemuFNIWNQdl tKjiclty0ltz05xzc625uc5UnLaMnIaMnI8KRlepOzfaOzO0dn e5Oz3OmZjRlZ9RkWQCEGhfLLDxoQCAkdQocuEYU0YAgIGYH0QF SYx3Y+OfNKPPU2miMwYUQJlkBE9XAoYBhRCUNy8LUgDsZKYkfe KINkdM5OegUoXY+n0PtCiNWrV5eUlMSQKzSzOG96VKldqlKP/Ffei6s0A3q4VlCuxT179vDK7XQ6CwsLa2tr6WSv17to0SLNck6 nVj3yyCNFRUVqRkR1vgjL44r2GIsXLyZDj91unz9/Ps0gnkcDZ5o5iocnLz34oUOHXn/99aeffnrlypWapj366KMvvvjiRx99pGoGXm5sA3OSVb/ybvDxxx93uVxPP/20aZq1tbWFhYUFBQWwlIlKWfEPA4FAe3s7ocPy8nL2aGY9D0WZ c16DgQMUoqVZucVoOf7AbnnoAVBiaN2Yew2VDAOUAUlfPihQXg nBFDVhM5OiNpuN7Ii03vzyl7+srKwEEAgEXn/99WnTpt1xxx1k8JPdkw0PSgiRsG2SrTm87rKiGcjm+x8U1c6ta VphYeG6deuoWlg0Gi0pKbn//vthkZPcSNM0HQ4HGSZoWQ2Hw/X19ZTAjZ6ourqa2r9q1aqFCxcmJCQQB1tRUeH1em02W3l5uVTi CNgpVY1WUN8aCZ+vMlv0J6rXRUdcLhcHOxQXF5NbNACbzZafn1 9dXU0/UVPvqJ75vBtje/+NN97IWT55q6eqSHU8DBygMM1jt9spGX9FRQUgEp02h12raCrv lAEtXrM7bZpmr61phEQ0ImEA4TDaWtBUg7KPn71kzuslX3p7Yt 4HU4o+yc6rSJ/SMiavJSXXnTzenZrTkp7dkp7F/xFr0paW1paW5klL86RltKdkepOz2pNzPCm5TWkTGtMntKTlelJ z2lOy21My3elpLRn0X4YnNYucZNtSst1pWU3pObVjJn04YcZzJ ZegqhJBH+WYP4uoGSmt5P06YMA0IUUE0gPjdPW7m9bMvRavHYT HMA2YQMQUMMyu9HSm3uVoYuqmEYYwpTRNQIfsAiifaR4UdHcOA KDr+n//93/feeedzC7wCaoXdszF+bfqoOLEXGw7UCP5OX1UU1OT3W7/3ve+RyO8urq6sLDwzjvvpJF///33k++nurgyxwOLO0FvicJIAoHAggUL1KIctF1huMArbj/CwIKzvPv9/ieeeGLWrFn8p7vuustutxcWFjKOeeSRR9TU3ipA6QeR8ITl3qP j4XB4/fr1zz33HJ1QW1tLjaGtCJEi7CenbtigTH9+KeoWlF/rYAGKmg8MCtLli/BbU8fGMEDpT2Ig7ad5a3VhOOt3ICyHShoWr7zySk5Ozp133llZ WamOLb1HcsYLVNhk43A4Wltbly1bdsMNN1RXVz/99NPf//73CwsLufa6qkwZ0gkheCE3TVOzqt5wLP6SJUsolB/WLoR82Zqbm0lxMEQ4C8ynsil8hJrBa39VVVVVVRWlBrfZbO+++ +6sWbOqq6s5hYOw3FTptytWrGhoaKiuruZ8fUTSUvpgAA0NDYW FhXv37mV8GQOCBz4O6fE1Tdu5cyeRzKdPn5ZSOuza9Ol5q9c8F BFRm4N3bNa6JdGVMTUcQqcX7W1obEZF9R8vuWJj8Ve25c0+MnX O0fRJtWMmtWROqvr35LasnNbM7JbUzIaL0hq/mNE5dkJzenpTSqo/a7z7i+ntqeNb0yfWp45vGjutJnNq9RjKw5Zbm5lTlzG2OW1MS9 qY5rSxjRnZ1Zk5VVk5tWNyG9NzPSkTGlMnV46dsWfKzGfnXIpT x6D7TREEdEMMjv+TVuo5iwWRENJEBNIHf3XDzjd+d/WNKP0EnUCE6hSKrp/9vWtF17/y73/p+rv8NNAJ+jbxxJAfUsqVK1f+5Cc/Uan+GDbljKIO+JhIH5WxYIutpmnEPtJffT5fdXU1ACFEc3NzVV UVJTSCpf02bNjgdDpj1lQWKGs8rDiaRYsWJSYmnhF/8PRn7GKzwncJ2ZDSeOmll6ZNm+Z0OpctW7Z///66ujq6I7Hdbrf7xIkTv/nNb6ha4e9//3sKPB41ahTXIEN377QYgMLbG+YkSJ97PB7iloSVHNLv91dWVga DQa4kz5tbupcaOjTkwnsh7jG+FzeDCyTxyXQ8Li7OtKIXaccl+ 04A8w/KhQRQzjcGZVBiKvGopEH27dv3gx/8YN68eZTHnT0q/jlEWGE7pmnSLgrAG2+8UVBQMGnSJLfbvWzZMirzbVoJs4mrcDg clHQSlucaB+ISq0z2FFraeXYlJSWtWbOmpqZG07Sqqioo8EhFP wMX2iYyAUOYQ80B8Pzzz5MG3L59OwCHw6Hr+t69e5988kk6wef zsbYlXnrjxo00/9evX0/bR5vNduzYsXXr1rGlnPAEd6DZPVB5UONQ1/XDhw+zyqPhp2laW1vbXXfdZZpmQkJCr8Q1SRf3YAoEQmhswela HD7+fNHsN6eV7JtSeGjc5OpJ0+tyJlenjXVnTmhOHRcYN63hog zvuNz6i0Z3powNpuW2pU2qSMn5JGvygfFTD0wq+JD+m5x/YFLe4YlTj0yYfGz85GM5eZ9MyNs/JW/f1Lz3p+QfmlhwbFxh2biSvRNmvlp06W9mzUFTHaJeQ4Z1MzzYz GgSiHblaqMEuTq6rDY6TP+J7W/d+61voy2EIKTfMIEApYw9z6QvBoWXeR5my5Ytu+eee+ivhpLfr x9rCP+c/S55b61enJ291DA0TgSgenHRpfh88tlitP3GG2/YrERh/Wz61eZRkC1F4TqdTp7yPYVDdWw228iRI9WVWNO0xMTEZcuWOZ3 Oe+65h+hqFnZchcVPhEKh1atXOxyOWbNmtbS08C1cLpdqJe+LQ YESAwGgurq6oKAgPj6eGkMlmm+++Wan03n06FFSXxwlRKDqnKI TzYIm/NXpdHK+OM3CKCr5xKiFRH1kbRigkFzQAAVKNkZKkkFHKioqbr/9dlqJadIyr3BBi7T8cgzDSEpKgkUqfvvb3yZ/sX379l1//fVs2GYY4XK5KisrNU0jQ084HN61a9e6det27tz5xBNPANiyZYt mucFDsePu3bs3Go3a7XaPx4PueVDO7hGYR6Xpx6YxoeRBIWG3u P+/vTMPkqu+7v2vt9lQhVTKrqxsNsTPxtrRaAFkIE6ejQDJxn4uwj MBBAQMNgQLkaeXcmJCilCODUGyHMGTi81gsDBEMrZZBQYEaDHY g5A00mgkjWYkzd773X6/8/44fY/O3J4ZprtHc3t6zqempJlebt97+/5+v+89K83p/FmqmEKV07hdhJxBPP+IyoQHroSxX4c8eIX8/fgUOvuKJ9ZhMBpcF9JJcCzo64buLjjaAXt2rrnggqcXnv/i7IVbzpy5+8xZbad8puvUs3tOO7vrTz7RfeoZg6eeMXDynyU/9slDf/KXLZ+cvv2Cv3pq3rzHFy167Nzznlh43lMLCj9PLlz01ILzfj7//KfnL3703MX/77zzf3ze+Y+eu/jp5s89veCin1506b2LLoDePnByuXzKMp4H4JU48tCC4gGAcUHb YDwNhUPN5wdca0A7WXC1m/TAAgNgee5kESj82yfj/z//8z/fdtttvNDOSIGTo39W4IKhoBMKJcGwWTQo4guoPDSlh+Arm5qaL MvCWwsAePbZZ5VvgxxJoNCD3Eo00oIdsKDw15BlApf8q666KpF IPP/88+RXIoc4AGCaMakxnD327t07e/bsGTNm/NEf/RG6q5RSfJ9HGkckyDBSWCmFxSHJ6vAf//EfSqnPf/7zwDwvuJ+YNnXipAlBfcTIgoKfjvuDeiWQvYWpRolEAoUsftdK BAoy2QUKzSN4S4Fx5p7fqQcLtcEJ+I7DgtzVdAVv3LjxpptuAt 8WumzZsn379vGFmUbOO++8AwB4i4/Ro7lcjiy91KAYBz8AYA4ePouFH/jSXoZG4RkNKBR43gEwuUmTDo8iRLMQxVB7fndlYEnpeD3QB6EG 4iGxxZH5Y78OPT8BnqdoBrooGGOSySTdAQOLyCnMvNqDbBZcB5 w8GBvAcvP9kOmDnmNw8CBs+90z5/7Vr2cu3Drj3JZPzd15xvRjZ89r//PTkqf/JXxidt/HPtX96UVbZyyEV1+FD96Htt2wvxX2tcHe/bBvP7Tth/YDsP8A7DsIew9AWzscaIcD7dDeDm0HoK0D9rRD5zHIZd18Bku4 OqWWaTt+nACeA55jPK09MC5oDwC0B24evLSrsSqMY1fpwBvJxQ NDL+xcLvfNb37zlltuARZ6NRboyqT4Ux6PxT+IcnlIQNCCTQOB LAd4XSlWdcN13YcffrihoYEkuzu0WTfZWmiBJzsiLw407AyJH0 oBufzM2LZ98803JxIJqtpOWyBfkhpagxv8FMiurq4FCxbgxFJc RLVYoBSHjABAJBJJp9O4nOODy5YtO/XUU5VSfX196E7CbmgoCAIunhMBfRD+iwYV1B/clcN1Eu/myI9OBEqByS5QNCsvTXisEDs+Qkl9kxoaup7nTZs2DQufRIaGt kUikVgshl338F20guLrUYJwIzb4sxWwOy00CdBGuDmavONlgLW VUqkUTTo86wdfwC0iMFSmgH/BYJA8Vzy0k4FkCj7B8Wg1enDs1yGKD/CXE6rIgmePiheDH/k48oY0GBdc18lksAoIuK6XSUEmDZlB6DgEbfvXX/j5x2Y0vzznc1s+fc7O087uO2tO98fP7vzjGS1nzH9+xnnw4W7o PQLJbkj3QTIFgxlIZiCTASsH+RwkczCYhXQW0hnIpCGTgVQGUl mwHHCc9EC/qz0PIJf3QB/PAB4rGMrqAnhuIfrV763jWbZt5w2A64HR4LkABrLZsS7qE8koF hQcZXSFb9iwIRKJ8BzgsS8Y3tDCgNTEI+C+AT/KHpeoxsZG1AR0qdNIJJciDVgA+Id/+AcK46U0w8CR0l0BHZ0eW6VUUickx1Gl/fSnP41Goy+99FKgChSPBVZ+DD4A5PN5umtyXbezs7Ouro76BME YYlDoT7wRjUQi3P6ay+X+6Z/+6Te/+U0sFkOvNBV9UX786YmGh7iR7CNtRN8mfR1UwYEfLxXXofMw0r dTNiJQxkTlAoVXCcN7azQD4NeP28dQjLIb8VQVNE2gf5dCxgDA +MnV/f393/3ud//gD/7g6aefTqVSxq8mmUwmydgAfi8P7GoBrLQDj2lHIYL3fHhWKcQP yuq/yNWk4zhY8C2fzwdKyuJhUnYSPpXNZrm3npdzxZ3v6+szQ6tU0f jHDZLxCYYGEIz9OqRFgqrc0kfQ0VGR0NG2A8Z1XXBMIQnZYCdf cAFsNwfGgiMd0NsLe/bBbz98YsGFm+df+MJpZ/9++uKtZ3/uxXlf+FHzhdA/CKk+0HkDDngGPIO1ziwAGzAsF0whnbdQTR6MtrMZDFA1AJatC9 6aXIlpvQbAxfolWGENjmsU24O8DQMpsDQM2JAHy3ImJCmnZMxw AgXhEiSfz2O/4oGBARi6do7yFQey/XGE4r979uxpbW3dtWtXa2srXUWGFUvFLJ4HHngAjYLvvPPOJZd ccu211/LsEnRe4wi1LOtLX/oS1kHB7fAbNr7DPAyL/KHDwrWL9uHHm0qlotHonXfeSQ5fftJoBq6vr7f9Rqp0P0A2IcX iMAISxAwVKMCqT9FcEYlE1q5dm8vlSBJhFnEkEtm9ezfeqjU2N qIRZeymrwrhOhJ3Hg0qKFB4JW56i+O3T8J5jAKlRaAATHKBgm9 HXcInDlySlVL8xqXsj6gqtF+8FSM0afCTQxrp6OhYsWKFYjUAg Fl3+UigOxs6h5QvE6hbgBMf5RWXPWxoI4FIW3TA44O8JRD4dnL tl+6lu1KcjvlXT4rBZSXdgLne8UaH+6pKsqDwOkt8oqE7bKpHR 1N80UbAcQvFPnJ5Fwzk8q7jasvBG2sNxgUrB7YDmRwc7IS+Adj fBseOfu+8Cx/460vv+cIyOHwMBgfAuADaGF/lYAURbbByPP7qolAxBowH2gPjGjsHRntWvvAKW2PPv5IwxmgwF mgLuwYaDywLMhk43AmHj0JbJ+ztgGMpSGYM6KTJV2Hw17AChV8 Vxi/s0d7erlj7WWCl1UaHLjy0OjzzzDNz585VSjU1NeFt/ezZs1988cVAyHk2m127di2leCQSienTp7/99tu4gP3hH/4heQpcv8qiUurZZ5/Fi23YGBTaOLdh0FAa9iod6aTheLz//vsTiQQ1LCRImuOWFUt+JhsD3ULwNCK+k8UChW6NaBQnk8m1a9c qpTZt2oRDz3Vdy7IefPBBpRRWaKRuQZhMNO7LfDGBPcfbFYpKI c8XFFXW5rdh+IsIlAKTWqDwZZLuHugpKulmhqtVMHnhHhbuBwF/3qHlH1PX+L0+da8gkzK9NyAXaCVGGcRvvGCoBWLs8LmYdpLA1w RKzXosZ5LiCvkO0LM85sP161dyRxI9yF3yUOJ1iJdcoHAfPsWr 7o5yiowBA2C5YLl+qXcDntHGGDBgHBftHV7OAo1F0RxwcpAbgG NH4Vg3DCYhk8H6ZkM2CwDGA9cDz1Acq/8a7HajwbPBuODkQTtgtJvPgSknXVyDwQSePHgOWGAlYaAbujp+ +y//sm7h+T+Zf8Hji/7m0Yv/F7Qfgf6+QlX7KmNYgQJF64cxBhNenn/+eeMX3eGvHAmqa4DX9s0336yUWrFixY4dO1paWlpbW1977bV//Md/jEQiy5cvJ9sGN0Lw/aRbEbrY6D5hx44d8Xh827ZtwDwyxcdIG+QuGG41GenkcAsKPp5 KpWKx2OrVq8ltxEcBrzXCg0sC04vjOGhaQEcM/9BhLSjA7pdIrDz++OPKL+JCubs47aPCozyagIdrlC+uEmjg8zF FGVJ0PdBx8dkJ/AuACjiJQAHwDz50gXIiLpoTvf3qRw2X6SoEmODrBNWD41cTwUa +hfofnsYf43eoMYVmfhqMA54NjqPd4ze+2ElHg7HAy4NnYcEz4 zjgWeBp8IzxCvEu/Ec7oB0wnsYwVwhqnY8EjS+gDRgXdAb6OqBl+xOLz31x7vzXPj3 j3c/Oe3f6otemf+7JORfBy1ugdwDs4+EFgV/CYiSBQs/yxezqq6/+5je/SXEbtK4UL96BjaOgX79+fTwex/ZSuPy4Pq+++qpS6rvf/S4MVbT8vnGUnddar1mzRilFzQW9j8r/N8yD4/ltQcF30+zZswebjwKA53n79u3DLbe3t5P+3rFjRzQa/f3vf08yvfikIYolBvJAdYTlvnxEkOwoxwIs3oucR3hvhglHvFt QqdsfF0Y6xsBHB/YqMjT1fZx3aXw3d0KZ1BaUcLdf/YhAGQsTfJ0YABc81xcQxvjF3Q0Yr6BINPtBWaHB09rV2vWM9oz WWoM24BrwjDGeA14OvDzWdj0uUAp/FsQO/WCTP2NcMHkwFpQ8/xkAx/FAA1g5yHTDkT2v/++vvDZnxs6zP7v/zE+3nn7Wgb+c3Xr6vN/O/Osnm78A7++DTMEqNikESrFd4bHHHlNKoUeDPBQBdRI4Ih70Fo/H7777bvB9QxRzgP8++eSTjY2NbW1tZCGgOTmwTa578MWWZV1yy SVUpoUCM0dRNmZoiAn4vVfJDvGNb3wDd/7ee++NxWKUZnLjjTei8XLdunVKKTKmUv/wYhoaGtBnwVOZSN5VLlACcehkWTHGkAVFKYV1sQM217Fsf1wQg VIRIlBqGBEoY2HCrxMNkAfIgrFBO6A9jAJBk4Rr/MY0YFzQLtZAMw5oB1y0d3iFBjraA9cD1wNtUG1o8EB7oD0XPMf XQBq8gnXGd/poXwORIafU+c92jAGwcjZ4Dlh9sP2VZ2Z/auesz7SdfmrPGWd0nX5ax2mf7PyLz+45Y+Eb0y/WDz4LfZnAjFydAqV4icXHu7q6YrHYCy+8QKsyxkiN9HoEl8+tW 7cqpVpaWihVmFrr4VKNJcsef/xxGFqjtlidcPGBWuG9996Lx+Nvv/324OBgMpnUH5WYExAo+KDye+MBwCuvvKKUeuqpp9C088Mf/tAY43netm3bMJAin89/+9vfvvHGG/G9vLWQYRG12k9g0VrzmDa+M5ULFNomRtADk2hxH97QuIztV44I lIoQgVLDiEAZCxN+nbgGsgBpgDwYG7RX6OjLs2EKebuuV9AqNm i74JAxrgEHlQdor9COWJtCMKw2oI0xHhppXPB8vw44cDzkRZtC UIqhImul4HnGQ7+Qk4OBTvjFky/PPXv3WacfO+2UwVNP6fzjP+76s1O6//zsjlMXvvepL/T/3/+C7nTxcjtOJ7NMxihQkFQqdemll37lK19BPwUFNo70et4fDquo UTUmWqQpL9113VtuueWOO+4AtoQHrsPitV9rncvlVq1aNWfOnO J4rJFkSrFAsSzr5JNPJoHium5dXd2hQ4f279+/b98+isHPZrOtra04n6xcufLb3/42sDpAxeoEwUrQwDJvDXOQjYtA4ek5GC2Lr6eybJGiRsEiUCbT qiACpYYRgTIWJtzFoy3IW5B3IW8ALSiGjCgkUDwAAxojVTQ4Gk 0qxjXg2uBmQecwfMRv9VcwkBQsJJ4xni6En1Dv4EKgC6qTQu46 zpegAAAgAElEQVRPGc35DIDtFMJK3Bz0d8LGpzbPnt565iePnn J66pQzev70L3pPOavv9Jn7T1/47llfOLJyDXRnJ4VAgaI1nmJOX3rpJaXUe++9x1vBjSRQDGsf8/Of/zwajQayNnjNDwD41re+dfvttwfkS2BvtZ8tT5GYqVQKjRwYhBG oIzIWgWKMwY2AH7qxfft2pdSGDRvoLRh5s2XLFlplb731VsxqL v7EgIqqr6/HAt88aJSGWOUChZeT4S9rbW1F84nyy6bxUyoCZTKtCiJQahgRK GNh4mNQLPAscFyUFxoTgAsqwQsk4BhA64gLaPfwHPAs0BnQWdA O2lH8wNvjScWF/B9N5hM/2BYACpnIBs0tWEOltAlQQz4L2slZWTAOWH2wdfNzMz+9d/qMQ3/+icFTP9V7ylnHTvkfh06Z8cGZ574061Lrx7+C/lxgRq5agcJfQCuuZVnpdPrCCy9cuXIlPovxoSPpAHw72lFeffX VaDTa29tLcRhYYxB/x9qJSqn169fzIj3FG+RrPwB4noft97q6umBo+MXoR22GWlC01r h8YraLUur666/v7e1FvYKHifEcy5Ytw0e+853voL0HAAYHB3nETIDi9Cg+vsbRx QO+wDLGvPjii+jW4QcFoxaCG2X7lSMCpSJEoNQwIlDGwsRfJ+R eAQ1gPDB+2Ak4AI4B16Ck0EN+ACNPDDgFBxAU9E1Bi2gXtAbP+ BlCHrh+NK4fcIuHCJ4DjguOC7YB24BdYhqwC2A5XtIFnTc51+6 G7j1vXPnld2bMOHDWjCOnfXb/n36y/bTP7PyLz74766JH/uqrcKgfskOSZmEyCBR6Ga0lDz/8sFLq9ddf50WKhxUoJCOMMX19fUqpdevWge+PML5vBYUC+oB27 tw5eg4/qSV8+wcffBCPx9esWUM7Q66W0Y+aCxT0WDU2Nn7rW99qamr6/ve///7771M5R/Ke5PP5v/u7v1NKbd261Rjzve99b/HixcM2YS3WKDzrmNc7gHHK4uFlCxzH2bFjB7YPbGhowD7tSqlY LMb3VgTKZFoVRKDUMCJQxkII1wn5VoYIFOt4c2DjoUDRTJ1gPo +nmYlFGxQoUBAoLhco5rhA8YNqjQbQGhwXHAdsF2wNeV2yQNEA eQN5CzwLXBvSkD4ALe8+c+6iV6ef8/an5m6fuWjb7PNfm3ne4+dcYL/2LgxmwT5e+yHwS1gMuxgMu8Ab370CAJdffvmiRYuwxivJhZFkA T7oOM6qVauUUgcPHgTWZhyvtM7OTqXUN77xjY+sy8xX/Ww2+7d/+7ef+cxncCNYFRDGUD4xIFDwoHCW+M///M9YLHbddddh+WlgZZ2xBPPdd9+Nr0RvV2dnJ09HCnwE/k6jKeDhQsbFgsI3jpG8FHqyZcuWqA+Ii4fv0vhu7sTB/akAEI1Gtd85lkKx6NkyanMFCoHTZtErGYvF+PbLKJ3Oe8IBQDZ bcHXjIUQiEV5YvdSNTy7oyyoulETnR4/eIGaqUgX1cnTRz3CY4/+b4G/4qw5sjT3PX8yKzo7ycSOBHiQDHmgLnBxkPOiH1GE43PbG/1n1Xxf+z4cu+OKPLvjify35KrR3wUAGLLcKa92PtBjQsxztVy5 ub29XSv3bv/0bsNFEV06grIjnd7nq7u6eN2/ewoUL33nnHVQnaE7AlJl58+b19vZSWcJAGArqA3T60OD9wQ9+E I1G33//ffyzJFXNBQrO9jhLWJb15ptvKqUWLFhw+PDhl19+ubm5+Yknns DtP/PMM83NzfjKY8eO1dXVrV69msfTuKwVBgz1vAR2kgJHMEYE68ly 5fqRlQMNMybRZh955BEqv6uU+s1vfoNLAC+lP4ogGBfoK8Mto0 0LdykajdIn0r8iUD4C49dGpB5U+K1TEXR8TaD7VEngMMZTjBuk IUquQVJF5e0/sBLL2NQbADKZTENDA/i6p7bXZurli98mVZRKJBJUEsrzPCoSFfb+VhdiaSsN40e7AFjg 5MF2IQc6Cdk+OHYEDh6CQ0fgcDcc7oGMpVM50NUnT0oUKPig1t q27SeffFIptXnzZnyQ2kTQlcO3TF6SQ4cOXXzxxUqpiy++eOXK ld///veXLl2KAR+HDh0iEwh/u9aaemryNe/VV1+dNm3ad77zHWCX69h7jZmhMSie59XX19NEumvXrlmzZv3kJ z9JJpN33nkn+kewFuodd9yB8S62bd9+++1z585NpVI8ZZqXcgc/upafBNd1edEUUg8nnXQSFLUj5V/EsEfBhePq1auxn/C0adNmzZrV2tqKh4ZiJZFIgH+fFsCMK8CMWJiIbllWfX097ht3/BUfWuBPESgF6OrB5pMwtB+3GepELHXj3LJnfGmM4xwAlFI8H6+ Mncd9w/Ltxu+WZ4zBLi2RSITS4mtYnXAwd5GKx6NtE1gMXTodTPgURKCU hm9B0WBscB0sBwcWuFlIDUI2B13dcKQX8i6kc6VXqZ0gRloM6F mO9ptAAUAmk7nuuuvQZcOXUpzBeEdrbIdJBmkA2Lp167333nvt tdcuWbJk5cqVb731Fi3YgY/WQ9v9YFtBY0xHR0c8Hr/yyisDnfPGPjmboRYUbG/OC9UbXwmBH0yDUzfuAz7e1tZWV1f30EMPUQcJPEzeAgI3GLCgG NYWER0xGMdKa7brNxiiPSyWESQvcMsPPPBALBabNm2aUmr27Nn 79+8HX46g6YIHydLhj/F0lURgs1iEF0WYUoqHLhW/XgTKMFDXALzcm5qawL/WcbGnuocwNON8jHD1wzeL39O0adO032G8bAsHbdl1XaoahE/F43Eyt0JNrz3Y+DfQAwL8hg48em7Y0LYpjgiUkvHLynlG60J0j A2uDbks2DbYLrgu2C66jyyrGu8NShIo9DjOJ+l0urm5ubm5+cC BAwHrLy1+9Agt4bSmYk0UMo3QbRtXA/R4Op2mqfjYsWNz585duHDhgQMHAACbgcMIWT+jHDi3oACrvo9/kqeG7iRxoQW2iFqW9a//+q9KqZaWFr63CD9AYJ2T6UAwj6mxsTEajVIhNVq8RxcQhmVc9/T0YGQM5hJPnz69p6cH/Oap4Md/fOxjH6N1x/Xbs/NAnGLLSnkAKxZMNfcwJga9E1osKCVBFxY2E0eTBhXVAf/UlBEdwqELlDaL7T3xuqRGteW5HgJlCcDP4nNdN5FI4EfzHahVU J/hLIBzotaall5+wxT2nlYdIlBKwvi50FiRthDNUqgJp6181hjPg E4mk57nuW6Vns9SBQrpDPRTHD16dMaMGXPnzu3u7ga/9jwZVPCWgNKJ+QJPH0ETF8oLnIpp6eIWAuTYsWOf+MQn5s+f39 HR4bouLfb4rB5bg2UYKlDw5tD4xW2N3weeNsUTeQIhsel0etas Weeee25nZydOLFiLhd5rfLs1nUDwxVAqlbrmmmsoerSpqSlQkX bYxZsmMTxXruted911iUQikUjEYrGbb765o6MDH6de6Eop7MjD 98r7qHZFlUM7n8/nE4mExKCUiTGGDA+u6/JIY1Sa/Oa77CBZ3IJt27xfFEpLlA5oCC3jokGpjtYX3BRdmvl8/qSTTuLCttSNTyL47Rr45lZjTENDA/VB5QIuxF2tQkSglISBQp5zIQSXar4BeAA2QNKzrEIitNFgyrvx ONGUKlCArSt4kbS3tzc3Ny9YsODll1/mkwzPDAB/sdda49Rk23Yul0NPCi7q5APi1hdahvGu46233po+ffpFF13U29 vLjaCB+mxjPHA9tA4K9RXnN6IUzMeN0AgZbI4ePTpr1qw5c+Z0 dnYGDj8QlEqeLxRAN998czweR7MHhsrW1dVhW2MEhQv/nT9C4BaUUtdcc002m+X7j2E95F4BNu8FpMD4QleC8Z1ZkUhEBE r54BVA8c9U4ubkk0/GFt5QFLg0dgJv3LZt28knn4zbxyuSLlCKligVMsBorVtbW/GSpQ7XGIdVV1cXj8dP3EUZOrlczrZty7J6e3vR4Imx8ZR0h39q 36EW9v5WFyJQSsIU8p2NMaYgULxCzOyg5eQBBozb59k50Gk7X3 hD9VGSQEFDAhZvBQC813Icp6Oj47LLLmtoaPj1r3+NzoVhS8FS nXv8k19j5Hog8wCB6gT8VoWXX3753r17eTNkFBBco4zxwDXzbp CSIDNzf38/3bLyveWWdZzVHcc5fPgwZve8/fbb2WyWThRZLLixx7btPXv2XHLJJZFI5K233sLJv6GhIRKJ0Co Qi8VQqQQECv5OL6CXNTU1XX/99RRlzNM7AAC32dDQQErlREO9FROJBBVikSDZMnFdt7+/f8GCBUeOHAE2qFpaWubMmYPBp3ixlj1xa7+KjjEmk8nMmTOnpa WFnkLHanNz88DAQHkxKPxbz+Vyl1122UsvvURS2rbtgYEBpVRH R8dUWHtc173hhhuee+45KlsJAJZlzZw5c8+ePfhnGcHOtY0IlJ LAfGZsxQwGwDPgGOMVzCd5gAz2QjSuB1prV3u1EINCcyMPaMO5 8aabbkIXw969e2lwcSUBLM9F+1Em+DJ6EP/ULKLFGNPW1vb1r389Ho/fddddZAAgAwYFtNLjYzxwbkExLCA3m83yyYGKONAbKQ2T73BHR 8ctt9yilLr++ut/97vfcTMG39revXux0t28efMwQZrfQSml6urq8H5yJDERKQJfSe ZzblvSfgY1BuHiv2TM4IaZgJGmcqLRKH4cfhZJFgmSLRm0cLzw wgs33nij8Z1zqVRqyZIlO3fupAvUjCE3fVgoEAxPcSaTaWlpWb p0aSqVoqF44403vvDCC+VZaMCfKWgnDx48OGvWLGxuiSN2xYoV zz33HNT6wkx3KliqIZPJ0HhYtWrVmjVrwJ9Pa/s8lEEV1EGZXGiDmTvGKZS21cYY0KbQRcjxnTvGeH4d3LB3uQjS o4b5milecpTLgAsXCuB78803582bp5R66KGHjhw5wt0uNAfiI2 h9oR3AtBeKwCADQDKZXLt2bSQSWbRo0caNG/G9FMB3gs7JR8IXUbSgoFqybfu///u/Z8+eHY1GFy5ceM8997zxxhu7du3atWvX66+//uijjy5fvhwX6bVr15IX3nEctOxiJvMoS36xNCHjCgDk83k+pxk WZYIbP0FCZOygXoGiu6BhjSi4cjU0NOD1cCJmpEkjUCiG9Iorr ti0aROu6OvXr7/vvvvwFpwiVKCCm0u0baC8zefzq1atWr9+PW5806ZNV1xxBQ9lL RXuRUJr57p167CSkud5GzduvPLKK48dO1bbCw+NeTSu/upXv7rtttvwkLds2XL++eeTfAExEhQhFpQS0WAcMDYYB40nx8v xG3/OxRK32gPtgHaqTaCQUYSWMWB+ljFuwbAqYZlMJpfL/fu//zuuRj/84Q/37NmDi7fWmqY+nu9DMR84MAcHB3HwHjly5Ec/+hEubPfff/+xY8eAxU9UTxaeGRpt6jhOKpXavHnzPffc09TUhOcBO/ZFo9GbbrrpF7/4BRnjKexmjHN+sf+LDOcBnxcGJvOvhqQJWTJOHKi0hgWdUMVGl MBh0nEpFg/KD2dcmDQCBQeJMaarq6uxsXH37t3bt29fvHhxe3s7DI2+Li/SjWcpg38xdXd3L168ePv27bt3725sbOzq6kINXsadfeDuBAdAb 2/vnDlz3n///f7+/nPOOWf37t0AgBaFMg5hshCYXpcuXbpp0yat9TnnnPPuu+9S6FY gFE4AESglo0EfFygaHA1eweODusTzwPV/qlKgIDRk6urqcKbSI1TuorcEHvc8r6+vD5/CCkPt7e133XUXrtA33HDDhg0bjh49SguM9qtWUrYLRXv09PT88 pe/vO666zAgY+3atZgfBEwK6DGn6kwAhuUDk0MZxVYymUwmk62trT t37uzv7+/r66NhhUGytAXwE6BoYR7jRyOBKJnAIsVrPhk/yOaEQjvGA4koVZb7xaBIoxgWGe15XiKRwBAL/oLx2s9JI1AQHCQbNmy4+uqrv/a1r23atAn8bHXwh3F5qR90TqmsEP6yadOmr33ta1dffTX29S47 ryRwzaGI9jxv69atzc3Nt99++8MPP0yXBZkZag9uUu7v78/lcocOHZozZ84dd9xx77330rOSvzMsIlBKRPuyoyBQXHB0IVBWg 9bg6eMCxfN7NVcTfMHAApX07Y/u3yFIuNCLyXfjOM7Ro0d/+ctffvGLX8TqYdFodMWKFWvWrHn22Wc3bdq0bdu2zs7ODRs2PP PMM4899tjKlSvJwbF06dINGzZQM2EAwJQf/kHVeYl6nofZ1Lw+BTAjPfgCAkUMzsZlxOwHBCJtCqUP+svopNF pDPekUThz4HcOVzaO4+CkpFmFwHFk0ggU3j9Ta71kyZKrrroKf G8onqwKS8XjRUnJrsYYjGm/6qqrlixZoln5kzIULs0RmBQN/jfquu4dd9yxcOFC1Cs8vblWwZsYEmGWZd13331nnHFGf38/AJCBqnruwKoHESilYaDgvjGeMZ4B14CL7QkLAgV/PHO850/1wQcCllrHWYKHoQwLdzHQ+kdzFxWzxuXz6NGjb7311o9//ONbbrmFHA08LFQpdfvtt69Zs2bbtm0DAwO4fVpcedUicg9REYG Jh4J86Qzg44FRwyumcOcUfxkqCZqUeEGKksAKXrRNXsYCp0Tjt 3MZn+tmVIqvnIBliLKc6MXDAr6Lh/K/xnf9mjQCBZjgzWQyfX19mE1OVikYejbL2HjAaUqCOpvN9vX1kR Wr7IWTxm3AbtbX14fZ+fwTy/uI6ofPWVhoAQBs28beGWTq1FpTq1KBEIFSMoXAWM8Y7KXsCxTq PmgADBgDpir1ifYj68G3oCiW4sGh7NZhicViVNcA/8WiYQjqD9o4Fk6l4Azl1z8l0NyCcaOBF1CkJz4+UtDoBFB8WiJ +Ng1WJMN9jsViGIAS8ctY0FMkzvD84Hv5y4Y9z5y4TzQabWpqw vfi1ugTE4lEPB7HF0ciESqfcULhp4WfKHpBQ0MDXQN0vIFziy+ IxWJYPIJmpHG8t5w0AsVxHNR0uKTxEB7DMneKa6iPEdLFlKeez WapKRTZMIFVKiyJgFMWdRXfeYqCru1ePGQ8pBNO7jmMMeKKU4w oASIiUErEFMSHOa5IwAVwC8EoAN7Qn+qTKEOcDsDu0wKMbk0h8 wCNL95cjO4EeBS/8Ysl8i3gp1DfQfDjTopb5BjmigqF4tNCQamBhmvan3zooPgkjL/jTeNH3jIV7waecDKcAzPbeH7KNAy100wAemj+tmEp3Pw8ADON8 POp2ZWGL6NN6akZJAvMLEbLGy+tQ+0eoNwgHfpK0um09iPF6IM 8VvanjI3Td0+mM8MCe/ErB//areEIDLqmedQYzWWUQmn8HLZQd7bqEIFSKui38ScE0iha+xXvP d+iUp0CRRcFmgR64wWe5aIksCmKOsdnaTv4LHl8yDkCfl8RYEX P6Bd8nNJ/wG//eYIWqlKhw6epFZgNG1jdF29od3qP9Z3lvnh6ttTd4N8FmcZ5uI n2XVG0YyUe6zjABQruAA9joH0bVgrz6NpxF1iTSaAIwhQnInVQ xg8z3I8gCNWDCBRBmDSIBUUQhKmDCBRBmDSIQBEEYeogAkUQJg 0iUARBmDqIQBGESYMIFEEQpg4iUARh0iACRRCEqYMIFEGYNIhA EQRh6iACRRAmDSJQBEGYOohAqV60X7GR12SEoe0uq6G/1GSBqiTxLhhUnog3Iqja8yl1UARBmDqIQKlSqLm59jtyUQ1mKp mMxR+l4upYoK7xeAKpXCadW611JpPhhfarELGgCIIwdRCBUqXw ZhBYYdoY47oumgGwTjMuUYEeh8KwoOzgfZSocTS2EgV/yec9E6oNESiCIEwdRKBUKdjkguwl/F/wRQn2kIShfROEkcCzhLqEqzpUe7yjRNUiAkUQhKmDCJTqhfpn4 lJE6yuwDpzh7uEkgpo1uq67ZcsW7Jx++PBhalWqlAK/dWfVyhQRKIIgTB1EoFQp+XwepQk2Ou/o6MhkMvgn3v1j6InruuShEEYBI4txaa+rqzt8+PCbb745f/58ALBt++///u+j0Sg+m8/nq3btF4EiCMLUQQRK9WJZluu6DQ0NSimlVENDA1+ZMH6COoaHu 6vVD560bDbrOE4kEnEchxb4yy+/fPXq1fF4nGf0hLmvIyMCRRCEqYMIlCoF3TfGGFyTWltblVLt7e 2PPPIIALz22muPPfYYADiOY9u2rFUfCXnKXNdFbw6qkO7u7kQi EYlEIpEIPm6MEYEiCIIQOiJQJghKBqYMEcx0Hf1duJpGo9FoNL p58+ZMJnPNNdfceuutixYtOnToEEkTSTP+SPD8o0yJRqOO4wwM DDz//PN46rTWqE5gaP5UtSF1UARBmDqIQJkgqMYa3qDzP4eFBI1S6ut f//q1116L8Zuvv/76xz/+8bvuuotvs2rv+KsHCpK1bfv+++9vbGxUSt13333gJ0PR2l/Nak8sKIIgTB1EoEwQVHgNADABhyqwDQsuqK7r1tfXp1Kp5cuXr 169ev/+/bNmzWpra7vqqqseffRRALBtm0qgCqOALjMyOFFkMZXlxQBkfGX VahQRKIIgTB1EoEwclmVRDg6hRwAA8vk8VWNLJpO7d+/O5/OYY2KM6ezsRH0jWTxjATVHNpul3GyyUWmtBwYGMEI24IarNkSg CIIwdRCBMkHgukj1TPFPNSrRaBQjN6PRaH19fTweTyQSSil8EH/HjYtGGQuk/NDsRDYtyoTCcm0kCqsQESiCIEwdRKBMHFT1lTwI8Xh8lBgUYNG vuGpSqVM0w0QikVwuNzg4GM7xTDZyuRzanMhSAv4ZTqfTWBavy hsbiUARBGHqIAJlgjDGYG8/rj/IBFIMBtJi4gmVaAO2gvJ02ap1SVQPFNND3QFPOumkVCqFj+OZx CopUMWtA0SgCIIwdRCBEgLoSoBRBQotP7RY5nI5fJCSgJRSnud V7WpaVVAFNjqxVPUEpR4+XuUNBESgCIIwdRCBEiaoMMBfbLC8K RVcB7+YLH8EnTvo66mvrweWfiKMDuZpU7nYeDxO1fBQrKTTaRh bfZqJB7/9+vp6DJ1Bh1Q1l2yZ4lDyP11L+A0KgjB2RKCECVlQUHagzshms zipkRah0M6AEFFKkTFmlJIqghl63vBPpZTxk6pisRgF/VAiT1WB1wNeMLjPEhld5eCdg/Fz10EKKgpCiYhACRP0LOCd/SuvvFJfX4+/G2Pw5nj79u2rVq1asWLF1q1bAcC2bcuybNvGZyORSBXe61cnPG 0HALCeLCXsKKUwCdwYk0wmQ97X4dBa5/N5UrS44OERCVWIKSqfOHrKniAIwxDWABaAhUEAwK233op/UjBEZ2dnLBa7+uqrly9frpRKJpOBOAmlFDos0DckjAIwaUIuHv wWstlsU1MTPo7GCSyjV1XgrsZiMbKrGfHrVTH47aB/1nEcz/OUUvF4PNTJXhAmG2EP5CmNUopScowxiURCa033Xq2trfPmzUNj ycKFC5VS2NOO+htHo1FsdBeNRsO8hiYJdXV18Xg8FotRa0CtNX ZbxGeVUvX19cqvNFNt4M4bPyCp2OUnVBVoDSWampqU31dLEISx IAIlTJSf3Up/otEeBUpPT08kEvnBD35w3333KaWOHDkCQ636/PUTHRMx2QA/BtayLNR8ZEExxjQ0NGg/1rg6TyYAuK5LnQ2MH5UyUZeqUBqB4HcAQHUSpsIVhElHyON4aq N8C4rxu+ySGwIAHMf58MMPly1bdumll27fvh38/GRM7UGjMQBUZ8xEtYGLRDKZpHxjPNuoWhKJBFZvw8jTKky4MMx Yks1mLcuSAJQqh3LE8LuLCIJQIiJQwkQphTfEjuMkEgn0L+BTe mjmjvYjJ9CfTYIGfPdQeAcxOaD0HPBtJNFolM4bV+pVm2ph2zZ vmCA5xtVMYEg6jhOpSr+hIFQ1YQ1gAQCUUrTM4C/GLzJLv+MdmGbFTkiyRCKRMPZ6UqL9+GIEFSFqO6015k8ZY6hWS tj7K0x6TFFRAEEQSiOs0SuAf+OObgW+dho/zRiYiRiYiAERKCVCGcVkhOBnT/lNA7TfRzqk3RRqBxEoglApYY1eAVgMCoaVwFD/Avp3stlsNps1xlAJdhEo5eF5XjKZNH7aZ11dHQq+TCaDzrLBwU HqJyAIFSICRRAqJazRK4AvUNLpNHlwsKIJZWcEmu4iAYEiAShj h/oYk4EKrSaGldXCTJnQdlGoFUSgCEKlhDV6BWCxmVpry7IoTgKT dBB8Af9TBEoZOI6Tz+cpVBZPMp5zkiyu6+bzeVEnwrggAkUQKi Ws0SuAn8VDEQ/YmjjgYuDpJ4i4eCohl8uhswzjYSnrGPwwIJAgWWE8EIEiCJUS1 ugVwLegWJbV09ODX0csFgMADJXQWu/YsePOO++88847d+zYQW4gEShlgEk6FPGDD5IdBfzy9gDguq5k8 AqVIwJFEColrNErAEszXrly5TvvvJNOp+vr6z/44AMMieju7o7H48uXL1++fHk8Hu/u7h7WxSOMEUzkoXNIMgUVCaYcY2OjUHdTqBFEoAhCpYQ1egUYm t3a1dXV29urlOrp6cGpraWlZebMmZlMJpvNNjc3U6cxrOcWi8W i0Sh2kFFKRSKRWCyGjyu/6SDGsuC6S0lAU7awG+Zvt7S0oJkKAH7729/iGTtw4AAmeIPv7hGEChGBIgiVEtboFYA101FKRSKReDyeSCRQT 7iuOzg4GIvFHnzwwXXr1imlenp68F2YewxDQ1gsy6KOLY2NjTC 0BD4uvel0mrcImVKgy+zQoUPTp0+vr6/P5/MdHR2xWOzo0aM/+9nPULJg8hTqmLD3V5j0iEARhEoJa/QK4FtQsGg9Vj0xxlApjkwm88Ybb3zpS1+67LLLtmzZAr6Tgrqk 4tspRZZKuim/ByEVfKPWLbhOT802LrZtU2PaHYsAAAX7SURBVJtANCMppQ4fPj x//vxIJOK6bjwex3Zub7zxRtg7K0x6RKAIQqWENXoF8E0glmXF43F s1YEVw4D1aid7SS6XC5TxQFnDN4gxFieddBIMzU/BX9DWEnjLFAHL9SKNjY1oXlJKzZw5880334xEIslkUim1ZcuWw 4cPy7gQKkcEiiBUSlijVwDm4uFNAcHvZgcA2WwWVYXruiQsLMv yPC+bzSo/CQifxRe4rhuJRCgaFADS6TQGo4CfwDI1NQoAOI5j23Y0GtVaf/jhh/X19Vu3bsW+0LlcTvkxyxSkIghlIwJFEColrNErAPPFgF9DltrB UO8Y1B8U2cpb8yjWyodTV1fHnTjU/Rj/nbJZKnhOotEo9jHu7+//6le/qpSqr6//2c9+lkql6OuQcSFUjggUQaiUsEavAABKqXQ6DX4JdpzRyLlDab Fo8CCRQRU7qJIsZaPQ14qZPvQVoxkGwz/JPDPVGBgYAN87RhE5qAhzuRzpP8niEcYFESiCUClhjV4BWKE2/NP48CwbWlADSbAY44kv7u/vX7Bgwa5du+hdnuf19PTMnz+/ra0N1Q+5daZgCg+w5jv4C+Zg46mgtB3btvG7mLJGJmEcEYEiCJ US1uidmuCiSNXry/vK6urqMKIWLSi4pm7evHnp0qUkYowxK1eufOSRR8I9XkGYsohA EYRKCWv0TjXIboG/UFRsGdvJ5XKob7LZLCoeFD233Xbbxo0b8ZFXXnnly1/+MvqPBEGYeESgCEKlhDV6pyDU5AX/zeVyZdQjQRcPxkzwxB8A6OrqUkp1dXVls9lZs2bt3r17PPdeEI RSEIEiCJUS1uidaqAW8TwP/S+UElzqdijNJ5/Po1jJZrOe52EuzxNPPHHDDTfcfffdjz/+eCCWRRCEiUQEiiBUSlijdwqCooTMJwMDA2UEY6K4oSiW/v7+wLNXXHHFmWeeyevcC4Iw8YhAEYRKCWv0TjWofa7rugMDAzw ZpyQohAVYskl/fz9aVhzHOXjw4L59+7TWU7YamyBUAyJQBKFSwhq9Uw0UE6lUip fZKENDGGOoqAnmx5IfhzrvkCNpfHZdEITSEYEiCJUS1uidalBM K/5LHQHLg78X9Qp9Cv2JqT1lf4QgCJUgAkUQKiWs0SsIglDDiEAR hEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhAr5/1Xny9vHN9jQAAAAAElFTkSuQmCC
http://www.longrangelocators.com/forums/ JekjFAAAgAElEQVR4nOydaXQc1Zn3b3X1opaAZM6ZnDNf5sPMm cmcmTcG72u2ycxwkglbAiEJScA2CAgQcLzbgGEIewzewQHDsBl jbMy+2wYv8oqNsPEm2bJl2ZZtWUu3eu+quu+Hf+qZR9WSMOqWW pKf3wedVnd1dW333v99tqu0IAiCUGgcx+H/KkEQvi7Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far2CIAj9GBEogpAvxWq9giAI/RgRKIKQL8VqvYIgCP0YESiCkC/Far0dYVmW1jqbzeKvbdu2bVuW5ThOIpHQWtu2rbWOxWL0uiPS6 TS2yWQyWut4PI79Y5/0E/SjgiAIhUIEiiDkS7FabydEo1HtygutdSaTcRyntbVVa51IJNLp NFp+Op3GR+2STCaxB0iQZDJJu4JeoZ/AzwmCIBQQESiCkC/Far0dASECPZHNZrPZbDqdhoUjnU7DcKK1jkQiZ7O3bDYLk4l27 TGWZaXTaeyZfgg/KgiCUChEoAhCvhSr9XYC/C/k2dGuC4YcOniTxEe7ZDIZbG9ZViKRgNXEcRzsCi/oh4p1poIg9FdEoAhCvhSr9XaEZVmwbQAcpM/nMwxDKRUKhXw+n1LK7/d3fl6lpaV4EQ6HTdMMBAKGYQSDQXydnziETjHOVRCEfosIFEHI l2K13s4h04hSCoEjeB+GENu26+rqgsGg1rqjGJR4PK6UCgaDgU CALCgtLS2IQVFKUfhtEU9TEIT+iggUQciXYrXejshkMsjW0Vqn 02k6wkQigfcdx8lms8OGDev84O+///6lS5e2trYqpU6cOIE90KdKKQrCJfkiCIJQKESgCEK+FKv1dk4m k0mlUlprpVQymURThzTBi2PHjpmmyZ1BHmpra23bjkajhmFUVV XhTewqmUzixFOplEgTQRC6AxEogpAvxWq9VIaEKpGQtyWbzTqO Y9u24zimaXLLB8JmsXFJSUkqleLZyPzr69evV0r5/f5AIAAnEVczhmFotwfx9COCIAj5IwJFEPKlWK0XJJNJy7JSqRT ybig9R2tt23Zra6tpmtrVHLFYjNdVU0pRAg7UiWVZmUwGn/r9/traWq57eCwLFyiSxSMIQsERgSII+VKs1ptMJrliaG5uxotsNgu 7CKkQcsTArKK1tixLKeX3+xEna9s21U0hOwqydQzD8Pv9+BTBs/hUBIogCN2KCBRByJditV7Ctm2Em/AqsdrN/lVKkTqhIFmqZRKLxaBasA2ZXlDeDduQcYWXPBGBIghCtyICRRD ypbitN5FIkNmDDCSRSIRKu4ZCIYgMiBj4fTQrXkLfIi1C9hJkE dN3NesyRKAIgtCtiEARhHwpYutNp9OQDqj6mkqlYrFYRUWFduu gZDIZwzBSqRRFs0Kd7N+/f8WKFRUVFVAk5NbhpU2qq6tXrVq1Zs0afBSLxRKJhAgUQRB6Bh EogpAvxWq9UBVUFtbv92utH3zwQdM0sc5OKpWyLCsYDJKAwEI8 n332mVLqZz/7WTAYXLJkiXZDaLENNt61a5dS6qqrrvL7/Y8//jhkUEdZPCJQBEEoOCJQBCFfith6W1pa8DqZTKKoSV1dnVIK4SZ QMEop5BvTt+67774bb7wxHo+vX78eOT6a1ZNFHvL8+fPLy8uTy eTGjRsDgQAWCOR1Y0WgCILQrYhAEYR8KVbr1W4DpmwdvOPz+Xh iMFUx0a4naNGiRSNHjqyqqpo7d+7IkSOxMeJO4BhKpVIvvPDCk CFD6uvrFy1aNGjQIOwNGgWvpQ6KIAjdiggUQciXYrXebDZbX19//PhxrTUMJ1pry7J8Pp/WOhaLQXngX81SiCORyBVXXGEYxo9+9KO1a9ciQoVSdSBBGhsbr 7jiCpzgJ598woNngVhQBEHoVkSgCEK+FLH17t27Vynl9/vD4TCECK1ajG1Qkz6TyZA6aW5uJtdPY2Mj1xbwBFmWRdYUpVQ8 Htcs5UdcPIIg9AwiUAQhX4rVehGyeuTIEcdx8JeydfBpa2srPD 7arXCPnGToiXA4TCsb41OqeR+LxfBaKZVKpVA9xbZt2kCLQBEE oZsRgSII+VKs1ptOp/lCfY7jRKNR7WoRqlwSCoVoaR7aOJVK4chhWaE6KLwUWyKRwDb0 KyJQBEHoMUSgCEK+FKv1ApS0R/6w1ppW0oF9JR6PI2aWSq6hDopt26FQKJlMkjTBt6jmPfZgGAZU Szqd5gEoWgSKIAjdjAgUQciXYrXeTCZDBWTpL4wcvG69UsojI5 LJZCKR8Pv9sLXAd0P6gza2bVspRQXvtdRBEQShBxGBIgj5UtzW y2NHENDKq8E6jmMYBr1DobIIgNUsbUcz/UErHmMpQfIWYT94LQJFEIRuRQSKIORLsVpvR0BGkGoxTdPv9+N QTdNUSpWUlCilgsGgUgqFaDvC7/dTWhD+0vtU4Q3FUUSjCIJQWESgCEK+FKv1dkQymSTjCtYlxvuQ EZlMBrG0hmHwoNd2UUqRNQUShJtbqECt4zieCBVBEIQ8EYEiCP lSrNbbCZAg2WyWsnIgIEhSpNNplMbv3PKBVGSKn0U9FdoV9k8/JwiCUEBEoAhCvhSr9XYE9ASVpacEH7ygmrDKTTPuaD+UZpzNZv FdCkahvZEviQq4CYIgFAQRKIKQL8VqvR1BjhusZqy1jsViVBwW VdcsyyopKYlEIp1bUPx+PxVBSSaTsLgkk0moE8uySLJ8pbdIEA ThayECRRDypVittxOi0SjqxmqtaaXAxsZGfMpXOUYNt3bRWiMS NpVKoXqKdmNQaO2eRCJBBeIEQRAKiAgUQciXYrXejoBVA7aTTC aDmFkoCe2aVWhNwU5AoTbtChry5mBXyWSSMpZ1W++PIAhC/ohAEYR8KVbr7Qiq0sazf2ktHrzQ7irHnceOGIaB2irQHzC30Fe wf0Sx8KL7giAI+SMCRRDypVittwvwmrOwjgCPjQSkUqlgMEhRt GIjEQShJxGBIgj5UqzW2wUogkS3FSitra28pCziYbUbp4L3YTi ReieCIPQMIlAEIV+K1Xq7QLsCBVokFoshsgShtVrr1tZWxVY81 jn9hSAIQvchAkUQ8qVYrbcLtCtQEDObyWSojBvyh2nFY1pQUEr aC4LQY4hAEYR8KVbr7QIduXj4UsZYU1BrnclkcHZU6g0Bs4IgC D2ACBRByJditd4u0K5AgY0kk8mkUql0Oh2Px1tbWxEtGwgEYFx JJpONjY1UDUUQBKG7EYEiCPlSrNbbBTqyoOBNvK+UCoVCdHahU Mjv9+OdAwcOSC6PIAg9gwgUQciXYrXeLtBJDAp9ZNv2hAkTXnj hBb7xM888M3XqVNRBKdrRC4JwLiECRRDypVittwt0VAfFtm1au MeyrIaGhtGjR1dVVeHf/fv3jxkz5syZM2I+EQShxxCBIgj5UqzW2wXataDAaoLXlmUhYPa tt94aO3asbduJROKKK654/fXX8S3J4hEEoWcQgSII+VKs1tsFOopBge2E0om11tlsdvLkycu XL3/mmWdmzJihtU6n0xSnIgiC0N2IQBGEfClW6+0CHVlQIE1okZ1MJ mNZ1tGjR8Ph8IABA+rq6vCVWCxGle8FQRC6FREogpAvxWq9XaC TSrL4iGq1QbIsXbr0nXfe0VrzQviCIAg9gAgUQciXYrXeLtCRB UUzgcLXJUbhk0wmk81m0+l0KpUSF48gCD2DCBRByJditd4u0FE MCuwleD+bzWLxHQSjNDQ0YBuKU+n5wxYE4RxEBIog5EuxWm8X6 KgOCt6nSvY80AQGlWw2KwvxCILQk4hAEYR8KVbr7QId1UERBEH obYhAEYR8KVbr7QKdlLoXBEHoVYhAEYR8KVbr7QIiUARB6CuIQ BGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQBEHoK4hAEYR8KVb r7QIiUARB6CuIQBGEfClW6+0CIlAEQegriEARhHwpVuvtAiJQB EHoK4hAEYR8KVbr7QJSB0UQhL6CCBRByJditd4uIBYUQRD6CiJ QBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBRBEPoKIlAEIV+K1 Xq7gAgUQRD6CiJQBCFfitV6u4AIFEEQ+goiUAQhX4rVeruACBR BEPoKIlAEIV+K1Xq7gAgUQRD6CiJQBCFfitV6u4DUQREEoa8gA kUQ8qVYrbcLiAVFEIS+gggUQciXYrXeLiACRRCEvoIIFEHIl2K 13i4gAkUQhL6CCBRByJditd4uIAJFEIS+gggUQciXYrXeLiACR RCEvoIIFEHIl2K13i4gAkUQhL6CCBRByJditd4uIAJFEIS+ggg UQciXYrXeLiB1UARBEAThHKEvCRSxoAiCIAjCOYIIFEEQBEEQe h0iUARBEARB6HWIQBEEQRAEodchAkUQBEEQhF6HCBRBEARBEHo dIlAEQRAEQeh19CWBorVOJBJ4gQou8Xic/mazWSqUYllWJpPBlplMJpvNcnEjCIIgCEIvp88IFNu2oTkcx0m lUoFAAJojk8ngI8dxIF/wvtY6nU7jK5ZlaVEngiAIgtB36DMCBXYREhmGYSSTSVItra2t2 Ab/wqZi23Y2m9VaJ5NJx3Ecx0mn00U7AUEQBEEQzpo+I1BgBYnFYl rrdDpdVlZG70OdkBzBlnhNiiSVShXjqAVBEARB6Ap9RqBAcGit I5HIa6+9ppRav349GVTS6bTjONFoFO+QZwdixbbtdDptWRbtRB AEQRCE3kyfEShw8cydO3fgwIELFy5sbm7WWqdSKcTAkqWkubn5 2LFjtm1blpVKperq6rRrR0kmk0U8fkEQBEEQzp4+I1C01rFY7P XXX7/iiituu+22AwcOwGuD5B3btpVSpmmGQiGlVDAY1Fpfd911paWlm UwGthOJQREEQRCEvkKfESjwziDQZP369b/4xS8mTpy4d+9e7cbAlpSUZDKZVCq1Zs0apZTjOKtXrzYMg7w8R T4BQRAEQRDOmj4jULSrTizLgrNm3bp1sKbs2rXLsiyllFLKMAy l1LFjx2AsUUpBoFBZFHh/bNsmj48EpghCR5B7lKyPFMsFkyRaFt6hViYUEPRg9IL/S6/PETzlrHjtCZ7jKRScjq6tbdv4iEqUFZY+I1BisZinnEljY+PCh QtN01y+fLnW2ufznThxYsSIEbt27ULMrGVZfr8fG8Mf1NraytN 5UENFBIogdATUPF7TeICWiGR+7bpZRZ10E9TjoadKpVJkTuYCB ZUUinKEPQCdKU4TXbfWOh6Pk0bRbqCh2MsLjuPieZ9EMw2jhb3 4fUagaK0zmUxLS4vW+vTp0/PmzVNKPf7448ePH9daZ7NZ0zTT6XR1dfWwYcMqKyu11jCrIIUn lUpRndlMJoPnmCZ/olEEoV3QakiC2C7omNLpNCYD2FiS+bsDy7LoIlNPhcC7c2okRj eumTLGrB2pEpr158U7xnMFrldILILCXv8+I1DwLDY3N8+fP98w jAULFpw4cYI+hRbRWqfT6Ugksm/fPtu2/X6/aZp81Z5MJoNKKrZtp1IpyJR+PO0QhDyhCod8so5xgoy6ra2t55 qvoSjYto1rnnWBfYv3YE4/hU4QKoQmnNFoFM5HTET78RUoLvwBw/yEnkC6I3x5mUI9831GoDiOk81mx48f///+3//74IMPNHPB4rk8cOCAUioQCCAGZfPmzYhKCQaDkUiEIlRuvfVWh y3ZIx2rIHQOpu8YCG3bDofDPp8P6XI0OiLV3xGtX2jIf4Fra1k WlcnGxfeMH/0V6qs9/TY5eujfc8qqVBRIo5Bnh9yOkCwF/K0+I1C0q5E3btz4i1/84r/+67+2bt2q2VqABw4cqKio0Fq/+eabSqnPPvvs8OHDmUzGNM3q6upgMJjNZltbW5VSdDU182gW88 QEobcCKyMZS5LJJDykSJTTWn/66adoTW+++SY8sEJhwYjLC2TzYdhxfT0U/t8voZPV7owUXTc+5avDptPp4h5qP4bbVPAOxSbT38LK5T4jUPg jGI/Ht23bdskll1x22WXr16/XWkOjXHDBBbCU7Nq16/Dhw6ZpBoNBpdTJkyd9Pl9paalhGNdff73WGiZrlEjR4rYUhI45 c+aMZquFazfkS2udSqWWLFlSXl7+0EMP3XzzzfCfCgWE0qMct9 qTYRjwXJum6ff7fT6fYRg+nw8vVD/F5/PhhWEYhmEEg0GcL04Z1wEblJSUFO0o+y+41D4GXXzTNFtbW23m aizgeNpnBApUcyaT4QnDy5Yt+6d/+qeZM2ei6c6ZMyebzR4/ftxxHKVURUVFNBqNRCJaa9M0x44dO3bs2DNnzvBQPqmSIgidw2 dIFCerlNJukuEvf/nLb3/727TQhFBYqLu3LAsRdTD60n0517ovPmoqV5HQp+K171bIfEJhK Lj4lN9XWHdEnxEoWutEIkFtsqamZtq0aYMHD165cmUqlUqn08q 1OeMBNQyDr8ijlEqlUuPHjx87diz2xjtTeaaFcxxeyIRiMDsZ+ ZQbk7506dLrr7/+0UcfHTduHL6Ob+Hr/B2ha/Ceino5ckxj5tZjNmDPjI4Cj+j9njkSHAAeQngZ6JD4krGaXRly U7Yb+9kL8ZwRQW2K/H3tfh0nSGXAaCdUgZ223LNnz6uvvrps2bLbbrvt7rvvnjt37qp Vq3bv3o25vW6v/Ax2i1BlPJN8GlNA+pJAwZWtrKycNGnSRRdd9MYbb8RiMZpJwOb JLYEImMWcA49yIpFYtWqVZu2KbqEgnONQgJvNCp90RDgcxtC4d u1avHjrrbfq6+vp6xgPKMOiSOfUH6BO3zMYUHonDTY97KqmWBA asbhA6dbhnwQKl9HozOkdLMemXbECt37v1yWAt0G8wLlQAh1ed GKu4IHVeIdHsFqW1dTU9PTTTw8aNEgpVVZWppSaNWvW7bffPmz YMPLgzJ8/f/fu3dqN7MEvkjrROc/kuStQHMdJJpO33nrrP/7jP65cuTKZTFJ4TmtrKz180WiUvhKPx6nkZTKZxGvEe/PEBAlAEQTuR0ilUvF4HFrfOAswJSgpKUGCj1IqHA6bpgn/NDe/C12gXYHS2NiotVZK+f1+cnnw190H3fFAIICBjar52ax2XM8IFO 0a/JDF+e6772q3Ytbvfve7WbNmISqgrKwsEAjw6asnkKI3Ew6H6a9 mTRUSoXMLCjezIUQMl2vVqlXDhw9XSs2aNWvjxo3Hjh2jXaFqQ GVl5ZIlSzDJnzdvnsfuwpPLlAgU7V67Xbt2TZgwYdSoUa+99lp rayspErpeJJ/bdYlhY4pGJsuVzPAEgWbkra2t2u39nQ5Adg+ld2o334dKZtFHP p9P2ldBcBzHMAzqr1SOIumZsRaZB36/n37uG9/4BvWlPSxQ+EN7//33YzStr6+/6KKLAoHAhg0btNYIUkFivK8tvVadQNn7/X7cYvwluU/R6J0sMcEtbdrVKJZlJRKJmTNnmqZ55513ouq6dtez4+WO0ul0L BZraWn5y1/+4vf7v/e97x04cEBrjYAK+nURKH+F26b27NmjlDp48CAuBxm78KTGYjGH lT3WbvAKZWzz7tKzvIUgnLNgdCETLi202S42q4CC75I5HaEn5H 1QSomRMn8wBsBhTXF1Pp8Pc1xyZ/fM8EnRqYFAAD9dLIFCP4RCYXPmzFFKfetb3xo0aFAkEkmlUolE wjAM0iimaSISoNdKEwJCUCn1zW9+E9JEKUXZc/RIdNRI+XSCtolEIjfddJNSasWKFXQlcTG5NxaTf9pVZWXlhRde OGbMmIMHD2InmhkFlAgUgNqvuIKGYcTjccfNxiaNwuvG8OWjst ksIno85ZClAoogaKbRoTxisVggEOjc8kG9JEWvYx5GBbWwuvh5 550nFpT8wRjg8/m0e7OU64DrGc8OoHHd7/djBEVxh2IJFJphIvrks88+gxYZN24cxtFsNkslxfGiT6gTUpyU ykvHTKE/uBQ8/z/3gaGJBK7PbbfdZhjGzp07sQ0FPOi2JgB6AWNqJpOpr68fPHjws GHDGhoatBvQo0Wg5IIpGr9PdHVwDxCdR+9ApmBKR7Xteb0j6T0 FgUcXAtVp7Ai6J76EKYl+dGoUjtD5foSzBCMNJtC4UxQkpNk6j j1JJpM5//zzMZrS+NTzFhQKx16+fDkqXX344YdKqYsuuqi+vj6bzUKylJaW YizndN8R5gm3i6BlKebigcGyc8M/P0Hcl2XLlhmG8eGHHyI6k+d/4elKp9PUihEOQeNpOp2ura0NBAI33XQTzUwQyikCRWs3l4w6RO UmmJGCJqsyRWxRh0s+M82WbNCuD8iRGBThnIdmWuSgCQaDvOF4 iEajPPkQfda+ffvi8TgWyaKeDmETPXAK/ZtcgYIAVa7/ejLFF/dUubEdxRIolKFTXV3t9/tRE8txnIMHDw4fPnzixInaNTUpN8I0dwGjXgtPwAkEAjgL27Z5 RcTOg2TxSCQSiUgkEgqFpkyZ4tkz2jgl6egcp4/jOLS6wgcffKCU2r59O7ksRKD8H/wS8CUAuxUqNUuWNAptEYR+A5+Coz/y+XzpdJqKLuBFMpk8efLkFVdcoZQaOXLk0aNH6evPPPMM2aWbm ppohufz+cSRmg+80+f9HrkDijjW0tjvyfWlRAReV9PzgnwQtDd 8l0tezbzwyGH2bE9RopZl7d+/nzJgLctqbm4+cuSI1ho5OzhInpidu+ZJu2YVLrl4XR8np/hK5+TKfbtt8Xh+XjpnsMe99gx83APAKw/xn8Pt+Mtf/qKUqqur066w4HBngsVWz+ZiFP9eddVVV155JbkmtFubRwRKm4v VYwIl9wB02/UvBKEfoF0jJalwmprDbGm7fd+sWbMGDRpUVVX129/+9uqrr6aBpLa2tqWlxbbt0tLSyspKvJlOp8PhsASh50MvFCj0i 18pUDTzBfB1W2zWmUMHYxK/fft2nNTy5cvT6TQcDeTXsF3LB15DFmDGyNVGPB4nyzrCtCGdNV uph+aZyWQSMaEdCRRyDOm2ywDRkVCc+NlcOkRDYp/U4uz2LDrtChTF4oJxBchjQGfEfTd4Exdh0aJF2vXAOu1Bbdyz5 BMOD7t6//33lVKIliUfrggUrYskULLZbCaToWClUCiEF2dTH0IQ+gqqbX0L yhog/H4/evmSkpIHHnhAa7169eqhQ4dqreG6RieFjU+dOoX+ly8rKHSNPi dQMLDheYAg4LN5Ho5NkRBgx44dSqlHH330gQceUEo999xzeN/v93PRY7t11imnnfZAa6HYzK6AhXuUUviIYrq5X6MjgWK3XS0Zc oSqV/BVU3CyHV2xdk0sfIZwlgKFPwBcC5IgwwHzEim2be/YscMwjJ07d9LF6WiOTaGvTU1NZGfiFzmdTvv9/vnz52PdUC0ChSiKQAGG60fHI4iEIEHoN9A0FA0tkUiEQiF6/h13kmdZ1rp16/x+/7Rp05RSL7zwgnY797q6OuRNhMPhw4cPkzUeYRNCl3H6oEDBI2G zSpitra3kJc+1qMXjcSxXMnHixHg8HolEJk2ahFOzbRuxJhZbq 5nSdvjiDLTneDyOLpqm+Eqp8847T7sVRHB43E7gaQ782KikFmQ Kd/FjJw7Lt+8cMsBQTPrXFShI4yL4F2EagXgiPYEXzz33nGmaOHJu x2oX7IffTfoX9VFnzpz5m9/8ho5QBMpfKYpAIRsjCqjAQNczPy0IPQmms5ZlQWeg3+EVEWjuu HPnzjfeeGPLli2azUefe+45iuOjwpSpVMo0zU5mlsJX0ucECkE T+paWltyd4FnCM2a7Qa/0vNEqdMlkMhgMOq7hhGwGNN2nzAnyVOq2ZhU6SDKEkJmBBuOOB AoltpA1AjuHAPLUBe38RpCUcVh4x9cVKB4XD10QbMPHJl50Y9q 0aTfffDP/0XalCfl04KulZptIJLj8euGFF8LhcCKRwPUUgfJXiiJQHMfJZD Kohkktp+d7BEHoVjKZDIoMUXfvaWLU96FPpzVB0Bbw4tChQ9Fo tLGxEa2GhE5Pnkj/oy8KFM0yengqCiCbBN8nLCgos6G1jsViyl0ml4xw3NqB4Zl+Do qB+yPI1hIIBKhOPA3qvJoI7cejTvixYbNkMkkNAVYQOrWzv3rY G5U174KLh19hfBdSz3aDSMhMApkyY8aMO+64g9QYrUneLh0tP0 k9w6pVqwKBAD8wEShaF0+goOVorZPJpKdIjiD0D9DF4PFuampy HMfv96NHow7LccP6ePFsx3ESiQRlT9B0kyzhEoOSJ31aoGBU42 GklBdJr7nRbtSoUSdOnEilUp9//nlZWdlDDz2kczQuFxMkHegAeJ0xHAMOsqysLBqNLl26NBKJ2La 9ZcuW7du3Y0TvXKCg/CDej8fj7777bktLSyaT2bRp0549e2ggb25u/sorRlafZDL5wQcf7N27l8TWWQqUTlw8nsrpkBq4LBMnTrz77rs 1K73R0fWk62azWBb+rWw2u2LFCuXWIdMiUIiiCBT0xeFwmCRqR ypbEPouuVZibkzmAwx1tZpNUrU7I9Rs6gzzuN/vz+0ThbOn7woUqjCm2yqS3PEY/x4+fHjUqFEoXuI4zoIFCxCXHQ6HPXZr/jqVStGwzW0n9KNUOvbaa68977zzMMwrpUKh0Nq1a3XbEdpzYDy k17Ks8vJyxVYY8Pv969ev1yzT7WyuXiqVeuqpp7Cfdn+33cE+1 8WDhkbqyrIsnBci3IPBIC+Qj1h40zRRd7iTYHntLqbLbxZODTr yrbfe8vv9dBgiUP4KvwQ9HySrO3huBKEfwGVHPk2sULtD1goAA CAASURBVPsRiN4sUDDmwQPucVXQqGaaJkWEUK0OmqzTVxCx1ND QcPLkSdrJ3r17E4kEj/Ow2Pqv9EVyBmmmEsiPY7hr8ZimuWXLFtgVMplMeXm5YRjcT6SZ wPKcbCaTqa6uVkp9+umneLO5ufkPf/gD9xx1ftG4xlJKPfHEE9BVDqtux3fSiUDpHLLK0KVYsGDBiBEj bHdNGCcn5buTibftpnNrN5vpwQcf/NWvfgXnkeM4tBooF6lfeZBnSV8SKEXs9bhAkemg0P8QgdJr6bU CxXEcmovzkdViyyakUinlFqTnPSct2koPDAK0v/jiC5gWNm/ejOEwEom89NJLmzdvtlk+LTkTIUrosmA0dRyH9p9KpRC7XVJSw lfitW37008/VW0rrDhtvS30wnLRWre2tpJP8+OPPybv/1leOgrysG3b5/PhaPF1uj7tBhJ0WaBks1lUgEVZRayqSLfJo6va1WfcHKW1Hjhw 4H333UenYxgGv5WFRQTKWSECRejfiEDptfRagQLTBY2aMEuQnY ACNoPBIH0LcaZkPiFTCmb2mzdvVko98MADf/7znw3D2LFjh9Z60aJFhmFUVFTQuO60rTgC1wa8D5oZMxKJBBXq UEqVlpY6jlNfX9/S0uI4zpo1a8Lh8IMPPqjdLBXyZXCB4gna4MlBCMW4//77z+aKcQ+Xdq07XNhFo1EuuXSBBAqIRqOhUOjRRx/1rPqSa/XxeN9Ir9B12Lp1ayAQWLduHb4uAuX/EIEiCN2ECJReS68VKNyC0u60G34EpVQ8Hqd/NbOmUEl1rXUsFvP7/ePGjYOd4/rrr1dKvfLKK6FQaPbs2Tqn48XsH8omFAo5rOy9ZpGeWCwQCwZt 2LDB7/fTv+Xl5a2trZSWTF/xWFDIvIE8fNu2E4kEAlAGDBgQi8VIk3WypAPtkysVuHgikQj/IgX8FkSgOG5qz6RJk77//e8j37u5udmjTsg+xH+UJIjjBrtoradPnz5ixIhEIkHeInHx/BURKILQTYhA6bX0coHi8/koRpUPrplMBqGjfEyNxWJ81AeUeExbIl/yW9/6lmEYY8eOJSGCj7hDJJvNtrS0cE+NZumW+EsXyjCM3/3ud9FolFa8pxPpSKCQ6KExmALG16xZwxXD2Y8L2DIajSo3uJin xfHLy7919gKFTo03xtraWqXUk08+ScdPmoP/Vq5A4RlSGzduVEotXbqU/5AIlL8iAkUQugkRKL2WXitQNAuSxRCOYY/WmNRaRyKRb37zmygjS5Xm8RFqpVOqSCqVCoVCJFxOnDihlPrpT 39K1Y0zmQxV8qBFevGvcmvO8kpllFYWDAaDwaBSqqysLFcEYOG ejlw8mvllWltbq6qqKMZWa/3RRx8FAgHa4CtL3ePsaP84bJRnpSOnAyiIQCEVYlnWI4884vf7 N27cyI/KU++EizbuJ9Jat7S0DB8+/Ne//jUuLHncxMXzV0SgCEI3IQKl19JrBQpZUBBLQR1jIpGorq5+773 3nn766RkzZiilnn322TfeeGPbtm1QGChsTxtToR1YYjCgbtu2j eI6eVgGRvRMJnP69Olly5a98sort9xySzgcnj179htvvFFVVXX y5EnNLDQo+AZM06TjxK/wyBUakrlAcViKzbFjx5RSw4YNO3HiRDabXbhwod/vpyz6s7wLvE4donP4Fz119PkXv5ZA0UyjOG49t1gsNnr06Isuu gjHTx/RD5GXh4ARBZVzb7jhhtLS0s8++0yzNQhFoPwfIlAEoZsQgdJr6 bUCBUGyKJ6BiXh9ff2SJUu+//3v48BCodDkyZOVUkOGDDFNE7m+ixcv3rdvn3YXdsEObbfUvVIK VV+VUtheKRUIBBx31ZszZ868/PLLI0eOVEoFg0HDMGbMmOH3+4cMGUIHs2DBgpqaGiQBOY6DKBn UCFHuysaAEn3pGnqiRKm3xxhfXV3Na40sWrSosbGRNut8aODFh KgYiXKTgPiP5m9B8ZwUKbyjR4+OHDlyxIgR9fX1ZH/q6Plx3PiVZDJ57bXX+v3+NWvW0KeUaiQuHq3dS0xWQaVUTU1NA bUCdzHiL/kFly5din6Bxzc5blQUKU3sx2IraBfq2AShuymgsKCdWO5SbQU7 ynMPbnLXbOVFpO9irDUMAy8QDoLXoVAIQym8MDSm+v1+w128ms bszvH5fKYLSQe8xkcQKG+++eagQYNCodC0adM++uijaDSKJwEh tPF4fOfOnU888QT28PTTT8diMQrVJKcJeRx4F0od74oVK0aOHG kYxqRJkz755BMsGWPbtt/vdxynqampqqrqT3/6Ew7pySefRGV6OpHcGmXtnq9nA6rzhq/j9OnE6ZrgUzi8+GXv6FfyhI4K8IOhsmz88PAiEAgcP3584MCBS qkPP/yQlAQV5OUPG96sqan57//+b9M0UdTOzlktmXcUBdfKfabvoOiqbDb77LPPBoPBESNG1NXV2 QWi3TI7mUzm2WefVUqdf/75tbW1FDBFwed0P7ASRK4PkstYQei1dIflg6bFeR/dOQ2PCVBKkfJDUVTPEEiDKKBlaDA+0VfIONERfJ98LDcMo7S01 LMTn893xx13BAKBO+644/Dhw5TfobVOp9MlJSXwCNBqunPmzFFKDRs2DItK5i4ITMYVx11c 17KsWbNmKaUmTZq0f/9+myUBZTIZ5QbJYj+tra2PPfaYUmro0KEnTpyAnuCGk6+ECxQq 8oZ36KxxHQzD8Pv9iHHhqqWTm1IoSGKiaCzJqdxj8Eilurq6W2 65RSk1btw4Xq2fr1Nh2/aZM2dmz56tlPrhD3+4fft2mpPTYykCpQ1UZuehhx7iF70gIPGM 33t6oMvKynBTKY7JcRws2413cDvpOG0W5SR2FKFPUECBwl34Wg RKgUBnopSy3XxX9E6wmqA/NE0TI2UwGKRxFMMY79/wmkaysxkFTYZSqrS0lAwGePGNb3zjnXfeQbwCRbDSUvB0Fqj2k clk9uzZM3To0JEjRx45ckS7Wb70XQoTodpo48ePV0qtXr1aM4M KzfjpJ9LpNMSNZVl79+4dOnTomDFjlFvbHuaNTmwnueeO8y0pK fEIDowOkD74CFcV1584myv8dcFoxY8nEAjwW0wvYC0jhYqLEA6 HcXnffPNNeMq+853vzJkz55133tm/f//hw4c3btz4wgsv3HTTTUqpCy64YOHChWfOnNHMvuJBBIrWWkMQU BCTUgoVkQuFZ60Hvsr2888/D1clZgCJRIKHMsXjcUp7o2gvHm3Uo5dJELpEAQWKuHi6A3QmuC k0ftP4FwgEaHUYctx4fBA+n6+kpASbYUhTna7JQsMhVAigMdsz o0PlLppec1uyYmvxaDaGVVdXDxkyZOTIkSdOnODFZ8m9nkqlMA McP358IBDYsGEDvY89WO56wkopTyAtPj169OiQIUN+8IMf0Bnh LLhS6RzyZCmlgsEgP2tukoEIIBlE6+CQCuzatLnd+8Lvbzgchk AkHx/ZcsjwQxvTRUDRXrjYPvnkk3nz5gWDQQr9gWVo7Nixa9eubWhoc NouHGi764BS5pEhAoUgV1kgEIBkKeyebduGs0a37WeVUtwfhPf T6TTMj9A3VBXRduvbFPDwBKFbKbgFRQRKYfEIFPRXtPoMrVAD6 UDjqHaLlsICQboBG3cyYeM/arv1MChhFfGnmUxm5cqVfr8fy9MAy10Bx7IslIRHgIh2Iwg1G8 aQSzxu3DjN1IbtlqtHZ/v8888HAoHVq1eT7HAch3ppfIWeVZptaq3ROR8+fFgpdf311+u2 IqndM83FdpcTgg6gRQFJTuEddPjw/uNNnhHdyXX+umjX2qS1jsVikAjpdJpSu0mooaQ9TySGkAqFQja LmNTuxPvw4cPHjh3bt29fbW2tdv0ANBXHA2a1XbcIiEDRWmvbt skZadu2YRj0jBYQ2iFvZtFoFPeAmhC5SPGYkk+HugmHJafl3lF B6G04EoPSu3FcFw91MuigMERROVTNilvgyqdSqddeew3GA80SW T0FMDrBMzcjUGrsgQceoIGZekjq8Wx3JT+aTyJwxHYrqr3//vuhUOjjjz/GSO9ZhiYajQaDwSlTprTb29tuZgMuC4kGlCrR7uJ2a9asMU1z4 8aNEBZUfOxsumV6hhHF4jBV5LjxMQcPHqypqTl06FBVVZVmY4d mqzef5aX+SjzHHI/HcdOrq6sPHTpUU1NTU1ODB8BzozOZDJetuJtQNtqtRNfU1KRZV ToqZ0emLAJixaMOcw8vf/pM34HnCWtEYQ13zbLY88dxdTfmB7hDsVhs1apVI0eONE2THjLH cQwWfPTFF19UVFTgnXA4DJuYZkr27DsCQSgWhRIoPDLAkRiUQk C3hsegaLeHQY0KbMm7mnQ6Tfmfx48fb2ho8Pl8sO3brHpp5z+a C8YzDPxPPPGEYRhHjx4ltaHby8dRLBEaB8AruVmW9fOf//zyyy/XTMRgqT/Lsh5//HGl1OnTp+l9WqjPchfc0VpjOCAJRYOFdueHl19++cUXX4yzhkY 5S4GCnyAPDo3K+PvKK6+MHj0aYwF8K0OGDHnppZcwmnArVwHBe dGyR8uWLUMoCTl0Ro4c+dJLL2lWURdCCv6mkpISklbavdHZbDa RSLz77ruJRMJxbWbJZHLr1q11dXVks4FS4epTi0ABPEYkk8kYh lHwG0/PPZ7dFStWfPvb3160aBEq/1DDTiaToVBIax2LxXbu3Onz+T755JPq6mqttVLq4MGD3FFK7UQ QejOFEiiJRAJLr5HhUARKPtBlxAty8XhqkJMohKOZSrxrZpOgG 0HSod3UxVzIZw3TNfaWTCaVUk8++aRm2QBcmlB3iq/QYMnXGcY269atU0pt27ZNs8BY7S5EPG/ePM8+6QWNCMqtGU/xf3QkeH/Lli2maVZUVJylNOEulWw2S8EodJrZbBaJMJMmTdq6dWt1dXVlZ eUXX3wxbdo0pVR5eTk0nM4prJI/dGCpVOrmm29WSk2ZMmXz5s27d+/ev3//tm3bpkyZopS64YYbqBIMzoIyjekBgOSFZQV/x48fDxGp3bUboXs0iyuCRKad9E+B4nmmbZboa9s24ne0e1G42b BQ9mcP1NQpRGvz5s0XX3zxlVdeuW7dOs1ajm3bvCTAjh07Tp8+ TbFL8AvSoRb86SwgtFgGN8yS35FMSkJvgFyKpNTPfoX3s4FHOK Jfw4Qbv8V722g0eumll/r9/ssvv/zw4cPaTZ3AZjfccAMPfdAiUPKGdyCefo97Xmy30rx2p3NUNIV7 fLi7gVuFeYd84MABbhUAiCpFZXfLsr788kul1N69e3NdP07bEu nkH/ecF4mq5uZm0zQXL15MjnJs8NlnnymlPvvsM9stQk8/xB3rXDZ5OlvsCo4MklMUQcK3J7XHXWYERbnSZs8995xSasOGDT gSKojlOM7q1auVUvfcc49mTn9As9ZTp04NGjSIxpEbbrgBbql0 On3DDTfwYNi6ujrdNuiYumUcQ0VFhePWitVuZ/7RRx8pd6Vlx3EoPslwS8OREU65GdrZbHbz5s0+n2/VqlVa67Vr15qmeeONN5JZyxPjotsbi/uPQMHTGY1G8Rdvwr6ES4ByyFygFNZB7sFjONXuAPDJJ59cdtll l1566ebNm7Wr0PFYBAKBHTt2QIRivU1EgXmafWGPs1CQiS8ej9 OA57BSLjQj4Wck9Ab4A2YXCM1qDGqtMT/Gr1BGPT76n//5n6FDh3755ZfXX3/9NddcQ0UwM5nMuHHj5s2bFw6H4XvFrMNga8oLXaAjgcKzBBx35 V7NBjOlFCnLaDQaCoVoNshHetoJ3abGxsYRI0aMGjXqyJEjXJv abkCJbdvPPvtsWVkZovFogKRD5V0fGXKctoXV+QHMmDHj2muvt W2bL+P38ssvoxg8njESJVys4LGkZ5V2zidX+N1Zs2aNHz9es3k jnk+edEkn68k5Um66NSkqwzAee+wxmtdRbwmR8fLLL5eVle3du 5cuLLf9WJY1YMCAUaNGHTx4UGtdUVGhlLruuuu01uPGjcPgorW uq6sbMmTIwIED+e2m+9XQ0BAMBufMmUMTFS4dcAyBQABTCBo0I VBopu04TklJCRxn2ENpaem6des2b958wQUXXHPNNXg/EomQGYY8XOeEBcVxnMrKSnj4DMNA0/rtb3/r9/vpueGWFd1tAgXPPT0Ezc3N9L7W+tNPP/3P//zPK6+88uOPP4ZgT6fTW7ZsUUrt2rWLMss93pzeLFC01ul0Graf mpoax3HgpYYNEMY9rXUymbz55pvff//9Yh/suQ6UInUxVAihgOmLFFkVCAQ89RuQwkAlHx5++GHbttevX89jN pVSc+bMoTlZc3MzmgPiA4Qu04kFRbOCCA0NDbZto3YqDauamUL xXcwG0bs6bQs10b+WZdXV1U2ePLmhoUEz61o6ncZOMpnM9OnTb 7nllpaWFnyXdph7ePQA0Ke2a+yhvv3ll182TZNGQfTDEyZMKC8 v16505sGtdlvLdDAY5O4MGilom1Qq9eabbyqWjIlPecgUfpQsf 5i52awGP1mkdu7cSTKCF8eiiwl9j1V/ybZB0TO2bYdCofr6ejJXf/TRR7NmzdJaT5s2DcG82OGRI0ewflBrays/X9u2d+zYoZTaunWrbpu5Q8fT1NTk8/leeOEFOgbDLexGx6OZgTObzS5YsCAQCKxZs2bTpk1KKZrEancU purAdBi6vwoULvMPHTqktd68efOxY8csy/rwww+Vu7gDxYfr7regaK158DPVO2ltbT1z5sySJUvQBWv3piYS iX379lVVVZEJFE8wF/uFPcgCQhYsmhLV1NSg3Mv27duVUuFwOJPJjB8//qGHHir2wQp/xTAMxy3Qqd3pY0HAo06lDhKJBAKtACZM+NH3339fKTVz5kylFL o/gDQHFNigbEyttWmavKcTvi7tChTcDvoIybRXXnkl6p7V1NRccs klpAyy2WwqlaKHxxPAodvGdpBxAn4iHoFru6kxlmXNmDHjj3/8o2YFGvgOHWbkUEpBJNnMj++0zUWHetBtU6Zvv/32mTNn8mV+6fDo5/ApdyPmmuvw06+//jr0tN3Wwk2HTWv4eUSbdgUKgo4ty3r77bdN0yRnEN0ILrluueW WKVOmcMMSvz4+n4/X28VPQyHx6JnFixeTKtJu5jBev/vuu8rNG+eVQh3HIc06YcKEiRMnkqEIAoUeIfLA0uTEMIy5c+fi mhhuqVLDXd7IY2yj+9I/BQrIZrN4fOm6w6FAd4USxnQ3CxQKVPbQ0NCwZMmSYDC4ePHiWC xGLieKBshms+h/PeZHT3Mt7NEWBIxJsFvGYrGWlhaaTK9atQoPLtRJJ8uICz0DFe VEjCGGnML+BMY8y7LgoEHDpGkfnm1Ioo0bN06ePPmjjz7iX6S+ HilvZAqGlV7oMu0KFA46nM2bN//0pz+lofSyyy7bvXt3c3MzulZUJ8OnNotZwR7IXO8xhNhuXi51w uQkuu2226ZOnWq7YSvtqhMM3nwNYf5zfNhesWIFOiKaHzqOM23 atAkTJnhqq9OeuZnE7/fjQeWCg3aOB3j58uVcc2umeEg/0bcwANOuuEDJZrMkpwAJAs30zaRJkyZMmED7pNggvEPFSGjQga anAjNa66eeekop9cQTT2CWzoe/bDaL1HHddhU5/lta69tuu23ChAl0UtS9O6wKBkJzTNO89tpr6VKvWbPG5/M9+eSTODWsoPTRRx/xnGTdvy0olmVBMAaDQcqUw0iPeONUKhWLxbho6FaBollwLpKZj x8//sgjjyilFi1adOLECVKvfErhcVXyRkh42kwvIZlMwmtQUlICpXX o0CHTNOPx+NNPP20YRjAYrKysHDJkCCr2Fvt4z3Ug4tFFUidVw PuCNUttNwhAtxePSfqbvsLnfJr1v7q9Ol1C1+hIoNCM35Pfq91 ISeqdcJv42E+jI1cJFivggRJqmECfOHECO1m2bNlLL73U2tpqW db06dPvuusuGo+5nYBj2zbyWnEwXFVz08hzzz1XVlZGZ4TjnzR p0p133snHZpvFjtDBx+PxcDis2+tp+eO6dOlSiDNsRg4jAOMxW dA9+yEXD3a4detWn8938OBBshJxteQ4TjweLykpWbx4sWaDApm acB8p+I8yQjDw01QEZWEfeeSR3Cchk8lUVFSYpllTU8NrrmAlA fwbiUT8fv8TTzxBx0YeW7o1iUQCJ75x40al1IUXXlhfX5/JZD7//HPkVNP4a5rm/v37NROj9FH/FCjazYlXSi1evDiZTJaXlx84cAASkvQpj6nuVoFC4VHkiZw7d+ 4//MM/PP/88x7TFgYGeo4pVK1dF6zurQJFs0k5Dm/37t1KqdOnTz/22GOIQohEIuvXrx85ciRqCwpFBJZbCgzy1LMqyP4dN0S6qakJs 9LW1laPOZ2PENotn4A98LphDnMNKMniyY+vtKBoV6xgZsU1h8O M04A6OtjJ+M4p7C8Wiw0cOHDgwIHV1dUDBgwYPXr04cOHKysrl VLoDx3HWbx48cCBA2F4JtMFjXx8t62traQ86IfoUzw2jz/++JVXXgktQkP+woULR48eTVvSo+gwK3XWrZxJ3/JYJmjUePTRR3/xi1+QQYgbdWzb9vv9FqsQY7npP9hAuSX/8dOnT5/2+Xz/+7//C6FDp0OT2GXLlimltm/frl2RRJYn2iHdXJKYJAhgvLFte8GCBdiSsoTot86cOaOUWrJkC XnE6JRxi1977TXDMCorKyFVbdsmfw1XGEqpTCaD1K0f/vCH//Zv/7Z79+533nlHKTVjxgytdSKRQN7y66+/7vHV4nf7p0DhcT20bAGlw5mmSQqAi3TdnRYU7T4HZJzcv3//xIkTR4wY8corr1D8LD8YzWLQ0BfQHaLm2h3HmT9Zt5i0z+fz+/3kWcONiMfjdIU///xzaGehiKC9IDCIxoACPl30PHuEBf0EvU8NkwIkacrLgxuo5XZT Uz136Eig4I7QiOVRihbLMHBY+rHW3igNMjPQ32PHjimlEMV55M gRpdSGDRsMw7jppptQbFRr/eabbxqGcfToUZ0TKMpFLVdITtuYXG5sGzFixN133+3Z5oMPPlB KNTc3W248L5cU9BP84D1nzbcZOnTogw8+yPtnepHJZGDn445+f pWUm8VD0nzy5MlKqZMnT+Y6Vvbv3x8Oh8eOHavbE4goUgc3Osb 7VCq1cuXKBQsWZLPZOXPmrFixAj7TdDq9bNkyTBR1W78YLsidd 96plDpx4gSNNfRbhw4dKikp+c1vfoN/0dsrd0Ue2hJv0kkdPXr00UcfXbt2bTqdXrhwIV/ZZ9GiRdxYwFt63xYoNGzToVNAMp0qWYZJ22JLnplmt61hjKuM7/LCz3kWh+DNg369urp6+vTpI0aMWLVqVTweT6VSp06dUkqVlJSY pllfX083MhgMRiIRON2PHDkybNiw/fv3d15QjiY0fCmffE7h7KGmRQ8rnyvT/cLdIUGTSCRsVqjx64JulG4TWQJoKkaGKClw5yEej/MobF1oC4ouxBygUPsRiHYFSqHkae5O0AMHAgHqFgzDuOiii777 3e/S4i+2bbe0tJim+ec//xnfos7cM0PTrBYI9e3YjBIgUO8ESTHcTNLY2IggDHQ+pLE6MR/S9JIGBXxr27ZtWDPIY8WhjigYDFL8DRX8IEmELLaSkhLtOrOi0 eiQIUMGDx68detW7ilDEZQxY8YgWlm3bRG2G308depUpVQgEKB FpydOnKi1njFjhlLK7/ejbFogELjrrru4rKTRIZvNtrS0XHjhhaNHj968eXOWlfnHMfzw hz9E6X06R+VWY3OYm4ybuzp/ojzGOVqah3xG9FEB+6VuFyjc0pBOp8khQuUTQDabpbr1aAM0cl N3TM4XrbVpmtwGgxcUJ9UFmcJjweCP1221wnvvvTdw4MDf/OY3tm2vXr0aRQnfeOMN8uohZRe+27q6ugEDBjz99NO4c50fD4Z 8vPY4j7sPuAnI/MOPAaTTaZQE1e41z80665qWgj0WMwmH1R6g3ZLoFAjbTYjg4eQ FvEoiUHot3SpQPD+EqQim+HQrA4HA8OHDacSlonwTJ04cM2YMF SnhFXF4cB6f6vAysvS7kyZNGj16dCqV4v0kNps1a9aQIUMoTYa GD0pQaPcULLYGHl5MmTJl8ODBPFnGoxjofGnJevoVBOpBozhu8 IplWSdOnLj66quVUpdeeum99947a9asyy67DMXNjh8/rt10J3545OuJxWJ1dXWnT5+Ox+ORSAQFUbTWkUiktrYWKfqRSG Tfvn28NAsJPuonT5069R//8R8+n+/HP/7xXXfddc8991x11VWmaY4bN+7QoUO2u6gk5ZlDo9htQ3lIEXaC nVPIkSw6uQKlgHS7QHnppZcw7bMsa8mSJVjK+Ve/+lVjY2N5eTkE3fTp07X7KJMow6WESQq7yrC1IsPhMC4uOfMoD7 7LM29KbLbYKg+WZe3Zs2f69OmDBg165513aJlKeEZwy23bPnLk yPDhw9etW4fJh2maCxYs0DmVBNv9Uf7k4SL0WNaM4zi7d+9ubG ykhxUBy19++SVtgOOHIMO1pSvThePkhZjoTfRoiUQCO6TCfVy7 nOOg3wyHw9TFF9bSJgKl19IzAoWPWNlsNhAIaHdOUlJS8sEHH2 iW2QCqq6uRmMr3A5niuHHcmlU9oQOmgTMajW7fvj0UCr3yyiv4 yGqbMbRz586ysrK5c+daloWDoVEg9/TpFMjbiK9s27YtFAq9/fbbOPiWlhZ8F9G+5P7QrnZxXGsNDMZIuYf7mw5Mu0VHtm3bdu+ 995aXl1922WV33XXXJ598QsYbjzGeBgLqNj05FtTv5a7MR5vxB YZodldRUXH//feXl5dfddVVEyZMWL16NV9zANvAax8MBmluT7fbysl+6ghPfA/WSCKTTLs3ahzQrgAAIABJREFUJU+6XaCgTB7OH2F3W7Zs8fv9d XV1SqlsNjt//nz4/5RS77777p/+9KdkMonQYt32UfA4BW3bDofDqDzD5VvXvDzkOtXu86S1rqysv PvuuwcPHvzqq6+i6K125fY111zjOE59fT0egkAgsGnTJu3WXf7 lL385fvx4PNyauYdzoVKMeIJpFvKVkjZPYCDJZDL//M//fO+99/IYrqeeeurv//7vUfEJbamhoSEcDqPohadRfd3fpXuKToT+6rbNidJWBYCnSLlV IAueZuyIQOmtOD0lUPjDhqpOyi24HgqFAoEARjiHLTV3//33K6W2bNli2zbVG3VYM6dOO5FIICuT1ANMJmPGjPnRj36ktaYl Wj0GVPzE7t278S9tk3v6DhMo2p1BJZPJUaNG/fu//zs6FgpH5c3Hdivkatb/8ArauA4+nw/9M/WBtKw9LghFI/B4IB43k3VLy1iWxbfJZrPc149zQV11fqY8/kO7OoZ66aamJj5j5MMlDphuqJ2Dw7Rju9AlxelEo1Haf98WKFp rrE5k27bP59uwYcPgwYPRzyqlFi5ciKUHamtr/X6/3+8fM2aMYRhkUistLeX1iChMHbn1jrveRDqdxvONe9YFjUIda2 NjI95ZsGDBv/zLv7zwwgt4AnCTILHxo/F4nCIzlFuMSGttGEYsFisvL7/55ptjsVgn6kSz9DyqXUtT5G4Fp7Nq1arbb7/dMIyWlhY0yFQqNWLEiEcfffTVV1+l45k3b96UKVNGjRqlmZWyy 34o3hhgr6qsrES0ncNmWlQoT9Bu30fzPHKTF2r/IlB6LT0mUDxjlcUyWWwWGkj5sVrrpqamn/zkJ0OHDkWxTe06i2k+yd09AK0eluPx48crpQ4ePJhri4VMwTg9 YsSIgQMHHjp0CK2Adsi/hQuCUyDjLpJDlVJkEubDdk1NzYsvvrhs2bI//vGPpmnOnz9/2bJlO3fu9GQaJ5NJVBBBVXhcokgkknGXZOHPvKesqM5RFQT1oh 7Liic+j5QBv4xc3/D3eRwrxBOPL6RkabttnvbZwIdg6p8pqaUPC5RsNuvz+XCZgsHg 8OHDEVWqtVZKjR07NpFIGIYRiUSg71paWnAdaQ9khbNZSDZkIL +Fmi1E3IXj5Hofw+TBgwfnzJkzaNCgt956i9fZhP1TKfW3f/u3yq1/TBWgLctCAcd0Ov3ggw8eP37c+apV93iMMEV1daRkCwUu3eDBg3 fv3j137tyFCxfiR1euXDl37txoNDpgwABcz/r6+mAwGI1G77jjDlhiqSniyL8WOGWeaIC60SNGjDh27BgSQ7gl ueAn3kfB80/1Kx3HoUelIIhA6bX0mEAh8wb2TFM1gBxau22yjOM4VVVVQ4cOH TZs2JEjR2w3hg9foYLC1N65sL7xxhuVUljjDJM9/LonPFFrffjw4VGjRg0YMAALy+v2pHmu0bGpqQkLDm/btg2NCIdx8uTJ559/fujQocFgEMnD06dPRxeEoaekpOThhx8+duwYvqXZKjZ8GNJuP4 YptGciSpfRUyXIcpOK6U3SEOQR0+0Z3bmZ2XNf6I7gHHkUo80i figsQbPemws7u9OJMX3quK6l/iBQbNsOh8OIgQ0EAq+++ioKgh09evS8885bs2bNnj17MKL7fD6 ESZ9//vnclI0cMIpApmeIVgyhiryQtx6xefZ4nidYTRobG1FvmG4PSUg y7mFCQPUEqaWhPXc+imBLxHL7fL4LLrhA9SAocBSLxZRSJ06cS CaTgwcPTiaTyWTyiSeeWLFihdb6iSeeQIH/w4cPK6XKysqwdlJZWZlnxZazxO/345bRyeJf0zRxHfCvwEHlaUQGZLNZclcXChEovZZuFSi0E49A4 YEU1ONl3cXw8CllEhw5cuR73/ueUmrDhg3Ij6UxMlfQaK2rqqouvfRSpdS2bds0i/zgHiLbtmOxGOXanDp1avTo0Uqp119/Xbd9zNpl7969l19+eTAY3Lp1Kx9ZV6xYMWbMGKXUpEmT1q1bhz jWbDYbDAbR7+3atevxxx/HiDN79uxYLBaLxdDjYTEHpRT1e/B/IbDjm9/8JrXWkpISWggauzLcBYqxMW/XcJwptnY0Ii95N4gfAp7ukf7F+lzoQvFzGCLxGj/K/8KLZ5om6t/TSj2dgO3JZKD7QZAsrgVqDB84cACevB07djiOU1lZiU+PHTtGZ gntJp3zq4DHlByfjpu6TNpTs1I2ukvxg6RLbFbDh7vZaMvcn+C vSR3zNtl5MKnjOIa7UCLOseC3OReaB6C7WbJkyaJFi1atWkX57 o2NjSNHjjx27JjP52tpaeH3guZJXTtO9Hr8Mq5fvz4YDJKd4Cu 1/LkJBg+agYkF5RyhWwUKb2jcPEDWaOpjuavds43jOLW1tRMmTFB K3XLLLXv37iVvBXUy2L62tnbOnDmGYYwePXrHjh20T6ryR82fn u1oNAp9gGWeMGTA8tGRlKeVZWiRS3w0YcIEn883ceLEgwcPkgP LdvPjNCvqmkql5s+fb5rmsGHDTp48qdoupYkXpaWlnmMIBoOwU tCR8C96VrdRSlGaBR0kVaygN+mUPboEe8PGfr+faws6BqgT2jM 2oy0Nlw71SFv4eWk3ZqhdgVLA8auXFnnkljr+PgVq2G64ic0yk LVbwb3gAzxuSTeJxB7Yf7tQL4OUeqXUoEGDUNYafcRjjz02fvz 4RYsW0Vd4J1XYTGAl9UaLytcVFu0aKcnOrFkqhNzZgoDOEDfFc 4VJZPSArM9xpPxfL+04zquvvjp48GC/3z98+PDFixe//fbb+/fv37dv3/r165cuXTpu3DiM4nPnziUXhsOWNSbNzWNLUdOdhl4yCfCRno+4 NAZzNUDlRjZu3MhL/uNFxl2CW7NOOBqN1tXVDRs2bOjQobQHGqSVUuedd55yl/jmxg+8Jns//0ou/BTwFTpZfJFEDDfecM3Bd0XrjfP9tGuewQvoIX49+f5VWyFIV4B iNkDfLtT2dfFE7ti2nXXBIwvv16FDhyKRCH+HAqp1N1wmLiC6o xfo7v3nQuEj9M4999xzww03aLamdnNz89/93d+dOnXKtm2atTuOAxVY2EOVYay4dNnywUNkPBYdPjcV8iRXo HjSuJy2dVp75njI4EFG4ng8vnPnThQco8IbGOHKy8tXr17d0NA A4ytlolEkh86xTG/YsIFGR6QRKWYjaXe8BxjOS0tLMTDjHZ/PhykuT6/Vrp9Ct7Uh2badSCRqamp+8IMfwIEFAoEAzogfA3emcBGAg8G/JJ44OE54Z2hv5513HhmKyLtEyz3CMkS6gV8WnDK/IO2qnNw3Yfuhg8e/dHgkU8gFz5+3c06g4AX6O25UaGpqmjNnzs9+9jNco0GDBgUCgf vuu+/TTz+lr/OqwAWk/wkUgKsdj8epfBBfWogCyGmuxgP7c8sQ5YMMY8WlCwLFaRsw6Nk VvZA7WxA8AoXKNVGD7fnahmQ+IZ9vc3OzzZJZotFoZWXloUOHj h49yvsT6uJw8GSXpfhQnMuGDRtKSkp8Ph8GaQ43FbSrUXjAIo3 l9Eh7ilbY7oIMDisGQwZm1N689dZbaWOqKUoX3zRNmrN5hjCq4 NAuPB+HvohvodDDypUrn3766UmTJk2ZMmXatGmTJ09++OGHV6x YcfToUR4JBChVmy4m/mIbyItQKIRbQHN+Ps/XbGEjzcKcyRqK68mv3rklUOjSULo8XkNKL1q0CMHV6PVOnTq1Z cuWn/70p1OnTj1z5gwfXAt7VP1PoHDXbyaTQeYq3qSZGY8Xpqg36hkL e5FlGCsuX1egdKRO+E7ExVNAPAKFDy00CvbA6hBclHBoTki9hG 5bexpvYmjP9Uk5bqAe6ZstW7ZQCOqQIUOam5upPltuD5kbD0A9 G7JEy8rKIGgQFkP2HjoRTw+MMs2wHNu2/d577wWDwU2bNsFOX1tbiyIIjhuWh4ccYzwiaTqvLpFL1q3ojX2 uXr160qRJSBxRSs2cOXPGjBm33nrr9OnTR44cCZ1x5ZVXPvvss 7BFxeNx7jUjuOghzw7eodotkGsnTpw4cODAgQMHUAY3mUzyur2 4pMFgECkstE99rgmUXDdNKpWigE3LXSCbrrLWOhqNPvfccw888 IDWmt+nAtL/BApZialJ8HQ4JIwopbZt24bGvH37djyX6A0LHugjw1hx6bKLR7 t+WI+9UwRKYcl18ZBVn9JHYe3vVto1Vxg5sSCweXzjG9+gN8Ph MAVtKFb/Dd+l0gyWu3QOvlVaWvrd73736NGjWFibLkXuCw/UQT3yyCPYFVw8nnXHeBoEd3mTDCLv9lVXXfXf//3fOEhKukRKDuXCwK5Dt4zWBPjKm8vr81ZVVd10000lJSUXX3zx smXL6uvrdduaKJFIpLm5eefOnePHjzdN86KLLtq1axe+S2MfLS mq27ZEXG36LSQDrl69+l//9V/5HRw0aNCbb76p3VwK2w2Fxqco1kc7ObcECuByOJ1ORyKRhoYGX nYGjxry3zzlT7hDtFD0P4HCzSSOG1ZCNkOllOM4R48eRcWaioq KoUOHlpSU8PT3bDZbwEJqMowVly4LFO6Kzf1Iy50tEB6Bks1ms VipJ221ZyBdQmkmpmkisoFiJjDVDgQC0CUAFTgposIwDNM0sYF 2rbMoPg4fzfDhw6uqqmg4cNji9tqtJ5trziHDUmtrK48thQwCn qxPdHRcoPBHOplMfvzxxygX7jhORUVFMBi86aabUKwslUoFAgH SEJ46FLqDkAP6CV6XdsOGDT6fb9SoUe+88w7epAkkCvPjTZJNN TU1F198cTAYnDNnjmdvdMUcdyUd3LhgMAjjELZErbx77rln7dq 1VVVV+/fvX7du3cyZM5VSv//978n7b7vhJhBn/IfORYGCh4wLZG6Uy2azfr+fi0oqO1Pw6BPQ/wSKblsXjsp/0aBimib6CKy3fvz4ceWONN1R4FXJMFZUvq5AoaeUqxNakpqbUu TOFgSPQHEcB+GfnrSLniTXsgKNAk2AQzJYbKYnUZYbVJSbqgrb CU5t2LBhp0+f5qKB8n06uUp4gWF1z549ihVeMtwaZdx2go0hUM gtknXXjqUuMZ1OK6WeeeYZvIPjHDdunEeF09E2NTXhRe5smVt6 eIHQTZs2KaWuv/7606dPY5ijlcuw2ItmASJUqCaTySxatMjv99PK0jSN5GU4tBtB gouAgfLFF19USq1evVq3VVHxeHzjxo2hUOi+++7T7nAMTxaeN5 4+dm4JFI905fOzLFu3RbmKW7v3g5R1YetDgP4nUPizS088GmQ6 nQ6FQgMHDnzjjTdQvAizNPQ+VLiwsDJFyTBWVLosUCjULplMnj 59GutP0dRWy50tEB6BorVWrplB92CEbOcjkMMi2+gJ4etv6xwn PskRrTUCDZH4+t3vfhcrnXnsIiA3/snJQWv95JNPwqJD3ZdmkzE6SJutxaPbhvHSzm3bnjZt2tixYyn cB2sQXnvttSiDTuMUnyeTAaOjQ9VuyMuBAweUUrfccgtF4FItf CqoQWZvfBGOIfzu448/XlJS8uKLL+beIAgyxNnAaoX9xONxn8/38MMPU6unIQC7ffHFFw3DOHLkiOOuQELS02Hl0c8tgdIJfFp2l vbnQsEFRMHvQQ/s/+xB6zIMo7a2dtSoUWvXrtVui4JwtlgJ5wIeqgxjxQW3OOsuoW5 ZVllZmeO6n2G1xpQuHo9PmTJFKXXjjTfSCiyO43z66afKTa/AevFFaar9D97K+MUko4XFVqMl2wAvE0VQ5gEfg/kUn9aEJ8M+PRWY+FnuYiC67ToyHvOGp4oBr7JNe8CnngpjYPjw 4fRonaX2op/DAeNXbr/99htuuAEBIvgJj7LxyGjbXWiMTpBPmF977TWlFLc0rF69miqR8 L3x2ru5N5H/S2bsSy65ZPDgwQgKyXWbttvTeibzDz74oFJq3759dNlhbiE7EF 1nfGvbtm2lpaU7d+7UbZ8H3H1cQ6XU8uXLSU6RxYsfhgiUv9K1 CL6C0P8sKB2B9oler6Gh4cUXX0ToTyaTwUIE3LRYwN8VgVJc+J QIY5tSqt1cjHnz5g0ePHjTpk1Dhgz5+c9/rt0ndvPmzVjjNBAIVFdX00BI+xG6RrsCJZ1OU/1Q3C8+smLR+Lfffvu11177+OOP4SjxrM+i2XismS2BD1Se3BzA Y/7IG8JVDj6NxWKffvrp8uXLX3311crKykgkwkNB6VCpRojhFtsY MWLEyZMnv25nyK+S7aYKT506Fevs4ELxGBTNUnhsd7VXbvuhJQ OJl19+GWuDcOd4bW0tVB23cPCL5rRdkdizT3zx1VdfLSkpOXDg gOM4ub/bySnTBg0NDbZtDxgwYNasWfgUzdZ2C6PDggKwweuvv66UgiSCg oQqInVl2/Ztt9126623klATgdIZIlB6hmQySUuS2m78tmbLV1Lh6rMJUD9L RKAUF15jG8GPWF2cxxaAcDi8cuVKrfVbb72FKanWOpVKoSI4+q +mpiaHxTMV+dz6OB1ZUCikA/8mEgk0yQULFii2BExJSUk4HH7yySdRJLpdwyeVYeR9rGbuGERo 2myZYofFBdKIjg4B65dBcFA9EsMwFi5cGIlEHLdqPllQKIoFD8 +pU6e4j/4swwo9CgDfmjJlysSJE6m+mWfU4AKFtAt5rnP74bfffpurbZQq oU+x3iFOraWlhQ/z/PCctiG9KN9w4YUXTp48mUo5cGNYJ8OBR8HYtr1s2TKl1MmTJ+l HyRjjOI7hlprFR8uWLTv//PO1WzyMh5VArziOM3PmzD/+8Y/0WyJQOkMESg/g8RB7VgiiyRP34xYEGcaKi2JplrjLZAr2zP9efvllwzAee+wx0 zSXLl1K44fP59u+fTs9vRSpZxiGWFDyoSOBQgM/BYQ1NjZiJbynnnqqpqYGX/z8889nz56tlEJUBzd18LqLWutoNPrwww9TKdIHH3wQNzGdTs+e PRtjG5I4YAvx2FfQJ0QikdGjR/t8vsWLF+/atQsD9pdffvnss88qpQYNGnT8+HHbTfHFqKnYsjWlpaWIDE2lU hTedDb9DEZQPMM0rk+aNOmWW27h0cR229wLGuDR/2BiRvuE5RivU6nUa6+9Bityc3Pzvffei9VS165dS4ao55577u6 77+Z2lHYT3LhG0Vrv2rVLKfX5559zRxjfrPNTdljGUH19fSAQe PbZZ2lX/OqREMQ7W7duNQwDsjWdTlOKMhVnwyKyyA/yCBSSUFoECiECpQcg6whNcWKxGBkeydbHTSkFQQRKcQkGg1prx 3FoDbBQKIQZHs2VLcvCyLRy5co777wTdhTHcZC8w7MD8OQgRqG srKyI59UP6ESgYLSgoWjq1KkjRoyora3F+MTn+keOHBk8ePCPf/xj3TYQBC+w5fjx430+386dO7PZ7NatW5VSt956q2VZ1113nVJq w4YNmUymoqKipKTkpptuIlevx3Txhz/8AREkPCdWa51KpXbv3j18+PBrrrmGIi201pSoTGvoaNaxdD5Ce 64SGQzIDDB79uyf/OQn0Fv4iY4EinbHeFpZhcfK4Hjuu+++Sy65RGt98803m6ZZUVF RXl6ulNqzZ4/W+pFHHvH7/QsXLtRugTjuLPMcKoWGZLPZt956y+/3kyzQLIKn8/GeHz8NjuXl5ZMmTcIGLS0tfHsuUFKpVDQaVUo99NBDmk1Hs+7y 0el0+r333gsEAl988QVK0pENRgRK+4hA6TEowg6tFB0KBaNQYH kBEYFSXAKBADdKQ3DkVuSz2YrT5CyAeOWhjnA3QLtQ1oDQNToR KKjPhn+rqqpM00R9LTJpWG5Rc631+vXrlVKffPIJts+dXZimiW VDMplMOp3+7LPPbrvttlQqdf/99/PlRFCnBK/5gKq13rt3r8/ne+utt7SbFUgPFdi4caNSCnvDs0SBsRj84HTQzN909qnFum3ca CaTWbt2LT2Tnhpluq0lA1eDVAL2AxGGE9FaDxo06JFHHoFxcf3 69Vrr1tZWpdS2bdvmz58fCASeeuoprPXDNVDuw+8wtNYTJ0687 rrr6DbxBQHOXqBo1879/PPPK6VImjisXBsvJYc377nnnnA4XFNTQ++QqD127JhSauzYsVT AVwTKVyACpQcgEU1tlS/lRZGP2LiApnsRKMVFuWWCaeKI6aZ20zcoLJpWFMccEc+Jp045N sALubN50q5AQVEKBJpg0Za1a9eapok65Q4LddRaQ2hqra+++uo//elPPJtUu4Yu1PnQbuvm6TlkVMOouWnTpgsuuIBCpyFPMcxDf9T X12Nc5EW9MclxHOeyyy6D14DyRGjY4xqCZMHXuj50XvhuQ0MDC shSLTvPF7mrhX5XsxRf0l6bNm0KBALvvvuu1rq0tJRkh1Lqscc e8/l8CxcupDxqxA7TNnZ7qUP0zsSJE6dOncrfp7BWTwxKriWG9gM9 l8lk3n77bXpIaDpB8oJfYcuyGhsbBw0aNHjw4C1btmi2yNq777 5rGMb3v//9kydP0o0QgfIViEDpGcg4SS5q242K1yxYnWrSFAQZxooLZauS/xsVJ0mMegpbwdfDnxO+Mi31zhiBevpk+hcdWVB4gqvW+pVXXqH XiB3hYy32M2HChMmTJ+Pf3MbL3Su4s1Rgft++fag4UFlZaZrmN ddco1m8LY3iy5cvDwQCJFmwWz7KxuPxu+66a8KECbqtBYVcPKZ pUnyb43qgvtKQQC/4kgs48cmTJ1OwTiAQ6MjFw79Ivh7aeTKZnDZt2tChQ9ENKreei m3bOOa5c+fyq0rX1lNZn6B/LcvCEoBki6JvQXDw29SJQKFvvfzyy4qVe6FvOW64DwW2Yy5aX1 9/9dVXK6Uuv/zyu+++++67777qqqtM07z++usPHz5MQk2LQPlKOroo3YplWV98 8QXdVLK/FWr/GPsDgQAf7wtbA408NQVfAaCAyDBWXJRb74sURtfuCPVQtm1jkk 3dmdA12hUofLxBv4E6NE1NTdxuwUPKtNbf+c53HnnkEeoHKG1E a51MJmlBHLxD/QaqpobDYe4ooZKmNKjbtv3OO+9wCwqN1txKMXz48IceeghvWu4 KdoqtOazbdvVduFz0xUQiUVdXR8V2sYIb906ikDw3HHJNQMakz z//PBgMrlq1CqM+rV2stVZKoTwaLzzjMS2T0OfVXUmpTJ48matG7l Lh56K1Ngyjkxga8MYbb9BoRRYU+joPkqVdJRKJLVu2PPzww7/+9a9/+ctfTp06dd26dXzuQZDU42+KQPkrRbGgYFHN8847j6LiodPtAq G1jkQiePI0k96F2r/ntxDU1guzKkSgFBcEjuAJhwObhoqvBeV9oJ9tamqSO5sn7QoUz cYb27az2ezx48dDodDixYs1WwAEWyKQaM2aNUopGPN1W8MDr36 k3WgGyt3z+Xy///3vY7EYdghnjdY6lUp5kpZra2vD4fDy5ct5lh8dRjKZ/OCDD0pKSjZu3AjNxAUK1VLThRAoJJtisVgoFMIyij6fL51O567 WDvhqKlTO1bZtx3EGDx588cUX0zSPTD6q7UqNSinYHWnPdK0cN 5aczgt3zbbtP//5zxdffDE/gObm5rMRKLZr2LZdLZjJZB599NGysrJEIsGNN9pVtKQvPZE9Ds sYisfjZCz3jEoiUDrDLoZAmT17NhVL/pu/+RulVFlZGZ7IghAKhbDil+GuhU0hXQUBOwwGg8gPBAV/jPJHhrHiov4/e28eX1V1ro/vM2UCem+/9/ZWMpIQQpgTQhIDBbHVVq1DRb8d7v21KCDSWilSK+Jtr/3aWmtLK2KLQxWVKkgBZ6tWFAiTKIMKYcw855wM5+TMe++1nt8f b/bblZOBhAaF3rwfP3jOzj57r732Wu961vNOVgEwUlXk/Xd2Jjz2qyVbIVU5GZazlr4ACntvwLLpLFu2bO7cueTzSCwscye nTp0qLi6+4YYbeCVTi8DBqjWze/duvv7u3bu3bt0qhLDZbLT15yWNYoDpMy1jhmEEAgFd15cuXVpQ UNDS0oLuBfmklNXV1YWFhddccw07wAore9iQAxR19eXa7DabjU AAl7Yhb242Qkkp6dHYzB0IBBYtWqRpGvUqs1Pq45Oth4c90ZDC ij3mZR5W2BQRV4yTXn75ZafTWVtbq155sACFIdGtt9562223oX vCCBKtRzVjEmqSeiN6HNU4SB+GAUp/8pkAFMMwKIJfWuZ5Gn+D3Vn2JUKIjo6OxMRENuuo6dGG5Po02p iSjYuLE5+1m0tPGQYon61QggfVdyE+Ph6DZ/LULbW0Mkyci+qS/3tE9gtQSDXRjK6vr580adKsWbPKysp4jkcikaNHj5aUlBQVFdX V1aGHBZkTMBIZoCl5V2+66SZYy9KoUaPUfH1QautIxXmuvr7+y 1/+cl5e3smTJ3kjbprmyZMn8/LyZs6cSdiFf8JmoyFnUHgtZwxE5qeYUkEkBL9i/Dba29tvu+02TdMOHz6sulgRL9JryjtCPHxNNrGxvy03D1ZFs5q aGpfLtX//fgY0nFqNzySx9W3ikVKSPUvTtFdeeYUiLlVrkRBC656tTirWHx JhhUTEXF8OA5SByGcCUGh1d7lcUkpa5of8HQAg42gwGGTXwiG8 OCEeZhfZQnleyTBA+WxFUxK10b+s0wclnH9ds2q7D7/Zf1B6BShCCO5qWtho1WxpaZk+fbqmaUuWLNmwYcMzzzxzxx13O ByO6dOnezwejsCCYuBQM8O+9957R44cAXDixIl9+/ZxCrhwOEzuEeyE12tSabKMnD59uri42OVy3XbbbRs3bty6devS pUs1TcvPz6+vr29ra4MCQc4RQIFCchCLTLS3w+H429/+JqzUt/Qgqj6k2OzOzs6ampprr71W07RDhw4Fg8EYOKK60IZCIfbckop/Lv2rhrlB8V1V/U+vvfba+fPnA/B6vYzyBwXJJ7rtAAAgAElEQVRQ6LKvvvqqzWarr6/v2SE9AQoJLXCqL7zsXlZJbcAwQOlPPhOAwqGSDB0CgcAQ5nUQV jpw0h26rg9h/ngoqkRa7GViYuIwQBmWGKEJRRsvKHmv++bmehdGOXQp0n1DC7j/t0mvAMU0TXaDYKzA6+7LL798zTXXOByOxMTEa6+9dsOGDV6vVw 1O4c+cOEB1yKD3HgwGeaMPZfXltVb1xkX38J/Ozs7169fPmzdP07S4uLhvf/vbmzdv5mFAuR9hMSi07J0jgCKlJCRHVp5FixbZ7fZbbrnlgw8+ gBJlw/4lUsr29vYnnnjCZrPl5+cfO3aMHXTY6UTTNCohRPg7Pj6eDlJe f2ahuBYBOcGwijO6Vy8SQpBn68cff4yzNfFQs6dNm7Zy5UoonI 16KU0x8fQfxR0DxYYZlAHJZwJQSOx2O/EQQ35lYmX+5V/+RVUcQ34jguR08fMTCpyfrfrfIzabjS3xortn3KCEYYp6ZBig/CPSK0Ch9YaWQ9UFgQKDGSYyaoFSGrDn6+B9f4zzAS2lwspoIqU k1oF/SAshR77Qn3iLxRs5crsmFcppZGmc2M6Nk6zKcKjEnmmaL774Yl FREeGPNWvWvP/++8eOHSsrKystLd2yZcvChQupGWvWrFFD5ekiVAdABSKEUeLi4 giCJCUlqRWINE0bMWIEfUhISPjd736nrvfUt5TG5oYbbrj66qu JryIANyiAAuC+++5LTEz86KOP1H2C7MNJFopDDM96rpFEQhBnm EEZqHxWACUYDLIWULOWDZWQrkH3oPmhujg1lR1QIpGIy+Uaqos PoQwDlM9WOAJTSsm7q7MYh+rmVc2GMsTN/d8kvQIUWJYLlUFhOoQ+sD1aTfJhWLUIpMLkCyU4llEFMyLCCu5 QW8VJvegrYxTOAqduiqQVKMTj4VxH8cQAFEIM5FAcjUb9fv/+/fvvvfdeIkIYZ2ia9oMf/ODNN99kuwxfgc/klPwMUGJMVDYl3IE+EzxyOBwOh2PNmjXonhuGPnz44Yeapt133 328zJ0RoKgn/PWvf3U6nU899RS6z8FeAUpfS4y6wqrC83cYoPQn6qj9lBkUm5J IbcjfwTm9PlOp+Iy6boAyDFA+Wxnu//NWYpYoXpM0pbSsVGwx56fwft1UkrgbhsFltG02W0JCgk1JxI6h UIZMNdEtYri9aDTa2tpaWVl5+vTp5uZm1UmWG2la6W41TaNwZY IanDledcJVJSaakkHS2rVrVRMqI4mnnnpK07RHHnkkhoiC9WY1 K5Me7x+IcdmxY4fL5brpppsYIzIlBsXmxaCKnzEGxPDORPXnVZ lUfjS1h4cBSpd8hqusCiDOhaHn3F1/GKAMy0BkuP/PW+kVoOi6Tut6QkKC6uH4GbXxzKLaDqSV1szv98fFxRG7QNaTT w2gqIYSMrIYViVUJo1YNMWzRHUjZbDFP+yrGeXl5fn5+czT3Hz zzZxmBgolv2rVKpvN9sMf/tDj8cDy8qF/dV13Op2UwRlAZ2cn3fH++++Pj4+fP38+e90yqiAKk2w3kUhEU3 xQGHYwp9WzpIm03G/ZZ4gTwKiPNgxQumQYoJyFDAOUYRmIDPf/eSu9AhTa1rMdQTU3nFfSK6NAuIoICXb1pUewfYoA5Yyalrqacu yycQcK2OqneXwO29E6OjoWL17stGTx4sWdnZ0c/sP/vv7660lJSfn5+Rs3buRLkbGJ7LCwTGYHDx684YYbNE177LHHOJ EEIRg2ojEQoZ8zxoJiA1Lrr9EHzXI54J/TB6KObN0tTbZhgEIyDFDOQoYByrAMRIb7/7yVXgGKEIIAChkObGcVE/4pC9tE1CP0geiTUaNGfZoAhfkPYZXlU28nFedu+jnRPEQn9PUT 9bMKUIio6OjoYCdcm8128803B4NB1SuIfnLixImf/vSnlCD03nvvfeONN06dOlVVVaVp2okTJ3bu3Pnwww9Pnz7dbrd ffvnlZWVlsHLbkHGHYsLZIYmz6nG4NbWQXaEJ18bHx5OvDL8g8 lYkqoauYLNq8QwDlF5kGKCchQwDlGEZiAz3/3krvQIU9irQuke02s8/IdbEbnmJ2iyXUlovXS6Xmv/tXAMUdhZWT1BNY6r3CbfEZrNxHBAfZxJFWr6DMQClp8EoGo0Gg 8Hvf//78fHxhAm+/e1vHz9+nH/IYVZCiJMnTz788MPf/OY3nU4n9xWlHZ84ceLq1au3b98OgPLe8s9VzoOtNnRZ7gduJOG nwsLCgoKC06dPs3czJWnsGYKu9ZZJZRigdMkwQDkLGQYowzIQG e7/81Z6BSi884biQIDu0R/niQhFOD8H5yKjxVXTtJEjR34KDEqvl41RubK79SccDnPAVFxcH PmoDsTEo4palMfv9z/22GNMIH31q189deqUtOw46F5JAIDb7T558mRZWZnL5Tp69GhlZ SWAQCAQ00giURoaGt54441oNOrz+TZv3tza2srn8B2FFVFMx1t aWqZOnTp79my3281nCqu+jyox3UgyDFC6ZBignIXIYYAyLAOQ4 f4/b0X2BlDoK0cC82b3M2nhQER2d5KFYpWAsrn/1ABKDH6KySfLwuEzxFE5nU72FyHpKy292gBpmZNgxc5QBRUOXx oxYsSpU6cAkFcKn+nz+bh4EAC73Y7uCempKqemadTO8vLySy65 hA1STqdz6dKlra2tUrEJxuh/4lc8Hs/06dMnTpzo8Xh0XWdtEA6H6Rb0mNyTwyaeXmQYoJyFDAOUYRmIX LD939dkEd3/60Uk/092fTEBkz7Kbsf73ib/Aw0fsPQKUDjOQiqJLoDzkUGRlgritGBSSkYn9NWmBPHiHPugxF xT/Sr78H7lJV9V1Ge8r+zOHqlJz6SUoVDooYceYrcPcvjgnzBMoRd NwTjkJCstIxTnuaFWUWDX5MmTm5qa6Ou+ffs0TSPoA8UgiO4Rz gAMw6itrZ01a1ZeXl59fX1iYmIwGFQbwNWaqBNk9zHZa2cOiVx IWkkO50HpW2i0SSu7gFCK79AJpBGklRTufJOhapW0/Ndg5afas2cP2cI3bdokhFi3bh1pw9LS0iG54z+HnJ+j4kwiAKM nEJEQEob1XxQwTEl5I2BETUgIQ5oCJilfw4QpYErDlBEgBBmBF FEdRte1TQGDLilNKU0BU0AKSAiGM+dWel0MeOEf1EViFn7+qlY qRXcmho6wdwL/lokEDhvp3+TRT6sIoNAk5XHIziLMFnCr1GYM5BYqQImBI2o3Ci u5CB/kP2mKxFw85oIDbBLDoJdeekmzqlKrDi7owYepqpsNNMRtUP1X6 kZS/pznnskVfgqn08lPF1P9oKGhgRBMQkIC+9tyn5imGfOOSIYBSpc MMyj9CAezsc8UT2zO2yOsuj/n4hH+QRnaBZIxCgCXy1VZWVlRUXHPPfccPXr0gQceEELU1dU5n c7zmRL/lOWCASh/V4DCAiiGAlPoFAIoOqADejjil4BOFL4EDJMuEomEAAEjgnAIQp eATw/7ZcSAgARCJiJAFIYpTZqbCkCRUvZNzQz1Ew8FQCFhewRny+DUZ JFIRE0OS24ibE1QdQinAGGgwBlEYpb8gT8grYsxDpisptgfIsY rYiB6rH+AwnCEyBW1yJqaLvzcAZRIJDJq1CjybiGcoQYG0wcqw QiADEx83DAMelmalcCNPnC36LqelJQEq8Yye1LDgqT0yLK7m3A 0Gg2FQmTrQfdyRcMApT8ZBij9i5SSUvLz12Aw+G//9m9lZWWRSETXdbfbvWLFihEjRpyHC/MQLpDMFakx/VC2iZqVtvJckGEXqFzIAKUnUqDjOmAY4QjhDQMwTQkJSKGH/NBDkIRgImbYB0R0IyhhAIYRDgX9AQDRsAkJXzAS0g0DMCC7oIk 0IaSANPBpDKChBSj8gQkP+qwSFT1VEC2o/JlmFq1tsNZyapLKQAz8ATUlS4pKadBnWiMp25i66R/4xXsCFNnd/kLWk5jL8tdzB1BIafdsnrBKKdHXYDAYDofZlAMgFArx64uPj6c LxsfHUyCPEELX9b1792qaVlZWxo4+FJSu2gcBNDc3l5SUbNmyR Qjh9/vp4DXXXLN8+XLWmcMA5cwyDFD6ESJa7XZ7IBBgNbRv376FCxcW FBQYhvHuu++WlJQ89dRTVO78fJOhXSBjKnDycZ/PR1PugQceOD+ZpM9KLkCAgr4BCv5Orkihh8ISME0d0kAkgM52R AJobcXpU6irRUsj6qrQVIe6anha0NyCsA7dQChMFhwJhHQRASK AQZNUmBCmAVOHeaEAFLXmDrqjEJUqoM26EKKzs5N2Nepf2ZGCU 3eYShHgIWFQNCtzv2rmME0zhhVWgctALt4XQOFssJqm0S3UakF 8kXMHUAKBgGalgVFNPOqlKJcrLAaFI6HonI6OjoSEBHIN4RwnA E6fPq1p2g9+8AMuLxDzCPSA1IDCwsKamhr+rWmaDz/8sKZpHo+HX/cwQDmDDAOUM4qmaXQR4vTmzZtXWlp6//33FxQUXH/99WVlZWoNrfNKhmqBpD0WqYD29nYhRFJSUlVVVWVl5d13311ZW blq1apgMLhz506HwzEMUFguWIDSlxtsF4kSiXiBkG52AD4E3Wi swOky7Nr+1MxLXv/SV3d++Zot2XmlM+b+bWrJm/kXvzz7svBTG3GqHhUNqG9BVCBiBv0hEwgBIcAAICRMAii6Dl2e ezPPkAAUVXmyD6bKf1BGr54zQlo1dFQji7CqwLD8gz4omlKEj/7E9gWVVIhxQxngLQYCUGhpDwQCqpVH3eScI4BCF+cU+FDAGT8v NSkYDLJ1RmW8uJfIXsOGufb29k2bNkWjUY5w1jSNqh3x+RzjXV dXB2sMwHqbLpcrBo+qIJJlGKB0yTBA6UcIJtPQoWFdVlZ29dVX G4bR2Ng4Z86ct956C9bgPg8X5iFcINWpaxjGzp07Sf3t3LkTwF NPPUWc6r59+1Rl9L9cLhiA0k36CdKh4zoQiAQbEWpEoBEnjry2 fOnvrr7i4a9c+kzJ7JeKZr82qXD35JJjk2ZX5BYfyZj44bhpb0 +/dNPMrz/z1Xk4eByN7egMIxCNRg0FoACmhDAFdOPCASjqrzikVlppSNiWE Y1Gjx079sYbb2zevHnTpk0bN2586aWXtm7dumXLljfeeOPAgQN ut1u1gwSDQcqsOliAwtAE3Z1k7Xa7UEorkysM/SQcDjNhQ0cGYugZoInHZrOFw2HOeMauwfT1XAMU9eIqdcTCQTR qrRzGE9zmmBVEKOECuq5TNhfOlw/Lcsd9zkLRxeSlpwLEYYDSnwwDlP7FNM2EhARYPO2DDz64ZcsWu uDp06fz8vLoOBsvzysZQgYF1jMyXw1rIyiljEajvPk7D4HaZyU XMkCxRFr8iuQ/RWB0IOKGt967aeOGWZc/WzD397Mva96yGY2V6GhA2SHjqadeGz99f8Zkz/SZJ9InHMuZuSvz4j35X9s4ec6J//kNGtvREYApdCAMCAmY6IrogS6hfwqOskMFUHhF5HWdJkhra+uu Xbv++Mc/XnXVVZQ7n8J9ic8g2wGHAY8aNeryyy9/8MEHDx48qCYBU50qzuIBmUFxOp1kg2ablLACYsnfk4HLACdvXw AF3Z1kedn2+XwqeCI5dwCFYnBcLhd5sKK7iyv/hMgt1QbEf6U/ffjhh/S+nnzySQYuDQ0Ny5cvP3HiBPcDvUoiwFT4VVdXx89C0cuRSMRm swWDQT4+DFDOIMMApR8hZM0mno0bN2pK8TBWNJzAcUibPwQy5A yKWq6T9wHC8u+jSThwV7t/erngAYrsCVAMIATdjbaK6F+e31A4a3fhldtnzcPOD9HWipAH6E CoGU3V+Oube2ZesveiZE/u1Lr0aXUZhcdHTy+bctlfC76yff4PUNuM9k4IGYGVKcUEhLzgA IpqH6HBf+rUqUceeYTAQXFx8a9//etNmzbV1tZ6PB5a4ciyQxqptbX1+PHjL7zwwq9//evi4mJSKatWrTp58iQbjlUZ1APy2ul0OsvLy3nx5gbTs7OlCQP Wk/0DFG5qT+ShKodzB1Ck5SRL9EbMcwmrQI96nJWYtJxk9+zZo2na 97///Q0bNmia9sQTTwghKioqiouLi4uLKT+slFKN4oESXVxQUDBz5sz q6mo+GI1GH3roocTExMbGRr71MEA5g6jAdoAAhd3LvV6v3SpMV VtbW1NTw77TzIwR4SktuywPIMMw6HY0YQZu/hyICCv0F0AwGCSm9CyibMhPLS4uzuv13nLLLd/73vcaGxt5z8RDmW6n1rGEUm1hCBdsLgNBd+RkCZx7MeZ8l8ule uSdtfGFc2vyg9O7o+NxcXFkVSUfnTNeR83/KJUMK6wsqJ3SShFBqt80TSJp2HkQ3QGT+hZYVJJcrfXF7049E0 oRdnTfUcW8SvWrruvUYDJUQ1FSmuXbzw/Y62v67IVRCEAApeuAhDABCiQWEhRko/vQfhof7XipcMb7U2d+OOHS8v9cjuoW6LoZDUjopvQj3IrG03hl 467J42rGjXWnj28bndv2hYnuMUWHs4tenVTS/Ns/oqIOkYjJViMDkDClYeDTiIYbFEDhl8iGEh6r6tJ+8uTJu+66y2 azzZkzZ9WqVYcPH+7nXUvFGsJGlmPHjq1evZpWrBUrVpw6dYrd NpmEoPGv5laJSVbG7bFZBXooFZjdqm/Mn1X3lJ6ZUfrvvb4ACotKTvQqQwtQYn6rWbUeB5IFLkaZUH9qm rZo0SKK33n44Yfj4uKqq6sLCwuLi4tra2uh5MMlUS8ipWxqanI 4HARfqCXx8fF2u/25556ju7A25lJKUHTgMEDpkkExKLT68lDWNG39+vVSyp07dx48 ePDtt9+mPF1r167l7pZWYoCeU0jTNL/fD2tVGEIShUaY3W4nbETL29ktzxQHX1hYuHnzZl7VpJJlGUAwG NR1nY0dfBo919AOL4YItEZSB6pzg5y5qBk0bRiqG1b577O7Kb1 NikvkxETovk9i8NSXqFpACEHth1J8i/5tb2+n44FAgNISoLsfDHU4fWDcxsNM13XGDdRytfQXLTAcFkiM Kyxynr4ySIJlyaIP4XBYrT0Ga9yy01woFGIcRoksKYkO/SrGC/J8kb4ACiCF9VchIQ1AR7AVtR+9819f3zt54vGxU8vGfWlH0XUo dyPQlevEb4YFghBtOLXv1He//vG40bWpKYG07NAXxkbSp1WOnlSWN/el6XNx6Bh8AVM3QJYeHZAwgCjEp4DgBgVQeFDRV0IVVDeO3nVb W9uKFSscDseMGTNefPHFjo4O/i2jGZVaiPnKhAqNvc7Ozo0bNxKhsmrVKo/HQ6NX9efo6RLB+0Y+zgBF07S1a9fa7faqqiohBMcVw0r0zlPvH 2dQWC4ggKL+3Ov1wrLsSyVRp8PhKCgouOSSS8rLywFEIhEq7kP tZ33IwQQAQqGQ6F6gh1UWszi0Tg0DlD5lUACFNTK9OUoQotIJa n1Iwyr8CKuikk2pCR4XF+dwOBISEmj+2Gw2soYOidAwpf2rtMo 0nAWTEY1GGxoaHA7HsWPHaGEjuoL/qm7Qw+EwRaa5XK733nsPwMGDB7UhDbulpZonITEotBLzhkzd9C clJanQEGfLVNH6yteJRCJJSUmMkCgVUiQSOSMgMwyjra2to6ND XacNw/j444/pM1fnoiqgUKY0P3soFIpEIj6fjzCBsHzvhRD19fX8jPTDxsZGO o0egfzU0B0nwUIbKoVDncyQrqmpiXESDarjx49DIW8B1NTUMN4 i30NN03gN41x/56MTsQJQJIRUAQpbeYQJaUCE0d6AF59+syD7k4mZldnjKrIKdo 2bg/V/Q00AfiBC00GH9KHteHD1nbunffFE9n+0Z4/xjk73XZTZfFFO3fiL306d1nLv79DuhRAw/g5QIkAQ4lOgUM6CQSHhhEAMGt5///2ioiKn0/nss88KJdNGTzKvL4AiLdoVyhLV3t7+7LPPulyuKVOmfPjhh4zC 6a+6rjNhqRKQKkBhmsThcITD4VOnTtGSyY3xer2868BgFsJ/MoDCGWhg8aYq/SmEaG5uTkhImD59ekVFRQw0TEhIUB9B9WKBYk4yTZNTwxG5zoH KvCyq7RwGKF0yKIDCBSHZOYPXLV3X7Xb7Lbfc0tnZeeDAAXT3G lOLM9H5zJow8c6b5n9caBdCzq0x9pdBCZkVnE4nM/+8k0aPtAf19fVk22pubiZy6JlnnqE99BCKupTS2qxqT3IsD4fD 1NWMynnaqNmfBi70W5WOpivTemyz2dRUCmzF61VuvPHGO+64g0 6mVm3fvt3hcFCpC2lBvdTUVHJM48vSlXlD853vfOcb3/gGW3+klKdPn/785z/f2trKjJ1hGIWFhffeey/nbSQFLa2KG4yTGKao4xnWynHPPfdMmTIFAFW7FUKcOHFi5MiRp 0+f5hUiGo3eeOONd955p1TM/Lw9pS01vbULFqDogA4RQHNNw7LvfzAuo3JsatPY7IYx+Z/kfvnV4m/iRACeKCJdDiRC96HtNF58ZHtJetmk5KactObk5NYvpvlSxjckT 6mZdvlfi69AdR1Mw0r/BkiEgQA+jYyHcjAABYo2k4r6am1tfe6558gWcPr0aVh7Bj6TvS J6bYBQBMrSaFip7oUQjY2NCxcudLlca9eu5VnA57M64kEluwMU 8kEhLdTTXsknq1bpgWyo5D8XQIEVialOXrJc02fS7R0dHaQfiK wFEAwGyQeZGBS+CyMbAiJ8F2bd2IjMOHKYQeldBgVQoOxxqYrS s88+a5rm9u3bd+/e7XK5QqGQodSsgdK5zKvzHVXG3uwt0+JZi2mazF6oAGWwIhRfF jUsHt3zBxCJZ5qmzWajg/Hx8bC6iHfV/7ioT6HWzqDEA6pDBoDa2lryomcUTxD+LIY7aS6ebKZpxsfHM29 BdyHw2o+KB1BZWXnZZZfNmDGjqamJCbZ58+b95Cc/eeihh6SUdJcXXnhh8eLFxcXF1GCfz0fgVVp7kWPHjk2fPn3GjB lcsss0zRUrVjz44IOPP/44a5nS0tKvfvWrmqZR0CYraDVfZEdHx4cffqg6QnEQJq0Wzc3N iYmJV1xxBQVU0yP/+Mc/vvPOO1esWEEmLWLarrjiiqKiIm5qJBIhnMqrFFv9zjvpA6BIGi 0SgICMQkZg+FBXtSOvxDM+vzU9q+Wi9PqUqUfHzv1r3v/Fy4fRRmljodNy2dGEtze+M3PcJxMz6samN2aktmWMbU8d35wy+ WTKjHfzvoL9B+Hv7AIogskU43wz8fBfVW0ZjUZvuukmp9P5xz/+UQ3foGlCapAPqtNTvRqDftE9CQePGRo2q1at0jRt8eLFHE+nk tnokWyNLs6xQk6nk5E3jUBCzIZhqBHOA1eS/2QAhX/FWiIcDmtKJhWXy0Vp39jJkq/JB6FYGMgAhO7+mlDUNRSAOOyD0p8MCqDQ4CZ1L4QIhUKE/lwuV01NDdGJn/vc58jQQ1OUuG7VssATjx0b6eUNoezYsSMpKclut9fW1vLg6+zs FIMUHoKdnZ0Ey5jnhwWqmAGiSfvcc8+tW7eOuH0Adrt9aIeXqR QvZe0GyxWD91L19fUFBQWaptHGjqmCcDjMqnPgEtMAWKCNWAr6 zHs45nh6yrJlyw4ePLhp06a1a9dSY3bs2HHddde1t7fbbDafz0 dcSGFh4YkTJ370ox+9/PLL6paUR9GKFStefPHFLVu23H777XSdw4cP33jjjX6/f+rUqew/eN111+3evft3v/vdQw89RE9BwZbcaT6f74477qBsLjRQuWMZpjz00EOPPfZYaWnp 9ddfT8RMRUVFYWFhR0dHfn5+RUUFDYC77757+/btW7ZsefLJJ9mQRDtX9RGEUhbkPJK+AYqgf2BAhIEQjA5UV3ww Y+7pz2d408Z608a2jck/PnbO6+OvjD79DjwROldGAAl4W7HtxXdKJhydkFU/JrMlPbM1I9uTmtOUPOn0F6ftnvYVbNsFXydMqhMIw5RSSmEOpb 98n088GIAiFFafplJDQ8NNN93kcDhKS0t5o9LTSbwnbuDrS0ti 7qVyITTZ6ciOHTucTueiRYtoDLPpMMZoqwIULuqraRpHzFJ5Gv q8dOnSntnoVZzUT+/9MwEUPoE7v6cp3OfzqfljYPnbqZBFVZVEgzGohWIopIWPvw4Dl P5EDJJBoTB92Z29JBUcsYTmMOESXs/4NbD867/+K2Ea9R0PiTz//PNkeaUBSh/odoMVrgbOEggEeJhyPwQCgfLycqrum5CQ8Nprr/EeeqgeioVuShUiGECwiqFVdt26dVQ/k9zIaStgs9nI9WewncBe6HwR9bnYkYjuxYxlTyGOLRqN5ufnky f8jTfeuGfPHgC///3v16xZA2DDhg1kAzp27JimbGLo7izkUzJlypTKykoAP/vZz3bt2gVg69atq1atEkKUlpZ+/etfB9De3s75NJ1OJz3LiBEjuMEOh8PpdNKNEhMTNWtM0rBMSkr y+/3hcPjKK688cOBAKBS6/fbbX331VV3XX3/99aVLlwI4evTolVdeCcDr9WqaRmZpujhtptlxof89+mcmvQAUI SG6KgwTfSICQABGG2pPvzWtqG5iXk3qf7SkX9SQmn0sI3/n1Csq/98j8LhNGe0KRjYl2pvx3tZtF08oHze+LSW7LXls6+gsd2pu7eg JLeMveSdnJrbtRiAMAQOIAFFhwhSI6OdhNWOVEm5tbV2yZMnnP ve5vXv30pLGvDJtYNjwyjTnGQEKuyjRr0ij8ooohNB1fdeuXZq mLV26lJRwTwMot5bUAvkC0lCMi4tbuHAhtTYQCLS0tOTm5iYlJ amGVDHgUMd/PoDCKj0QCBC3QZwTBYGqZ3LsHiyihR9BWJ7OtEVhdwj2cYkJla LWDgOU/mRQACXG3QHKNGPHdY4lUVdxNW5CKH4MUgl7GcKdpZTy97//PadIYL4AACAASURBVL1y1af17C6lWY6urCykEhwLxc2FxtnHH3/8+OOPAyDP3/5n6aBEWOm0o9FoTFJ5agxpyW3btk2aNGn+/PkPPvigVDwqKFLxLIa7ui2TUoZCoaSkJOZFHA4Hu+L2/xKFZSDbsmXLo48+Wlpaes0119A129rabDZbU1NTcXEx+Z8KJUZ GJR6E4smxefPmH//4xxUVFYQPAPj9/osvvtjtdt9www07d+6k52Wila/GCqK2ttZms6nOrXwL6jRWK7t3777iiitqa2vz8/Np/fD5fMXFxUeOHPnve+7evWsnFfKlfjBlFwlhdi3xMhqNCi6M16N j0D1/qwSbWECVa8BHup3cFXFjQpgQXbWApVqLWLkO0G3hl8ollT/FABQpJSCkiMIMAiEYXtSVv1hUfGTSpOpxY5oy05vSc45l5m3L/+rx//d7+NsiCFqmmgg63Sh99W8zck+PHdeWkt0xOtObnO0ZnePOzD+R Xrg97zK8sxf+KAyEDEQBQ5gwDRhRyPMuD4qKMB577DG73b5t2z b6k6HkN2NDMB1RsxfGMJFSMfGo7RHdww7oBB78O3bssNvt9913 n7S8tdDDPZZ/xQCFEsTRIKdLNTU10bL629/+Nsa8HtPOvnrjnwygoEf2AfUzrCQFalQEc+S0B1b1FcuBAweqq qqqq6s55pyt5Bj2QRmIqJNhIAwKzav9+/drmkaBlNS/tCVlN9iBjHJ16PT/DtQFA9a0ZAdJKNABVhypYRgul4ujXs8OnehWvUo1Iomtuapd2b SE6Dt1e0QuUb3626sbLDbc9N8k1mjkmY/uzj2BQGD58uXXXXcde5urYW/Scgvl5nFwU/+vjBsvLY9UypxIF9GUUuOqPTvGrxCKzu3s7CwuLr7++ut3795N HRsOh//4xz/ecsstP/7xj1WUEwPC2HxLxzs6OmbNmrVo0aLt27fDQi0vvPDCsmXLrr32 2phhww5uMUNu4OPwiiuuuPXWWzdu3Gha5Ty2bt26+JaFV3/tK0BEIuoPegEhISLSjAIGhAmCJUJCGDANSEGl8sKGBQ6EFBGIC IwwZJQAhy6g6xAmjAggEDEsZBKJIhqGNPSQ30IhRhQiAiMC3UA UIgwzCAQkQhIGhIQORAFTSFPAhDQhJaIRwIQRgQlEB+DzISWlQ zGEGUG7+8TypbumTTkyNqcmY7wna/pHGQUvF17V8vyrCPijMCLRAISOaBReD97c+u6MiSfHj6tPTe/IHBvOym3994yWjGnHx3/pnS9dj1ofgoCATglXJICIlAFKf39OpR+AIrt7h6gzF8Bf//pXTdOef/55Ol/NR6KmYEB3hwb6qobq8MBWf8KARg35URe2QCDw5z//OS4ubuvWrWrzVKBjWFmRHA4HA5S4uDhy5abTNmzYMGfOnD/84Q88efkRBth75z9A4fhQKJGnMZtkfl5KH8DQpH8miZtkmqZmB ajGYNDNmzfPnDmTjQYul6u4uPiFF15QYZCwfBzJVajXMTnYHhi IXEgAZbAMSjgcJv9TKgRFpSD9fv/ChQvJM9Tv99fX1w+kuu+gMr3Swh9DhxApSj6Ppmmq7qiUvwSDC e7v675xcXH8mVIIxDir9ozLUIE2Dy9aVgnrMOnCDuHogcN6Cj8 gOeRC8W8QQmzfvn369OnPPPMMcYyw+ocUJd+UlFGMSuq/i6SV4R6WCtCs+kTEoKhKXN1QMqDhS7G/0W9+85u8vDy1uyjv3/HjxxmusVoh/3m+Jj+4EGLt2rUTJ06EMpIjkchFF120a9culWlXFw/+LX0d+Dh85ZVXkpOTibMVllPLmIy07dveBCJCRgAjHA4ahhExj Yg0TUD+necQJoQBaUDSWmyYEoAeCkIakAaETiMiGA5JwCBgoQM BIBSFz4eGVjS3wxtAsxumDjMKIYhfMYAIhAEDUoeIACGBsAEpB QigCAFdAkAobEQp3UgY4ZBpDBSg/H1/j852fLTn5ctnvVdUtD178sHci3cXfm3dV+ahrg3hYNSCTTDDaG/G+if3zZhSNjbDP2lSw7+Pbv2PdG/qxPK0ae9kFx9YeCcagwgBAgZZhaQAIiY+M4CCPjAKM3DHjh0bO XLkTTfdxDwx/YpXPnSvjcd7AFKYbDpk31U6SGsYm3ViVkcOm+dYmx/96EeaplFQPd1R/Qk/At2Orh8fH9/Q0KC2ORAInDhxIj4+vrOzU8VAA+y9CxSgoHtqzZ7JY6B4LLA7X UwbegUorGoMw1i0aFFcXNzy5ct37NhRXl5eVla2a9eu22+/PT4+fsGCBeTjzIBmGKD0J4MCKACOHDlis9kOHDigaRrNnI6Oji VLlqxevRqApmmLFi2ikdHc3Nz/pQa+MPBGgb0u+O0yUlEHTWlp6bx585KSkvig3+8/i9dMyQM0Tdu7dy89LNmYSW2ptAq58TOv+MEHH1RUVHCIfENDg2 blXU5MTDRNk5QU+VXASm3ncrlWr17dTzt5Xvl8Pg4djEQiTU1N d99993XXXXfkyJEY3kJYVpWY2EJp5ZozrRR2qv9vjHDxMw6QY5 1CU1R0z5HKeUQ43J/uxYwR51Bh2xD1JCXqVSlWFs4uxRqcIZfX6+XwMdImPPaYcqcLt rW1sWthrwzKGbFsQ0MDR1LQ+W63O6KHQ5GgNIUR0slnwwjpMNB VX0aazHaYEAZE2NAFZDSsd7lrRAGrSp4BSAg9GoSpwwihw4PmO tRV4cDBF+dc/ZeCr64ruRLHa+HtRCiMKBAFIoAO0fXbrldP1IkuIU0IQeG7CAF hoB1oNWQUMIGAETBhnLE4XzcOzAjCX4PGj7Z+//9be+mcP1921Ts/+DHqGhAMikgQ0oQATBMIoPGk+dv7D04YfzojvWl0Wig5p+3fx7 VkX/zRxDmbZlyGd/aiLYgwujimLo7IkNQd51j6Wgz4r7K7CYYG6sqVK2fMmEErPUfu aFbCDCjWATX/kBDCbrdzjFtPARAfH6+yICpi4Ouom4ri4mJysWITZEw5MCEEYS BycSgoKCgpKaGWM9D51re+ddVVV8nu/qED0ZMXKEDhc8jRhL1JWLcIy4ZOZ3Kqkr6aRJ1MPcwb16eeekr TNMpZ2m3iAO+8847D4Vi5ciX/HMMApX8ZFEDp7Oz8whe+wJwhJWpLSEhYtWoVvRuHw0Gujg6Hg/fcfcmgFgY1i6LKQ6qpFaWUhw8fnj179rx5895//31iEc7YjH6E2ma32+fMmfOLX/xCXduk4tlAbTBNk7TMjh07CHns2rVLSrl37979+/fzCCYdQYF/ra2t5O9GaK+lpcXpdPbDsqpesawW33rrraKioo0bNzLCID9lab EXnIeDUBrNT56H9Iz9oBOSQCAglHLwmqax8xfrF05dRXeJoVJg 6XTTirZl8oZBEmuNzs5OajztNtQNK0Mrdf0g4c+qRw6BJG45PS nTuRjMOGQWR+XqTCmo1B0EYMLnDZq6VVzGAEwpCaNIQa4VJoQB U0JASIQM6IAOKaxyNKYOIwyfB231qD2JuhOPXjX38eKpb5dcfG TqnIM5M7flX/bs3K/D04ZQqAudhIEwpKArwSDWxoQhoUtISXYcRCCiiEZgeiE6gaCgl PKGoQfPCAi6qUgZBdohmtFajuYq1Dag0QNdB3SYBiQQFdDDkO1 oOFI+/zsfj81uzhnvTR8fSctv+uK0j8fM/FvhVW/fshx1LfCHYZiEqohY6p7T9hxK/wAFCg/BAJoqeP/lL3+RUqpzjX7OxKS0DATRaJR9ZtnDQHX44K+6rmuaJrvnpzaUy gwqfUixQjt27EhMTHz++edj3Fy4zera6XA4ampq2OKTmJjI+VE OHz6M7j6bA+y9CwigSCU5k9fr5Qvquk5JAYweVRJ5+9ETnaA77 LBZBSDpNQWDQU3THnjgAVgmPzqZliHTNJ955pmkpCSVzRoGKP3 JYBkUKIGmNMG4ZGU4HI6Li6NFtP+hSTIoBgUARVXEx8e3tLT4f D4a2Xa7nZY9sgG9/vrr+fn5y5cvP378OF8zGAyqyacHLlLKcDgcHx8fDAbvu+++goI CykEHK16XfO+5DzkcyeVyfe5zn2MXNprPiYmJdEJLSwslnCUcQ 3SITckn2I9Q9IphGE6n0+PxLFmy5MYbbzxx4oRUCgurni7cgcJ KxUHHab8VU/WmL2EaRkpJiVnppdP0o8LidGV15ZaKXwtNcrqLalSieRsfH0+q c+/evQA0y6VJs9ychRIYjO6uPPSV9kDMlr/wwguwVCRlS4OyxVS5NwxmHLL2J96I5M9//rOum3HORKfmHBE3UtPsBFZMf8TyVZUQsoseMQGJiAhHEQUAA3q wK0O8TgSItwPNjThZhg/3vjTn4lem5G7Pyz1QMOnIxPG1aePLvpC9f8rMF+Z8GVUnYQQgD UjCNdAhIzB1RAWiMHUYktxzIQAhICOQAZgB3ec2YYRgCkg9FIY eJceYfp66hxhARI+0QgZhRODX4RdGMCjMCCT0iCEBSB2dFTj45 pt5E0+Pn9g0ZnzN5zPcyTPKM+fsmH71+kv/Lxq8CEcRjUJEAV1Cj0IYQFdQ87nHKIMCKISPb7jhhuuuuw7dE5 bruj5q1Ch094elD2r2M+JNoXhioruvw4gRI3hAqlYe2VucKp1z zz335OXlqfQnD05h5VDnkD1+CrJAkaKgxINqm8+4UeRWXYgAha 9mKMXLYvhaNqip9p2ebeAjHCFIZx46dMjhcBw8eFCNMFdfHAX6 Pf7447xFHAYo/cmgAAoPaFj7ZgpdYQSqWXYfTuTVjwx8YfD5fLTJALBt2zZN0/bs2bN+/XoAjz76KK9ANOva29u3bNlSUlJyxx13VFRUMHV5dmVQTCv9mt/vP3nyZF5e3v333+/1ennMxWyDAPzsZz/TNI08M9g4BctEkpCQEIlEyJOX5jlFI7/33nvvvPOOpmn9WILVkapp2qxZszZs2KBGoOhKhRpY2jAmOZhpm uy5ojrx9PO+hOVvS5iMAIG67VBvoaoDoRT+UJO+E5rkn1O/NTc322w2XdcpLKipqUlYQUNqM7jYDQC/36/6LNOIoggFwzD+67/+6+GHHwYQiURIg3OGWXW8DRYoU6vIM0kIYddsMOHQ7BDY8d52R 3ycSWZsafEoAjDRxW/ogAkJw4QeiQYgBUwBXwAtHWj1o74FJ8vXfmnO1lmztk3P+6Qg7 0h2ZvX47NNjRtdmpAQyxvnHTTueO21zdi7KjqC2Ek1NaHKjsRV NrWhuRks9mmvRWIPaOtQ2oKEZDW7UNaO2AQ01qK9CTQXaPWhzI xyAFOT2inC4f0DQi34kzkiahil1vYv2MMIhmBBhAwCiXrSWla1 ctHtSTvXYiQ0Zk5uyZpwc+6Xdk772wuxv4UA1fDqi5HajS4R0h MPQDVh99VkDFNldDMMgxzsC0LwNoJHJc5aGIk09tTYTAKfTyQs hr3k8TXRdt9vt0WhU1VFCcZuAUtFJWHbegwcPJiYmMhbnBZg/c6j8yJEjDaveOF0txm1ODS35p8mD0qsPiprqghYOn8938803cz qDUaNGUaES9G3iQW8AhY5s3rzZ5XKRglUZFFL41P9Lly796U9/imEGZSAyWAZFt8S0Ahn4OioUGEifDsrEYxhGXFxcQ0PDkiVLeD REo9H//M//JHotBghHo9H169fPnj379ttvJ7VyFinGo1ZGf6ZqA4HAb37zGw ouFZZTBTumEIG0d+9eGrWPPvpoIBBYt27dpk2bVqxY8eijj/p8Pqrs89Of/nT//v2NjY0Oh+Po0aN2u725ubm2trb/KU00smEY9fX1iYmJ1dXVHDvDyz9NCfqXevXJJ5+kuffQQw+RIy rNqB07dtBl1eJh/fQ/LDdh+nrLLbcQjxIKhf70pz/RLTgqp7Ozk2nSmC2j+o7Yo6Wmpuajjz6ix+fkDevWrWPwoUYbs eJmXMWWssrKyo8++ogihzVN6+zsrKqqUl3h1IRy9GFQ45AfR9O 0Y8eO7d+/32Gzi0AQ0ti5670pM6ZU1VdGZcSEEdRDAlLKLtuOIbsCgmECUp jRABCBGYS/A55WHCzbVHL5X6fN+bDgy3tz8j6ZkPfxmJyKsTktWeNb0jNb0p O9Y8fU/8vnO9LH1qSOLZ8w7ZPpM9+ZUPBu/py/TZ9r/feld6eXlE4r3j2tcPeUoh1TS97On/3W9Nl/y5u9La9kW/7Fb08venl60ca5l+FUOXxeGEJETBGO9m9VUVXz3z8LIGRQ4Zyo CQMwTQkTCAERCRlBezW2bXqjYFzD1IL65ImN4y7ekzzljYmXbP nyt9EYQXUnfAICgDChRxAMIxhG1IC0+qf/lzAE0utiIPsQXdfvvPPOyy67zFCyDPPPadCqMy4m3hBWSgVppS dgEVbOAk1x6lIdpEhUdzcoQSjf+9735s6dS7VEYkgCAJTghyYm gw/6a0dHB6tQteDoGfUAd9SFCFD4vdBj2u32SCTyi1/8wmazrV27ll7Wd7/7XaqqyOhE9HCSRW8ABUA0GqU8WLAWBRVx8k9++MMfLlmyhLHmM EDpTwYFUDheDkr+GVhKn/NGSCUTQD8yqJ2rEIKKC2pK/AjBYXKF4ZMNSwC8+eabM2fO/M53vsMbmkEJM6XcSzTKjxw5Mm3atPvvv19N/A9rsNrt9sbGxkAgQPmRiCMh8EHJu2AVdyCuD1Y9GlrgB8KyslW bu47NFqxoqLXRaNRms1GskMvlqq+vf/rppwGUl5cTLcnasP+dk2EYTELoul5fX//zn/+c2kAuwLqu/+pXv6JwOwAnTpw4ffq0urOkUcF3YSs+bWuoo1paWlRrDodSwwJ n7CcLxeGXfYM46L26utrn89mUaq5SStUVrqcuGCBA4duRVc5ut 9fVVkMaNRWntDit2l1jIhLWfSb0sAxzQhJKRGaAPhlob0fID3c TKk/j1MmnZ81+M3/mBxOLTmYXVKRNrsuY1J6TVzs6052a05aS3Tp6TFtqhnfMGF9GV ssXk70Z4xpHj2lIzWkaO60qY2r5mGnlWXnlWdOqMqfUjpnQmJ7 blJ7TlJ5blzGhImsKHa8eM6k6c0L52ElHxk7dXTz3D5dchvpGB CMU8Nx/7WC1o3hSR6MGTMAPRGECHVG9y5YUBoIGdB8ay6qXL/xg2sTKMZNr06cfzC55Z/plh3743zjZhJq2Lq/eiASgQw8iFEI4At2AeX4CFAK769evJ6B88ODBjz76aMOGDS+88 MLWrVudTufy5ctXrlx511130aResWKF7E7UaUp195hm8CoVozb VdVo1GxlKDZ1du3bZbLajR49CQf8MU2h80r+LFy+myEreIcjuh t3+jbw9e+9CBCiwzMFQCNe9e/e++eabsBYOerQB1ieR3WsRSynff/99TdMaGhqkZdkxlFTjQoiOjo6RI0dSTMkwQDmzqKB7gD4oQyXq whCzRppWyg0ou2RN03bt2jVjxozGxsZt27Zt2LABwPr16zVNUz 3kaRnbtWvX1VdffeWVV1Ki0rPO0iaEiI+Pp6TFHJ5KC+0vf/nLoqKiQ4cOMRNwroXZXfK3gBIyx2FK6kLL8w3W+i2sCh1qNljO RAIrCSYrL2aJeD8BhRB2OBysDh577LH8/Hx6p5qmORwOjr5jLz9Wx8IKt6b72my2urq6/Pz80tLSmpqaBx54wDCM3bt3a4oPChSmh01OUICOrus2m62xsXH GjBm7du06efKkpmmhUKilpYWbASWaiZV+z3HYl/D+MhAIJCQkBAKB22677ZFHHgFEIBrU4rQIokAkGGyTiEZEOAoR gogAfjMcpZIznT40NuNkOY6XP180+2/T53wweeaR3PzjYyefGju+YmxOdVZ2Y0a2Oy27LSWnPTmnPTm3L SXXnZrjTsv2pGa1pWZ6UzK9KRntKZmetMyW9KzGjGz6rykjqyU 9syUjw52e0ZaW5knLaMrIbMrI8qRmtadkeVMyPalZ9RkTPpg44 6nZl6K2HuFQFAgDkUHiAQlE6Sc6YMCA0WWdkYAOdAbhb8T2l0p nzzgyZdqh1IkfT5zzSt5l4T/9BfVt6AwibHQFLhldrjNhGCHoBkwBK9vcuZe+AIrq8MG75/fee8/pdDY2NpKrLG0ziJygcU6FmX7yk5+sW7fu5ZdfPnHiBBQlxsZfF V5DmUcEJkwlN0FMQIBUfMtYIpFIIBAoKSn5+c9/Tkd4XrCFV7NyMTudzgULFqhVF0i4DCprsH4wuto/tPzT4/cEOrQh1KwUl0wsqXFJqrUl5i4xAEXdRatSW1tbX19/8uRJIlDVBnDubJfLpeIDtVc5uxq7BxmGQQjj6NGj6qa0L7VAL4 40Kr07cjF59NFH6YSYxGBCiFdeeUXTtA8//JCPUB/GdMIwQOmSwZp4hlB63bnyTj2qFEAm+xEZFEpLSzds2ECEBEl9f T2PoXA4vGfPnnnz5l177bWU+xwKtXN27VQ5G1gLud/vN03zk08+KSoq+u1vf0uu9eIcC23mqA0EDmhqcRgwLF3GHFJra 2t8fPzevXvXrFmjaRr5Z3R0dHg8HnoE6jfSXLyES6uSMytTagB 9pvTPQgjNKsdot9svvvji2tpap9N57NgxSrrg8XjIUUNVrKJ7I AMzTwDcbvfdd99NHU5rwL59++i0aDSqFmziNqtetxRPIaWsqam 58847AWzYsIE2UgRSOc93DBYZlJMs9wnR5sFg8Je/uj8qZKehO0clGRDBgBdSD/haASMswxEYnWYAiCDQitpKlFf8ae7lW2ZdumXc5OOFXz6ePrVl TF7t/8nwZU9qSMuoH5NZn5nRkp7pSc1qT8n2Jue0J09oS57gTp3gScl tS8nxJmd5UzK8KWntqSltaSmetDR3eoY7PcOdnulOz/SkZbSlZrSnprWnprSnpnjSMjxpGb7kjMDojOBFaZ3JGZ7UnI/H562fdQlqahEORc4eoIgufxEJA6EIQgbllwsaCPrRePzQHTe9N yO/dPyk0qkzt395Hg5XoS2EQCjc2SGEAQBhE2GTktxHgQg54wijK+ Lp3Etfu1VYa5JQ2I7Fixd/85vfFBZJeeTIkYaGBqaTHQ4HoQchhAqmYYWtAiC3KihjVf1KJ7 ACgTWXOeIMiq8lfeXa7/fcc8/cuXNNKx8j428mL2+++WbNSn+wePFiNgETZJfdi2j2P/6hEDCaUqXENE3apHE/wIqZoKfgoGt+Fur2XiMD+mJQeIZSVTVK/E9tKC4u5rqhLpeL9jxs3mKQR33CdfuYoN22bRtHYGiaNn/+fNalgwIodPB//ud/NE1rbGxkazgdD4fDVMD11ltvVeGgaiRiGQYoXXJeARSez8y2AW hsbOR9gMfjqays5JEkpSSA3NTUVFBQcPz48QcffPCiiy7605/+xLQ/ZTFS19dBSSAQoOWTkm2o2geWBfdnP/tZfHy87dyLZiVTYerS7XbDmkhkBFG5IurA+Pj4LVu2JCUlzZ8/PxqNxsfHE8/JPU9up6T+mNskRcbRARySwOY8KaXT6YxEIm+99VZCQsKePXt27 95N5jYOrUpKSqIMJegOTQwrWx0HAAsh/H5/zF2gOBvCAoWmFaxEBzm2GcpM5rJtrLVVJEdH+BYDByiwFHRUSa 9nCoQlgpROxABMgVAYpoAeNkQkIkISIRg+lH303Fe/9rcZsz/ILTw+fnpNbt7J0dmt4/NaUsY1/FuqGD/N8x+p7SmZbamZntQsd1qWOy3bnZrjScltS57QPnqSd/SkwBdzO0dne1MyPWlpTWNSGjNTmsaktWRktKRntaRnt6Rne1Jz fKNzfKOziV9xp2V7UrPbU7J9yVm+5AxvSqY7Nffj8dP/PPMSVNciHDS6SJDBAhRhwjBhmF2xzH4JvwQlxhXwebD7zc2XFL 5ROOO1i2c3PvBbnKqEN4yIhGmYMmrCENBhGOQPa1UCoDdlCOiC ShufYzkjQOFzqLDD888/z74avOTE5ARiy2OMw4dhFdRUxyp/oLHKbeClizUhkxywYArfKBQKkecWL89QVkT6oc/nu/XWWzVNGzVqlKZpCxYsiNmq8f6BMc0Zey8SiYwYMcJmWdj5OGfO FZbxgo/zNOdgOlWtxSCSngAlppiGYRgJCQk333xzOByuqqqaMmXKiBEjS JlQewi7uFwuyhfFXapuyah5paWlcXFx8+fPN03T7XaT07Fh5fU +I0AheGFTYoXcbndRUdHkyZMPHz7M7454OIfDMXfu3NraWoaSp C1tlpGIZRigdMl5BVAAkOoXFvNGYeV/+MMfALz++uvktEGOGnFxcadOnbLZbC0tLVOnTl2zZg0NkX379l 111VVUyRaKljmLFppKdC43L8ZYQNcPBoPy3AurHqlUCKIMJUzS 0qpPWpJ4EbKVrF69evny5VDqg1OlZdVpVFqOGrwXlMoGi+Ejsy aalSf7iSeeoDlWU1MjLNuztKxLsDZn/BboQWK+CitIh1Eghx5QY9iXhV8EJ9+UCjSBZV9Xhxb3Cd+l/3HYq0StQkjcY4ZhRHUZllaydgHoEqZExIQp9GgY0MPBFnQ0/Olrl782ZUb5+KL6L+bW/3tmx5jchosyGlMyfNkT2jPGtf5Huu+iTF9yljc5q40BSpehJ5c ASudFuZ2js9tSM1syMhrHpDWOyXCnZ7rTslrSs8nvxJ06wXfRh M6LcttSctxp2e7UXE9Kbntyrjc5pz0ly5Oa1ZI24ePx058ruQR VtQgGKQP/YLWfhDCgG9B1mEZXptsARVEbohPu6tP/s3JDXt7T04v1Z5+nBG4I6xRkbcCIyoguQqYRpqgfinKiRG2m/IwBSoyjPc30qqoqTdOorhP/hMLHAPh8PkoIySpCWlQBjVUaUbbubi4c38HXZDssXYrC6ZkIYV ENmvSBEi68/fbbfCm1AXR+KBRasGCBZlVOXbRoEccx0Izo6Tneq6g7Pc0q8UP 7t87OTrYrwcozRFmdYgKwpbWQ2ywXmb4AIn9lPoN5KWoAs6Ee5 2VlawAAIABJREFUj4cuYhgGxUMRGtM0LSEhgcMG+ekoHDUxMZG us2DBAra+SSUXg4pR+uqTmCge6p/GxsZvfOMbmqbdeOONd9xxx7333vutb31L07RFixaR+Y/1zDBAOYOcVwCFhgJvdukgl5PQrMAwYlBsNltlZeWIESPsdvuvf vUruiY7o+zbt+8b3/gGwRS/399P7G4/IqwUYZzsS1VhQgkwxjkYRj2FNKZh5cRDd5UaCATYj4R/ErPb432MqSTwhsUJ8dVk95xRMVsuNaFIjPYxrWpElLMIFhRg1a CmnKKDjz32GOW2AUDRQHa7fefOnbDSwe3YseO5557jHxpK0XNp 7UtcLhdZ9JgxJoxCg8fhcNTV1akN0M8qkyz9VTUvAoiLS3A6Rw qBkC8io9j4/AsOm32E3XVg115IwNChB9Dc8PyXL393XH7lF8brY/ID46bUpaR7J0wu/8JF9akZTalZLV8c05mR603Obk/JbqP/UrO8yVmdo7N8o7PbUnLcqbl00JNG1pzMttQs3+hs3+ictpTclr QJjemTWlIntY+e5B09wZOS607NbUue1JY8yTt6Qntyric1uyUt pzF9wsfjZ2wouQSV1Qj4IUyYEkIOikKREBHoOnQpTUhTQheI6o gKBCHaUH9q08xLX5xxqfjLq2hpg6cVgaAEQoAuhSEiuhm2iBvx 9zBsASFhSiFgyvMJoBiGsWfPHqfT2dTUBGsCMuxgYx8rCp5fqk JDd4dQl8tFAcBkx2TlRjflxZj2PFAoGWZc1CNCiMsvv3zt2rWq t4qahMOwaupS2B3da/78+apVFwqv0z9GgaVjXS5XQkICbXXoOPtbcP+QuuboQtPsVoZG s5xDzwhQeG5KZTdI9iM+ollxNHScOpZTdQN45plnnn766ebmZt J+hw4d0jTN7XZTIw3DIFAorVRPupUVs1fFzgdVeMFJQUm9vPvu u6tWrVqwYMG11167cuXK3bt3s6LmbhkGKGeQ8w2gxHhoUj3rhQ sXut3u6667jgw9jzzySDAYrKurI+70hhtuWLBggdfrZTXBs/e9994rLCycP38+BummTsLOU1CUDm84aD/NN/0UAIq0TBsUxcOsCVFNsAy0ND1YMaF7wAurCXJVYfMHPUs0GlWz KKqpnKJK8tlwOEzTjBxByC+PY5q405i3gKW/1EwM1IyVK1faLA92TdOam5vJjwwAwY65c+e63W7SxfwgfNkVK1 bU19dXV1fzJiYxMTEUCvl8vk8++YQO7tixw2azETkkFV85kkGZ eACMGjVq27ZtnZ2dCQkJZWVlpimd9nhIuN2tuq7/4v5f+v1+d32zU7OHgzokEI2gqenhi7/04WVfPzk2rz45pyo1qyF73KmLRrtzJjZnjGv4YqY/c3LTv2W0peS0xQKUTF9ylmX0ybKgSaY3Ocs3Orvzohzf6Nz25A melAnu1Anu1AltKbltKTnu1BxPak578gTv6Am+0bntyTnutOym 9JzG9AmHc6dvKLkEFdXw+yENmCbMQQMUHboBHaZJ6eAMQEdUwg u9Hh/v2lh8+aH//BGqPPB0QhcwBGWBkQAghIxG9YBuhExTh5AUsyMlDECXgkDPIFp zttIrQFEXQmnF1GzevJlGIyMGrtVCv1ItFMxewDLxqLwCja5gM EgzV62bAaVMlWEYjY2NlGypvLycNBsP+3A4XFZWxncxTfPWW2+ 94447oOxMaObyNKeD4XCYeBRiF5YsWUIzna2ovMfoq9N0pegp0 QbkAqIaofiOnZ2dmpIhBpbygUXWDhygoAd1RH7HDz30EL2IV19 91eFwUBV0TdP8fn9CQkJCQsLIkSPJQ8jn87322mu0V+G0kN/97ne5qjNn0aQlht6d6rbc1/hRaxFzH/r9fvohUz7suRzj/jwMUM4g5xtAgbKIktGXUukLIWh7zYlraQQ4nc5gMHjTTTeR/xetzbQKbt26taio6K677tqzZ8/ZvWPiBqGUfaEVnTAKL5afTggPCe3q3G53XFxceXk5lBFfV1cXg w/YRk6btrVr1wYCAZqcTqeT8oXwzIyPjydtQv0MgHL2U9H2xsZGA EII1VlVDf8hIUBD3cKzlM+hfzkYR1XxsExC77//fn5+fnx8POWvmzZtWk1NjbqDZALcNE3WraWlpU6nkwaM3W5/5JFH7rvvvrq6OnLXvfnmm2NM0RxQgEGmuqdGPvbYY/X19U6ns76+XprCqWk7tr9TMHtGEOGOUEezu+m59c87bHFdeVFN wOtFU/3vSopfKy7ZM3Hqx9m5leMmtuRMrU8Z502f1Px/0r3JOZ3pE9tSssmyQ3DEk5pFkTttqRltqeQMm9GemuFNIWNQdl tKjiclty0ltz05xzc625uc5UnLaMnIaMnI8KRlepOzfaOzO0dn e5Oz3OmZjRlZ9RkWQCEGhfLLDxoQCAkdQocuEYU0YAgIGYH0QF SYx3Y+OfNKPPU2miMwYUQJlkBE9XAoYBhRCUNy8LUgDsZKYkfe KINkdM5OegUoXY+n0PtCiNWrV5eUlMSQKzSzOG96VKldqlKP/Ffei6s0A3q4VlCuxT179vDK7XQ6CwsLa2tr6WSv17to0SLNck6 nVj3yyCNFRUVqRkR1vgjL44r2GIsXLyZDj91unz9/Ps0gnkcDZ5o5iocnLz34oUOHXn/99aeffnrlypWapj366KMvvvjiRx99pGoGXm5sA3OSVb/ybvDxxx93uVxPP/20aZq1tbWFhYUFBQWwlIlKWfEPA4FAe3s7ocPy8nL2aGY9D0WZ c16DgQMUoqVZucVoOf7AbnnoAVBiaN2Yew2VDAOUAUlfPihQXg nBFDVhM5OiNpuN7Ii03vzyl7+srKwEEAgEXn/99WnTpt1xxx1k8JPdkw0PSgiRsG2SrTm87rKiGcjm+x8U1c6ta VphYeG6deuoWlg0Gi0pKbn//vthkZPcSNM0HQ4HGSZoWQ2Hw/X19ZTAjZ6ourqa2r9q1aqFCxcmJCQQB1tRUeH1em02W3l5uVTi CNgpVY1WUN8aCZ+vMlv0J6rXRUdcLhcHOxQXF5NbNACbzZafn1 9dXU0/UVPvqJ75vBtje/+NN97IWT55q6eqSHU8DBygMM1jt9spGX9FRQUgEp02h12raCrv lAEtXrM7bZpmr61phEQ0ImEA4TDaWtBUg7KPn71kzuslX3p7Yt 4HU4o+yc6rSJ/SMiavJSXXnTzenZrTkp7dkp7F/xFr0paW1paW5klL86RltKdkepOz2pNzPCm5TWkTGtMntKTlelJ z2lOy21My3elpLRn0X4YnNYucZNtSst1pWU3pObVjJn04YcZzJ ZegqhJBH+WYP4uoGSmt5P06YMA0IUUE0gPjdPW7m9bMvRavHYT HMA2YQMQUMMyu9HSm3uVoYuqmEYYwpTRNQIfsAiifaR4UdHcOA KDr+n//93/feeedzC7wCaoXdszF+bfqoOLEXGw7UCP5OX1UU1OT3W7/3ve+RyO8urq6sLDwzjvvpJF///33k++nurgyxwOLO0FvicJIAoHAggUL1KIctF1huMArbj/CwIKzvPv9/ieeeGLWrFn8p7vuustutxcWFjKOeeSRR9TU3ipA6QeR8ITl3qP j4XB4/fr1zz33HJ1QW1tLjaGtCJEi7CenbtigTH9+KeoWlF/rYAGKmg8MCtLli/BbU8fGMEDpT2Ig7ad5a3VhOOt3ICyHShoWr7zySk5Ozp133llZ WamOLb1HcsYLVNhk43A4Wltbly1bdsMNN1RXVz/99NPf//73CwsLufa6qkwZ0gkheCE3TVOzqt5wLP6SJUsolB/WLoR82Zqbm0lxMEQ4C8ynsil8hJrBa39VVVVVVRWlBrfZbO+++ +6sWbOqq6s5hYOw3FTptytWrGhoaKiuruZ8fUTSUvpgAA0NDYW FhXv37mV8GQOCBz4O6fE1Tdu5cyeRzKdPn5ZSOuza9Ol5q9c8F BFRm4N3bNa6JdGVMTUcQqcX7W1obEZF9R8vuWJj8Ve25c0+MnX O0fRJtWMmtWROqvr35LasnNbM7JbUzIaL0hq/mNE5dkJzenpTSqo/a7z7i+ntqeNb0yfWp45vGjutJnNq9RjKw5Zbm5lTlzG2OW1MS9 qY5rSxjRnZ1Zk5VVk5tWNyG9NzPSkTGlMnV46dsWfKzGfnXIpT x6D7TREEdEMMjv+TVuo5iwWRENJEBNIHf3XDzjd+d/WNKP0EnUCE6hSKrp/9vWtF17/y73/p+rv8NNAJ+jbxxJAfUsqVK1f+5Cc/Uan+GDbljKIO+JhIH5WxYIutpmnEPtJffT5fdXU1ACFEc3NzVV UVJTSCpf02bNjgdDpj1lQWKGs8rDiaRYsWJSYmnhF/8PRn7GKzwncJ2ZDSeOmll6ZNm+Z0OpctW7Z///66ujq6I7Hdbrf7xIkTv/nNb6ha4e9//3sKPB41ahTXIEN377QYgMLbG+YkSJ97PB7iloSVHNLv91dWVga DQa4kz5tbupcaOjTkwnsh7jG+FzeDCyTxyXQ8Li7OtKIXaccl+ 04A8w/KhQRQzjcGZVBiKvGopEH27dv3gx/8YN68eZTHnT0q/jlEWGE7pmnSLgrAG2+8UVBQMGnSJLfbvWzZMirzbVoJs4mrcDg clHQSlucaB+ISq0z2FFraeXYlJSWtWbOmpqZG07Sqqioo8EhFP wMX2iYyAUOYQ80B8Pzzz5MG3L59OwCHw6Hr+t69e5988kk6wef zsbYlXnrjxo00/9evX0/bR5vNduzYsXXr1rGlnPAEd6DZPVB5UONQ1/XDhw+zyqPhp2laW1vbXXfdZZpmQkJCr8Q1SRf3YAoEQmhswela HD7+fNHsN6eV7JtSeGjc5OpJ0+tyJlenjXVnTmhOHRcYN63hog zvuNz6i0Z3powNpuW2pU2qSMn5JGvygfFTD0wq+JD+m5x/YFLe4YlTj0yYfGz85GM5eZ9MyNs/JW/f1Lz3p+QfmlhwbFxh2biSvRNmvlp06W9mzUFTHaJeQ4Z1MzzYz GgSiHblaqMEuTq6rDY6TP+J7W/d+61voy2EIKTfMIEApYw9z6QvBoWXeR5my5Ytu+eee+ivhpLfr x9rCP+c/S55b61enJ291DA0TgSgenHRpfh88tlitP3GG2/YrERh/Wz61eZRkC1F4TqdTp7yPYVDdWw228iRI9WVWNO0xMTEZcuWOZ3 Oe+65h+hqFnZchcVPhEKh1atXOxyOWbNmtbS08C1cLpdqJe+LQ YESAwGgurq6oKAgPj6eGkMlmm+++Wan03n06FFSXxwlRKDqnKI TzYIm/NXpdHK+OM3CKCr5xKiFRH1kbRigkFzQAAVKNkZKkkFHKioqbr/9dlqJadIyr3BBi7T8cgzDSEpKgkUqfvvb3yZ/sX379l1//fVs2GYY4XK5KisrNU0jQ084HN61a9e6det27tz5xBNPANiyZYt mucFDsePu3bs3Go3a7XaPx4PueVDO7hGYR6Xpx6YxoeRBIWG3u P+/vTMPkqu+7v2vt9lQhVTKrqxsNsTPxtrRaAFkIE6ejQDJxn4uwj MBBAQMNgQLkaeXcmJCilCODUGyHMGTi81gsDBEMrZZBQYEaDHY g5A00mgkjWYkzd773X6/8/44fY/O3J4ZprtHc3t6zqempJlebt97+/5+v+89K83p/FmqmEKV07hdhJxBPP+IyoQHroSxX4c8eIX8/fgUOvuKJ9ZhMBpcF9JJcCzo64buLjjaAXt2rrnggqcXnv/i7IVbzpy5+8xZbad8puvUs3tOO7vrTz7RfeoZg6eeMXDynyU/9slDf/KXLZ+cvv2Cv3pq3rzHFy167Nzznlh43lMLCj9PLlz01ILzfj7//KfnL3703MX/77zzf3ze+Y+eu/jp5s89veCin1506b2LLoDePnByuXzKMp4H4JU48tCC4gGAcUHb YDwNhUPN5wdca0A7WXC1m/TAAgNgee5kESj82yfj/z//8z/fdtttvNDOSIGTo39W4IKhoBMKJcGwWTQo4guoPDSlh+Arm5qaL MvCWwsAePbZZ5VvgxxJoNCD3Eo00oIdsKDw15BlApf8q666KpF IPP/88+RXIoc4AGCaMakxnD327t07e/bsGTNm/NEf/RG6q5RSfJ9HGkckyDBSWCmFxSHJ6vAf//EfSqnPf/7zwDwvuJ+YNnXipAlBfcTIgoKfjvuDeiWQvYWpRolEAoUsftdK BAoy2QUKzSN4S4Fx5p7fqQcLtcEJ+I7DgtzVdAVv3LjxpptuAt 8WumzZsn379vGFmUbOO++8AwB4i4/Ro7lcjiy91KAYBz8AYA4ePouFH/jSXoZG4RkNKBR43gEwuUmTDo8iRLMQxVB7fndlYEnpeD3QB6EG 4iGxxZH5Y78OPT8BnqdoBrooGGOSySTdAQOLyCnMvNqDbBZcB5 w8GBvAcvP9kOmDnmNw8CBs+90z5/7Vr2cu3Drj3JZPzd15xvRjZ89r//PTkqf/JXxidt/HPtX96UVbZyyEV1+FD96Htt2wvxX2tcHe/bBvP7Tth/YDsP8A7DsIew9AWzscaIcD7dDeDm0HoK0D9rRD5zHIZd18Bku4 OqWWaTt+nACeA55jPK09MC5oDwC0B24evLSrsSqMY1fpwBvJxQ NDL+xcLvfNb37zlltuARZ6NRboyqT4Ux6PxT+IcnlIQNCCTQOB LAd4XSlWdcN13YcffrihoYEkuzu0WTfZWmiBJzsiLw407AyJH0 oBufzM2LZ98803JxIJqtpOWyBfkhpagxv8FMiurq4FCxbgxFJc RLVYoBSHjABAJBJJp9O4nOODy5YtO/XUU5VSfX196E7CbmgoCAIunhMBfRD+iwYV1B/clcN1Eu/myI9OBEqByS5QNCsvTXisEDs+Qkl9kxoaup7nTZs2DQufRIaGt kUikVgshl338F20guLrUYJwIzb4sxWwOy00CdBGuDmavONlgLW VUqkUTTo86wdfwC0iMFSmgH/BYJA8Vzy0k4FkCj7B8Wg1enDs1yGKD/CXE6rIgmePiheDH/k48oY0GBdc18lksAoIuK6XSUEmDZlB6DgEbfvXX/j5x2Y0vzznc1s+fc7O087uO2tO98fP7vzjGS1nzH9+xnnw4W7o PQLJbkj3QTIFgxlIZiCTASsH+RwkczCYhXQW0hnIpCGTgVQGUl mwHHCc9EC/qz0PIJf3QB/PAB4rGMrqAnhuIfrV763jWbZt5w2A64HR4LkABrLZsS7qE8koF hQcZXSFb9iwIRKJ8BzgsS8Y3tDCgNTEI+C+AT/KHpeoxsZG1AR0qdNIJJciDVgA+Id/+AcK46U0w8CR0l0BHZ0eW6VUUickx1Gl/fSnP41Goy+99FKgChSPBVZ+DD4A5PN5umtyXbezs7Ouro76BME YYlDoT7wRjUQi3P6ay+X+6Z/+6Te/+U0sFkOvNBV9UX786YmGh7iR7CNtRN8mfR1UwYEfLxXXofMw0r dTNiJQxkTlAoVXCcN7azQD4NeP28dQjLIb8VQVNE2gf5dCxgDA +MnV/f393/3ud//gD/7g6aefTqVSxq8mmUwmydgAfi8P7GoBrLQDj2lHIYL3fHhWKcQP yuq/yNWk4zhY8C2fzwdKyuJhUnYSPpXNZrm3npdzxZ3v6+szQ6tU0f jHDZLxCYYGEIz9OqRFgqrc0kfQ0VGR0NG2A8Z1XXBMIQnZYCdf cAFsNwfGgiMd0NsLe/bBbz98YsGFm+df+MJpZ/9++uKtZ3/uxXlf+FHzhdA/CKk+0HkDDngGPIO1ziwAGzAsF0whnbdQTR6MtrMZDFA1AJatC9 6aXIlpvQbAxfolWGENjmsU24O8DQMpsDQM2JAHy3ImJCmnZMxw AgXhEiSfz2O/4oGBARi6do7yFQey/XGE4r979uxpbW3dtWtXa2srXUWGFUvFLJ4HHngAjYLvvPPOJZd ccu211/LsEnRe4wi1LOtLX/oS1kHB7fAbNr7DPAyL/KHDwrWL9uHHm0qlotHonXfeSQ5fftJoBq6vr7f9Rqp0P0A2IcX iMAISxAwVKMCqT9FcEYlE1q5dm8vlSBJhFnEkEtm9ezfeqjU2N qIRZeymrwrhOhJ3Hg0qKFB4JW56i+O3T8J5jAKlRaAATHKBgm9 HXcInDlySlVL8xqXsj6gqtF+8FSM0afCTQxrp6OhYsWKFYjUAg Fl3+UigOxs6h5QvE6hbgBMf5RWXPWxoI4FIW3TA44O8JRD4dnL tl+6lu1KcjvlXT4rBZSXdgLne8UaH+6pKsqDwOkt8oqE7bKpHR 1N80UbAcQvFPnJ5Fwzk8q7jasvBG2sNxgUrB7YDmRwc7IS+Adj fBseOfu+8Cx/460vv+cIyOHwMBgfAuADaGF/lYAURbbByPP7qolAxBowH2gPjGjsHRntWvvAKW2PPv5IwxmgwF mgLuwYaDywLMhk43AmHj0JbJ+ztgGMpSGYM6KTJV2Hw17AChV8 Vxi/s0d7erlj7WWCl1UaHLjy0OjzzzDNz585VSjU1NeFt/ezZs1988cVAyHk2m127di2leCQSienTp7/99tu4gP3hH/4heQpcv8qiUurZZ5/Fi23YGBTaOLdh0FAa9iod6aTheLz//vsTiQQ1LCRImuOWFUt+JhsD3ULwNCK+k8UChW6NaBQnk8m1a9c qpTZt2oRDz3Vdy7IefPBBpRRWaKRuQZhMNO7LfDGBPcfbFYpKI c8XFFXW5rdh+IsIlAKTWqDwZZLuHugpKulmhqtVMHnhHhbuBwF/3qHlH1PX+L0+da8gkzK9NyAXaCVGGcRvvGCoBWLs8LmYdpLA1w RKzXosZ5LiCvkO0LM85sP161dyRxI9yF3yUOJ1iJdcoHAfPsWr 7o5yiowBA2C5YLl+qXcDntHGGDBgHBftHV7OAo1F0RxwcpAbgG NH4Vg3DCYhk8H6ZkM2CwDGA9cDz1Acq/8a7HajwbPBuODkQTtgtJvPgSknXVyDwQSePHgOWGAlYaAbujp+ +y//sm7h+T+Zf8Hji/7m0Yv/F7Qfgf6+QlX7KmNYgQJF64cxBhNenn/+eeMX3eGvHAmqa4DX9s0336yUWrFixY4dO1paWlpbW1977bV//Md/jEQiy5cvJ9sGN0Lw/aRbEbrY6D5hx44d8Xh827ZtwDwyxcdIG+QuGG41GenkcAsKPp5 KpWKx2OrVq8ltxEcBrzXCg0sC04vjOGhaQEcM/9BhLSjA7pdIrDz++OPKL+JCubs47aPCozyagIdrlC+uEmjg8zF FGVJ0PdBx8dkJ/AuACjiJQAHwDz50gXIiLpoTvf3qRw2X6SoEmODrBNWD41cTwUa +hfofnsYf43eoMYVmfhqMA54NjqPd4ze+2ElHg7HAy4NnYcEz4 zjgWeBp8IzxCvEu/Ec7oB0wnsYwVwhqnY8EjS+gDRgXdAb6OqBl+xOLz31x7vzXPj3 j3c/Oe3f6otemf+7JORfBy1ugdwDs4+EFgV/CYiSBQs/yxezqq6/+5je/SXEbtK4UL96BjaOgX79+fTwex/ZSuPy4Pq+++qpS6rvf/S4MVbT8vnGUnddar1mzRilFzQW9j8r/N8yD4/ltQcF30+zZswebjwKA53n79u3DLbe3t5P+3rFjRzQa/f3vf08yvfikIYolBvJAdYTlvnxEkOwoxwIs3oucR3hvhglHvFt QqdsfF0Y6xsBHB/YqMjT1fZx3aXw3d0KZ1BaUcLdf/YhAGQsTfJ0YABc81xcQxvjF3Q0Yr6BINPtBWaHB09rV2vWM9oz WWoM24BrwjDGeA14OvDzWdj0uUAp/FsQO/WCTP2NcMHkwFpQ8/xkAx/FAA1g5yHTDkT2v/++vvDZnxs6zP7v/zE+3nn7Wgb+c3Xr6vN/O/Osnm78A7++DTMEqNikESrFd4bHHHlNKoUeDPBQBdRI4Ih70Fo/H7777bvB9QxRzgP8++eSTjY2NbW1tZCGgOTmwTa578MWWZV1yy SVUpoUCM0dRNmZoiAn4vVfJDvGNb3wDd/7ee++NxWKUZnLjjTei8XLdunVKKTKmUv/wYhoaGtBnwVOZSN5VLlACcehkWTHGkAVFKYV1sQM217Fsf1wQg VIRIlBqGBEoY2HCrxMNkAfIgrFBO6A9jAJBk4Rr/MY0YFzQLtZAMw5oB1y0d3iFBjraA9cD1wNtUG1o8EB7oD0XPMf XQBq8gnXGd/poXwORIafU+c92jAGwcjZ4Dlh9sP2VZ2Z/auesz7SdfmrPGWd0nX5ax2mf7PyLz+45Y+Eb0y/WDz4LfZnAjFydAqV4icXHu7q6YrHYCy+8QKsyxkiN9HoEl8+tW 7cqpVpaWihVmFrr4VKNJcsef/xxGFqjtlidcPGBWuG9996Lx+Nvv/324OBgMpnUH5WYExAo+KDye+MBwCuvvKKUeuqpp9C088Mf/tAY43netm3bMJAin89/+9vfvvHGG/G9vLWQYRG12k9g0VrzmDa+M5ULFNomRtADk2hxH97QuIztV44I lIoQgVLDiEAZCxN+nbgGsgBpgDwYG7RX6OjLs2EKebuuV9AqNm i74JAxrgEHlQdor9COWJtCMKw2oI0xHhppXPB8vw44cDzkRZtC UIqhImul4HnGQ7+Qk4OBTvjFky/PPXv3WacfO+2UwVNP6fzjP+76s1O6//zsjlMXvvepL/T/3/+C7nTxcjtOJ7NMxihQkFQqdemll37lK19BPwUFNo70et4fDquo UTUmWqQpL9113VtuueWOO+4AtoQHrsPitV9rncvlVq1aNWfOnO J4rJFkSrFAsSzr5JNPJoHium5dXd2hQ4f279+/b98+isHPZrOtra04n6xcufLb3/42sDpAxeoEwUrQwDJvDXOQjYtA4ek5GC2Lr6eybJGiRsEiUCbT qiACpYYRgTIWJtzFoy3IW5B3IW8ALSiGjCgkUDwAAxojVTQ4Gk 0qxjXg2uBmQecwfMRv9VcwkBQsJJ4xni6En1Dv4EKgC6qTQu46 zpegAAAgAElEQVRPGc35DIDtFMJK3Bz0d8LGpzbPnt565iePnn J66pQzev70L3pPOavv9Jn7T1/47llfOLJyDXRnJ4VAgaI1nmJOX3rpJaXUe++9x1vBjSRQDGsf8/Of/zwajQayNnjNDwD41re+dfvttwfkS2BvtZ8tT5GYqVQKjRwYhBG oIzIWgWKMwY2AH7qxfft2pdSGDRvoLRh5s2XLFlplb731VsxqL v7EgIqqr6/HAt88aJSGWOUChZeT4S9rbW1F84nyy6bxUyoCZTKtCiJQahgRK GNh4mNQLPAscFyUFxoTgAsqwQsk4BhA64gLaPfwHPAs0BnQWdA O2lH8wNvjScWF/B9N5hM/2BYACpnIBs0tWEOltAlQQz4L2slZWTAOWH2wdfNzMz+9d/qMQ3/+icFTP9V7ylnHTvkfh06Z8cGZ574061Lrx7+C/lxgRq5agcJfQCuuZVnpdPrCCy9cuXIlPovxoSPpAHw72lFeffX VaDTa29tLcRhYYxB/x9qJSqn169fzIj3FG+RrPwB4noft97q6umBo+MXoR22GWlC01r h8YraLUur666/v7e1FvYKHifEcy5Ytw0e+853voL0HAAYHB3nETIDi9Cg+vsbRx QO+wDLGvPjii+jW4QcFoxaCG2X7lSMCpSJEoNQwIlDGwsRfJ+R eAQ1gPDB+2Ak4AI4B16Ck0EN+ACNPDDgFBxAU9E1Bi2gXtAbP+ BlCHrh+NK4fcIuHCJ4DjguOC7YB24BdYhqwC2A5XtIFnTc51+6 G7j1vXPnld2bMOHDWjCOnfXb/n36y/bTP7PyLz74766JH/uqrcKgfskOSZmEyCBR6Ga0lDz/8sFLq9ddf50WKhxUoJCOMMX19fUqpdevWge+PML5vBYUC+oB27 tw5eg4/qSV8+wcffBCPx9esWUM7Q66W0Y+aCxT0WDU2Nn7rW99qamr6/ve///7771M5R/Ke5PP5v/u7v1NKbd261Rjzve99b/HixcM2YS3WKDzrmNc7gHHK4uFlCxzH2bFjB7YPbGhowD7tSqlY LMb3VgTKZFoVRKDUMCJQxkII1wn5VoYIFOt4c2DjoUDRTJ1gPo +nmYlFGxQoUBAoLhco5rhA8YNqjQbQGhwXHAdsF2wNeV2yQNEA eQN5CzwLXBvSkD4ALe8+c+6iV6ef8/an5m6fuWjb7PNfm3ne4+dcYL/2LgxmwT5e+yHwS1gMuxgMu8Ab370CAJdffvmiRYuwxivJhZFkA T7oOM6qVauUUgcPHgTWZhyvtM7OTqXUN77xjY+sy8xX/Ww2+7d/+7ef+cxncCNYFRDGUD4xIFDwoHCW+M///M9YLHbddddh+WlgZZ2xBPPdd9+Nr0RvV2dnJ09HCnwE/k6jKeDhQsbFgsI3jpG8FHqyZcuWqA+Ii4fv0vhu7sTB/akAEI1Gtd85lkKx6NkyanMFCoHTZtErGYvF+PbLKJ3Oe8IBQDZ bcHXjIUQiEV5YvdSNTy7oyyoulETnR4/eIGaqUgX1cnTRz3CY4/+b4G/4qw5sjT3PX8yKzo7ycSOBHiQDHmgLnBxkPOiH1GE43PbG/1n1Xxf+z4cu+OKPLvjify35KrR3wUAGLLcKa92PtBjQsxztVy5 ub29XSv3bv/0bsNFEV06grIjnd7nq7u6eN2/ewoUL33nnHVQnaE7AlJl58+b19vZSWcJAGArqA3T60OD9wQ9+E I1G33//ffyzJFXNBQrO9jhLWJb15ptvKqUWLFhw+PDhl19+ubm5+Yknns DtP/PMM83NzfjKY8eO1dXVrV69msfTuKwVBgz1vAR2kgJHMEYE68ly 5fqRlQMNMybRZh955BEqv6uU+s1vfoNLAC+lP4ogGBfoK8Mto0 0LdykajdIn0r8iUD4C49dGpB5U+K1TEXR8TaD7VEngMMZTjBuk IUquQVJF5e0/sBLL2NQbADKZTENDA/i6p7bXZurli98mVZRKJBJUEsrzPCoSFfb+VhdiaSsN40e7AFjg 5MF2IQc6Cdk+OHYEDh6CQ0fgcDcc7oGMpVM50NUnT0oUKPig1t q27SeffFIptXnzZnyQ2kTQlcO3TF6SQ4cOXXzxxUqpiy++eOXK ld///veXLl2KAR+HDh0iEwh/u9aaemryNe/VV1+dNm3ad77zHWCX69h7jZmhMSie59XX19NEumvXrlmzZv3kJ z9JJpN33nkn+kewFuodd9yB8S62bd9+++1z585NpVI8ZZqXcgc/upafBNd1edEUUg8nnXQSFLUj5V/EsEfBhePq1auxn/C0adNmzZrV2tqKh4ZiJZFIgH+fFsCMK8CMWJiIbllWfX097ht3/BUfWuBPESgF6OrB5pMwtB+3GepELHXj3LJnfGmM4xwAlFI8H6+ Mncd9w/Ltxu+WZ4zBLi2RSITS4mtYnXAwd5GKx6NtE1gMXTodTPgURKCU hm9B0WBscB0sBwcWuFlIDUI2B13dcKQX8i6kc6VXqZ0gRloM6F mO9ptAAUAmk7nuuuvQZcOXUpzBeEdrbIdJBmkA2Lp167333nvt tdcuWbJk5cqVb731Fi3YgY/WQ9v9YFtBY0xHR0c8Hr/yyisDnfPGPjmboRYUbG/OC9UbXwmBH0yDUzfuAz7e1tZWV1f30EMPUQcJPEzeAgI3GLCgG NYWER0xGMdKa7brNxiiPSyWESQvcMsPPPBALBabNm2aUmr27Nn 79+8HX46g6YIHydLhj/F0lURgs1iEF0WYUoqHLhW/XgTKMFDXALzcm5qawL/WcbGnuocwNON8jHD1wzeL39O0adO032G8bAsHbdl1XaoahE/F43Eyt0JNrz3Y+DfQAwL8hg48em7Y0LYpjgiUkvHLynlG60J0j A2uDbks2DbYLrgu2C66jyyrGu8NShIo9DjOJ+l0urm5ubm5+cC BAwHrLy1+9Agt4bSmYk0UMo3QbRtXA/R4Op2mqfjYsWNz585duHDhgQMHAACbgcMIWT+jHDi3oACrvo9/kqeG7iRxoQW2iFqW9a//+q9KqZaWFr63CD9AYJ2T6UAwj6mxsTEajVIhNVq8RxcQhmVc9/T0YGQM5hJPnz69p6cH/Oap4Md/fOxjH6N1x/Xbs/NAnGLLSnkAKxZMNfcwJga9E1osKCVBFxY2E0eTBhXVAf/UlBEdwqELlDaL7T3xuqRGteW5HgJlCcDP4nNdN5FI4EfzHahVU J/hLIBzotaall5+wxT2nlYdIlBKwvi50FiRthDNUqgJp6181hjPg E4mk57nuW6Vns9SBQrpDPRTHD16dMaMGXPnzu3u7ga/9jwZVPCWgNKJ+QJPH0ETF8oLnIpp6eIWAuTYsWOf+MQn5s+f39 HR4bouLfb4rB5bg2UYKlDw5tD4xW2N3weeNsUTeQIhsel0etas Weeee25nZydOLFiLhd5rfLs1nUDwxVAqlbrmmmsoerSpqSlQkX bYxZsmMTxXruted911iUQikUjEYrGbb765o6MDH6de6Eop7MjD 98r7qHZFlUM7n8/nE4mExKCUiTGGDA+u6/JIY1Sa/Oa77CBZ3IJt27xfFEpLlA5oCC3jokGpjtYX3BRdmvl8/qSTTuLCttSNTyL47Rr45lZjTENDA/VB5QIuxF2tQkSglISBQp5zIQSXar4BeAA2QNKzrEIitNFgyrvx ONGUKlCArSt4kbS3tzc3Ny9YsODll1/mkwzPDAB/sdda49Rk23Yul0NPCi7q5APi1hdahvGu46233po+ffpFF13U29 vLjaCB+mxjPHA9tA4K9RXnN6IUzMeN0AgZbI4ePTpr1qw5c+Z0 dnYGDj8QlEqeLxRAN998czweR7MHhsrW1dVhW2MEhQv/nT9C4BaUUtdcc002m+X7j2E95F4BNu8FpMD4QleC8Z1ZkUhEBE r54BVA8c9U4ubkk0/GFt5QFLg0dgJv3LZt28knn4zbxyuSLlCKligVMsBorVtbW/GSpQ7XGIdVV1cXj8dP3EUZOrlczrZty7J6e3vR4Imx8ZR0h39q 36EW9v5WFyJQSsIU8p2NMaYgULxCzOyg5eQBBozb59k50Gk7X3 hD9VGSQEFDAhZvBQC813Icp6Oj47LLLmtoaPj1r3+NzoVhS8FS nXv8k19j5Hog8wCB6gT8VoWXX3753r17eTNkFBBco4zxwDXzbp CSIDNzf38/3bLyveWWdZzVHcc5fPgwZve8/fbb2WyWThRZLLixx7btPXv2XHLJJZFI5K233sLJv6GhIRKJ0Co Qi8VQqQQECv5OL6CXNTU1XX/99RRlzNM7AAC32dDQQErlREO9FROJBBVikSDZMnFdt7+/f8GCBUeOHAE2qFpaWubMmYPBp3ixlj1xa7+KjjEmk8nMmTOnpa WFnkLHanNz88DAQHkxKPxbz+Vyl1122UsvvURS2rbtgYEBpVRH R8dUWHtc173hhhuee+45KlsJAJZlzZw5c8+ePfhnGcHOtY0IlJ LAfGZsxQwGwDPgGOMVzCd5gAz2QjSuB1prV3u1EINCcyMPaMO5 8aabbkIXw969e2lwcSUBLM9F+1Em+DJ6EP/ULKLFGNPW1vb1r389Ho/fddddZAAgAwYFtNLjYzxwbkExLCA3m83yyYGKONAbKQ2T73BHR 8ctt9yilLr++ut/97vfcTMG39revXux0t28efMwQZrfQSml6urq8H5yJDERKQJfSe ZzblvSfgY1BuHiv2TM4IaZgJGmcqLRKH4cfhZJFgmSLRm0cLzw wgs33nij8Z1zqVRqyZIlO3fupAvUjCE3fVgoEAxPcSaTaWlpWb p0aSqVoqF44403vvDCC+VZaMCfKWgnDx48OGvWLGxuiSN2xYoV zz33HNT6wkx3KliqIZPJ0HhYtWrVmjVrwJ9Pa/s8lEEV1EGZXGiDmTvGKZS21cYY0KbQRcjxnTvGeH4d3LB3uQjS o4b5milecpTLgAsXCuB78803582bp5R66KGHjhw5wt0uNAfiI2 h9oR3AtBeKwCADQDKZXLt2bSQSWbRo0caNG/G9FMB3gs7JR8IXUbSgoFqybfu///u/Z8+eHY1GFy5ceM8997zxxhu7du3atWvX66+//uijjy5fvhwX6bVr15IX3nEctOxiJvMoS36xNCHjCgDk83k+pxk WZYIbP0FCZOygXoGiu6BhjSi4cjU0NOD1cCJmpEkjUCiG9Iorr ti0aROu6OvXr7/vvvvwFpwiVKCCm0u0baC8zefzq1atWr9+PW5806ZNV1xxBQ9lL RXuRUJr57p167CSkud5GzduvPLKK48dO1bbCw+NeTSu/upXv7rtttvwkLds2XL++eeTfAExEhQhFpQS0WAcMDYYB40nx8v xG3/OxRK32gPtgHaqTaCQUYSWMWB+ljFuwbAqYZlMJpfL/fu//zuuRj/84Q/37NmDi7fWmqY+nu9DMR84MAcHB3HwHjly5Ec/+hEubPfff/+xY8eAxU9UTxaeGRpt6jhOKpXavHnzPffc09TUhOcBO/ZFo9GbbrrpF7/4BRnjKexmjHN+sf+LDOcBnxcGJvOvhqQJWTJOHKi0hgWdUMVGl MBh0nEpFg/KD2dcmDQCBQeJMaarq6uxsXH37t3bt29fvHhxe3s7DI2+Li/SjWcpg38xdXd3L168ePv27bt3725sbOzq6kINXsadfeDuBAdAb 2/vnDlz3n///f7+/nPOOWf37t0AgBaFMg5hshCYXpcuXbpp0yat9TnnnPPuu+9S6FY gFE4AESglo0EfFygaHA1eweODusTzwPV/qlKgIDRk6urqcKbSI1TuorcEHvc8r6+vD5/CCkPt7e133XUXrtA33HDDhg0bjh49SguM9qtWUrYLRXv09PT88 pe/vO666zAgY+3atZgfBEwK6DGn6kwAhuUDk0MZxVYymUwmk62trT t37uzv7+/r66NhhUGytAXwE6BoYR7jRyOBKJnAIsVrPhk/yOaEQjvGA4koVZb7xaBIoxgWGe15XiKRwBAL/oLx2s9JI1AQHCQbNmy4+uqrv/a1r23atAn8bHXwh3F5qR90TqmsEP6yadOmr33ta1dffTX29S47 ryRwzaGI9jxv69atzc3Nt99++8MPP0yXBZkZag9uUu7v78/lcocOHZozZ84dd9xx77330rOSvzMsIlBKRPuyoyBQXHB0IVBWg 9bg6eMCxfN7NVcTfMHAApX07Y/u3yFIuNCLyXfjOM7Ro0d/+ctffvGLX8TqYdFodMWKFWvWrHn22Wc3bdq0bdu2zs7ODRs2PP PMM4899tjKlSvJwbF06dINGzZQM2EAwJQf/kHVeYl6nofZ1Lw+BTAjPfgCAkUMzsZlxOwHBCJtCqUP+svopNF pDPekUThz4HcOVzaO4+CkpFmFwHFk0ggU3j9Ta71kyZKrrroKf G8onqwKS8XjRUnJrsYYjGm/6qqrlixZoln5kzIULs0RmBQN/jfquu4dd9yxcOFC1Cs8vblWwZsYEmGWZd13331nnHFGf38/AJCBqnruwKoHESilYaDgvjGeMZ4B14CL7QkLAgV/PHO850/1wQcCllrHWYKHoQwLdzHQ+kdzFxWzxuXz6NGjb7311o9//ONbbrmFHA08LFQpdfvtt69Zs2bbtm0DAwO4fVpcedUicg9REYG Jh4J86Qzg44FRwyumcOcUfxkqCZqUeEGKksAKXrRNXsYCp0Tjt 3MZn+tmVIqvnIBliLKc6MXDAr6Lh/K/xnf9mjQCBZjgzWQyfX19mE1OVikYejbL2HjAaUqCOpvN9vX1kR Wr7IWTxm3AbtbX14fZ+fwTy/uI6ofPWVhoAQBs28beGWTq1FpTq1KBEIFSMoXAWM8Y7KXsCxTq PmgADBgDpir1ifYj68G3oCiW4sGh7NZhicViVNcA/8WiYQjqD9o4Fk6l4Azl1z8l0NyCcaOBF1CkJz4+UtDoBFB8WiJ +Ng1WJMN9jsViGIAS8ctY0FMkzvD84Hv5y4Y9z5y4TzQabWpqw vfi1ugTE4lEPB7HF0ciESqfcULhp4WfKHpBQ0MDXQN0vIFziy+ IxWJYPIJmpHG8t5w0AsVxHNR0uKTxEB7DMneKa6iPEdLFlKeez WapKRTZMIFVKiyJgFMWdRXfeYqCru1ePGQ8pBNO7jmMMeKKU4w oASIiUErEFMSHOa5IwAVwC8EoAN7Qn+qTKEOcDsDu0wKMbk0h8 wCNL95cjO4EeBS/8Ysl8i3gp1DfQfDjTopb5BjmigqF4tNCQamBhmvan3zooPgkjL/jTeNH3jIV7waecDKcAzPbeH7KNAy100wAemj+tmEp3Pw8ADON8 POp2ZWGL6NN6akZJAvMLEbLGy+tQ+0eoNwgHfpK0um09iPF6IM 8VvanjI3Td0+mM8MCe/ErB//areEIDLqmedQYzWWUQmn8HLZQd7bqEIFSKui38ScE0iha+xXvP d+iUp0CRRcFmgR64wWe5aIksCmKOsdnaTv4LHl8yDkCfl8RYEX P6Bd8nNJ/wG//eYIWqlKhw6epFZgNG1jdF29od3qP9Z3lvnh6ttTd4N8FmcZ5uI n2XVG0YyUe6zjABQruAA9joH0bVgrz6NpxF1iTSaAIwhQnInVQ xg8z3I8gCNWDCBRBmDSIBUUQhKmDCBRBmDSIQBEEYeogAkUQJg 0iUARBmDqIQBGESYMIFEEQpg4iUARh0iACRRCEqYMIFEGYNIhA EQRh6iACRRAmDSJQBEGYOohAqV60X7GR12SEoe0uq6G/1GSBqiTxLhhUnog3Iqja8yl1UARBmDqIQKlSqLm59jtyUQ1mKp mMxR+l4upYoK7xeAKpXCadW611JpPhhfarELGgCIIwdRCBUqXw ZhBYYdoY47oumgGwTjMuUYEeh8KwoOzgfZSocTS2EgV/yec9E6oNESiCIEwdRKBUKdjkguwl/F/wRQn2kIShfROEkcCzhLqEqzpUe7yjRNUiAkUQhKmDCJTqhfpn4 lJE6yuwDpzh7uEkgpo1uq67ZcsW7Jx++PBhalWqlAK/dWfVyhQRKIIgTB1EoFQp+XwepQk2Ou/o6MhkMvgn3v1j6InruuShEEYBI4txaa+rqzt8+PCbb745f/58ALBt++///u+j0Sg+m8/nq3btF4EiCMLUQQRK9WJZluu6DQ0NSimlVENDA1+ZMH6COoaHu 6vVD560bDbrOE4kEnEchxb4yy+/fPXq1fF4nGf0hLmvIyMCRRCEqYMIlCoF3TfGGFyTWltblVLt7e 2PPPIIALz22muPPfYYADiOY9u2rFUfCXnKXNdFbw6qkO7u7kQi EYlEIpEIPm6MEYEiCIIQOiJQJghKBqYMEcx0Hf1duJpGo9FoNL p58+ZMJnPNNdfceuutixYtOnToEEkTSTP+SPD8o0yJRqOO4wwM DDz//PN46rTWqE5gaP5UtSF1UARBmDqIQJkgqMYa3qDzP4eFBI1S6ut f//q1116L8Zuvv/76xz/+8bvuuotvs2rv+KsHCpK1bfv+++9vbGxUSt13333gJ0PR2l/Nak8sKIIgTB1EoEwQVHgNADABhyqwDQsuqK7r1tfXp1Kp5cuXr 169ev/+/bNmzWpra7vqqqseffRRALBtm0qgCqOALjMyOFFkMZXlxQBkfGX VahQRKIIgTB1EoEwclmVRDg6hRwAA8vk8VWNLJpO7d+/O5/OYY2KM6ezsRH0jWTxjATVHNpul3GyyUWmtBwYGMEI24IarNkSg CIIwdRCBMkHgukj1TPFPNSrRaBQjN6PRaH19fTweTyQSSil8EH/HjYtGGQuk/NDsRDYtyoTCcm0kCqsQESiCIEwdRKBMHFT1lTwI8Xh8lBgUYNG vuGpSqVM0w0QikVwuNzg4GM7xTDZyuRzanMhSAv4ZTqfTWBavy hsbiUARBGHqIAJlgjDGYG8/rj/IBFIMBtJi4gmVaAO2gvJ02ap1SVQPFNND3QFPOumkVCqFj+OZx CopUMWtA0SgCIIwdRCBEgLoSoBRBQotP7RY5nI5fJCSgJRSnud V7WpaVVAFNjqxVPUEpR4+XuUNBESgCIIwdRCBEiaoMMBfbLC8K RVcB7+YLH8EnTvo66mvrweWfiKMDuZpU7nYeDxO1fBQrKTTaRh bfZqJB7/9+vp6DJ1Bh1Q1l2yZ4lDyP11L+A0KgjB2RKCECVlQUHagzshms zipkRah0M6AEFFKkTFmlJIqghl63vBPpZTxk6pisRgF/VAiT1WB1wNeMLjPEhld5eCdg/Fz10EKKgpCiYhACRP0LOCd/SuvvFJfX4+/G2Pw5nj79u2rVq1asWLF1q1bAcC2bcuybNvGZyORSBXe61cnPG 0HALCeLCXsKKUwCdwYk0wmQ97X4dBa5/N5UrS44OERCVWIKSqfOHrKniAIwxDWABaAhUEAwK233op/UjBEZ2dnLBa7+uqrly9frpRKJpOBOAmlFDos0DckjAIwaUIuHv wWstlsU1MTPo7GCSyjV1XgrsZiMbKrGfHrVTH47aB/1nEcz/OUUvF4PNTJXhAmG2EP5CmNUopScowxiURCa033Xq2trfPmzUNj ycKFC5VS2NOO+htHo1FsdBeNRsO8hiYJdXV18Xg8FotRa0CtNX ZbxGeVUvX19cqvNFNt4M4bPyCp2OUnVBVoDSWampqU31dLEISx IAIlTJSf3Up/otEeBUpPT08kEvnBD35w3333KaWOHDkCQ636/PUTHRMx2QA/BtayLNR8ZEExxjQ0NGg/1rg6TyYAuK5LnQ2MH5UyUZeqUBqB4HcAQHUSpsIVhElHyON4aq N8C4rxu+ySGwIAHMf58MMPly1bdumll27fvh38/GRM7UGjMQBUZ8xEtYGLRDKZpHxjPNuoWhKJBFZvw8jTKky4MMx Yks1mLcuSAJQqh3LE8LuLCIJQIiJQwkQphTfEjuMkEgn0L+BTe mjmjvYjJ9CfTYIGfPdQeAcxOaD0HPBtJNFolM4bV+pVm2ph2zZ vmCA5xtVMYEg6jhOpSr+hIFQ1YQ1gAQCUUrTM4C/GLzJLv+MdmGbFTkiyRCKRMPZ6UqL9+GIEFSFqO6015k8ZY6hWS tj7K0x6TFFRAEEQSiOs0SuAf+OObgW+dho/zRiYiRiYiAERKCVCGcVkhOBnT/lNA7TfRzqk3RRqBxEoglApYY1eAVgMCoaVwFD/Avp3stlsNps1xlAJdhEo5eF5XjKZNH7aZ11dHQq+TCaDzrLBwU HqJyAIFSICRRAqJazRK4AvUNLpNHlwsKIJZWcEmu4iAYEiAShj h/oYk4EKrSaGldXCTJnQdlGoFUSgCEKlhDV6BWCxmVpry7IoTgKT dBB8Af9TBEoZOI6Tz+cpVBZPMp5zkiyu6+bzeVEnwrggAkUQKi Ws0SuAn8VDEQ/YmjjgYuDpJ4i4eCohl8uhswzjYSnrGPwwIJAgWWE8EIEiCJUS1 ugVwLegWJbV09ODX0csFgMADJXQWu/YsePOO++88847d+zYQW4gEShlgEk6FPGDD5IdBfzy9gDguq5k8 AqVIwJFEColrNErAEszXrly5TvvvJNOp+vr6z/44AMMieju7o7H48uXL1++fHk8Hu/u7h7WxSOMEUzkoXNIMgUVCaYcY2OjUHdTqBFEoAhCpYQ1egUYm t3a1dXV29urlOrp6cGpraWlZebMmZlMJpvNNjc3U6cxrOcWi8W i0Sh2kFFKRSKRWCyGjyu/6SDGsuC6S0lAU7awG+Zvt7S0oJkKAH7729/iGTtw4AAmeIPv7hGEChGBIgiVEtboFYA101FKRSKReDyeSCRQT 7iuOzg4GIvFHnzwwXXr1imlenp68F2YewxDQ1gsy6KOLY2NjTC 0BD4uvel0mrcImVKgy+zQoUPTp0+vr6/P5/MdHR2xWOzo0aM/+9nPULJg8hTqmLD3V5j0iEARhEoJa/QK4FtQsGg9Vj0xxlApjkwm88Ybb3zpS1+67LLLtmzZAr6Tgrqk 4tspRZZKuim/ByEVfKPWLbhOT802LrZtU2PaHYsAAAX7SURBVJtANCMppQ4fPj x//vxIJOK6bjwex3Zub7zxRtg7K0x6RKAIQqWENXoF8E0glmXF43F s1YEVw4D1aid7SS6XC5TxQFnDN4gxFieddBIMzU/BX9DWEnjLFAHL9SKNjY1oXlJKzZw5880334xEIslkUim1ZcuWw 4cPy7gQKkcEiiBUSlijVwDm4uFNAcHvZgcA2WwWVYXruiQsLMv yPC+bzSo/CQifxRe4rhuJRCgaFADS6TQGo4CfwDI1NQoAOI5j23Y0GtVaf/jhh/X19Vu3bsW+0LlcTvkxyxSkIghlIwJFEColrNErAPPFgF9DltrB UO8Y1B8U2cpb8yjWyodTV1fHnTjU/Rj/nbJZKnhOotEo9jHu7+//6le/qpSqr6//2c9+lkql6OuQcSFUjggUQaiUsEavAABKqXQ6DX4JdpzRyLlDab Fo8CCRQRU7qJIsZaPQ14qZPvQVoxkGwz/JPDPVGBgYAN87RhE5qAhzuRzpP8niEcYFESiCUClhjV4BWKE2/NP48CwbWlADSbAY44kv7u/vX7Bgwa5du+hdnuf19PTMnz+/ra0N1Q+5daZgCg+w5jv4C+Zg46mgtB3btvG7mLJGJmEcEYEiCJ US1uidmuCiSNXry/vK6urqMKIWLSi4pm7evHnp0qUkYowxK1eufOSRR8I9XkGYsohA EYRKCWv0TjXIboG/UFRsGdvJ5XKob7LZLCoeFD233Xbbxo0b8ZFXXnnly1/+MvqPBEGYeESgCEKlhDV6pyDU5AX/zeVyZdQjQRcPxkzwxB8A6OrqUkp1dXVls9lZs2bt3r17PPdeEI RSEIEiCJUS1uidaqAW8TwP/S+UElzqdijNJ5/Po1jJZrOe52EuzxNPPHHDDTfcfffdjz/+eCCWRRCEiUQEiiBUSlijdwqCooTMJwMDA2UEY6K4oSiW/v7+wLNXXHHFmWeeyevcC4Iw8YhAEYRKCWv0TjWofa7rugMDAzw ZpyQohAVYskl/fz9aVhzHOXjw4L59+7TWU7YamyBUAyJQBKFSwhq9Uw0UE6lUip fZKENDGGOoqAnmx5IfhzrvkCNpfHZdEITSEYEiCJUS1uidalBM K/5LHQHLg78X9Qp9Cv2JqT1lf4QgCJUgAkUQKiWs0SsIglDDiEAR hEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhEoJa/QKgiDUMCJQBKFSwhq9giAINYwIFEGolLBGryAIQg0jAkUQKiWs 0SsIglDDiEARhAr5/1Xny9vHN9jQAAAAAElFTkSuQmCC
Yes is correct. I put out R7, because, sometimes need value R7=10K or R7=6K8. With this tip i can make replace very easy this resistor, before i am sure the standard value R7=8K2
Please wait small time. I need free time and fine weather for video's for publish here more infos
regards

folharin
02-11-2014, 09:40 PM
18820

omega coil

detect coin 20cm

Qiaozhi
02-11-2014, 09:44 PM
omega coil

detect coin 20cm
That's not an omega coil. It's an OO coil with the loops having different diameters.

folharin
02-11-2014, 09:56 PM
18822

circuit signal generator 68 khz pistol detect 3,4 meters

Goldmaxx
02-11-2014, 11:12 PM
Yes is correct. I put out R7, because, sometimes need value R7=10K or R7=6K8. With this tip i can make replace very easy this resistor, before i am sure the standard value R7=8K2
Please wait small time. I need free time and fine weather for video's for publish here more infos
regards


Okay, very good Andreas. Many thanks for your quick reply and tip, I'll be waiting for your new infos.
Wish you all the best

Nicolas
02-12-2014, 12:22 AM
18822

circuit signal generator 68 khz pistol detect 3,4 meters

http://www.longrangelocators.com/forums/attachment.php?attachmentid=18822&d=1392155609




Hi dear what you said???? is not trust:nono::nono::nono::nono: please

May i ask what is the purpose of the circuit, (except scaring mosquitoes) ?

http://www.longrangelocators.com/forums/showthread.php?t=18464

DrTech
02-12-2014, 05:22 AM
Andreas, A signal generator can be used with the PD locate a treasure. or Pulse Induction Detector may make stronger the phenomenon that can be detected for PD..

ANDREAS
02-12-2014, 05:45 AM
Andreas, A signal generator can be used with the PD locate a treasure. or Pulse Induction Detector may make stronger the phenomenon that can be detected for PD..
I don't know if alonsoPD need a external signal generator or PI for stimulate a target.
I think don't need.
regards

folharin
02-12-2014, 10:30 AM
I did this circuit just to see how it behaves pd with a sign around 68 khz

LRLMAN
02-16-2014, 03:56 AM
Hi Friends, Hello Andreas,

I tell you that i did the coil exposed by Andreas but without good results
this detects much less distance than the omega coil I made ​​earlier,

I've been looking a lot of information about how to make an omega coil and reviewing many images and found in my papers a document to Andy Flind where is the way to make a bobin omega compensated for a metal detector and catches my attention because this omega Andy has other features elaborate and I think this could help us develop even on a smaller scale an omega coil but need help from someone here on the forum who can do calculus to make it equal to that of andy but in a smaller size perhaps about 8 or 9 cms. diameter

this is important because the omega coil exposed by Andy I think this well balanced in its measures as should be a real coil omega because maybe this can work well in the Alonso PD.

LRLMAN.

ANDREAS
02-16-2014, 06:52 AM
Hi Friends, Hello Andreas,

I tell you that i did the coil exposed by Andreas but without good results
this detects much less distance than the omega coil I made ​​earlier....................
this is important because the omega coil exposed by Andy I think this well balanced in its measures as should be a real coil omega because maybe this can work well in the Alonso PD.

LRLMAN.
As you can see #89 ......with perfect calibration all together coils-housing detect one euro ONLY 12CM DISTANCE..
Alonso PD don't work as a real MD detector, but as LRL
If you replace C4 (see #116) with value <10nF, you have more distance detection.
Ofcourse with C4=100pF... 470pF you have best distance detection.
I made this clone with the true values ​​of the components posted here few years ago.
I saw this is real "distance detection" of omega-coils when everything configured correctly. In this case we have a real LRL and a "poor" MD.
You can ask the morgan. He has the original PD, he know well the real distance detection and measurement real frequency tune. If he publish real infos (Rs forum), i don't know, because, i am not member
My opinion... he never publish real infos or he cannot build a real clone (i am sure for this)
If we want a better MD section, ofcourse we can replace with other schematics.
I think later i replace this section
Regards

detectoman
02-16-2014, 05:04 PM
hello guys, put the tx in lrl detection, help for a little most distance range, and most directional precision, too for most centre habilities, but any persons say, the tx near of the metals point, due hig tension oscillations can null the field of electrons around the objetive buried, how a short circuit, then you see all signal dissapared, morgan say the tx help for can be detected in minor size objects

LRLMAN
02-16-2014, 06:31 PM
Hi Detectoman, how are you man, tienes toda la razon hacerca de lo que dices y que milagro que te veo aqui, que hay de nuevo hombre ya terminaste tu PD? he visto algunos videos tuyos en you tube de un equipo que hiciste se ve muy curioso pero bien, un saludo

You're right in your said, a miracle for me see you here, what's new man, finish your PD? I've seen some of your videos on you tube of a device that you did, this looks very funny but good

greetingS.

detectoman
02-16-2014, 06:36 PM
hello lrlman, regards today i have a medium" range in right function, and other one in succes vies and 4 others in process, sayme what you from, may be we interchange opinions

detectoman
02-16-2014, 09:43 PM
ups lrlman: where you from * :)

LRLMAN
02-16-2014, 11:06 PM
ups lrlman: where you from * :)

Detectoman Excuse me, I from here Mexico, Lazaro Cardenas, Michoacan.

and you?

LRLMAN
02-16-2014, 11:08 PM
As you can see #89 ......with perfect calibration all together coils-housing detect one euro ONLY 12CM DISTANCE..
Alonso PD don't work as a real MD detector, but as LRL
If you replace C4 (see #116) with value <10nF, you have more distance detection.
Ofcourse with C4=100pF... 470pF you have best distance detection.
I made this clone with the true values ​​of the components posted here few years ago.
I saw this is real "distance detection" of omega-coils when everything configured correctly. In this case we have a real LRL and a "poor" MD.
You can ask the morgan. He has the original PD, he know well the real distance detection and measurement real frequency tune. If he publish real infos (Rs forum), i don't know, because, i am not member
My opinion... he never publish real infos or he cannot build a real clone (i am sure for this)
If we want a better MD section, ofcourse we can replace with other schematics.
I think later i replace this section
Regards


Ok Andreas,

Well then where we start again?

I need you to know some things about my experiences with the developing of my PD'S before starting with all this.

1 - I have two PD, one with six PCB’s and the other with a single PCB as presented in the Greek forum ok?

2 - The single PCB PD is more stable than the six PCB’s.

3 – In the PD single PCB I put two flat ferrites Alonso identical to his PD pistol.

4- In the PD six PCB’s, I put two round ferrites of 6 cms. long each one by 1 cms thick.

5 - The schematic I used for the two PD’s was exactly the same in RS by Qiaozhi version 1.20 because it had corrected the polarity of the capacitor # 33 uF 10.

6 - the omega coil and ferrite were made with almost the same omhics resistance just with different calibers magnet wires (for coil omega only) because the coil ferrite I put the same type of wire 0.30 mm but with a different turns quantity to that exposed in RS ;


It is important to say that the way that I did for winding ferrite was different from that presented in RS because with the turns exposed in RS never detect a small magnet or just to 1cm away from the ferrite, but with the new way of laps that I put on a ferrite, this detected the small magnet to 20 Cms. away from the ferrite, and only when the PD is working together Omega-Ferrite; I've also noticed that the magnet is detected by the omega, in only omega mode, but only in a shorter distance away maybe about 7 cms.


7- When I adjust the two PD's and pointed toward the ground, the pistol beeps in direction to the soil detect the capacitance of the soil and I don’t know if this is normal or how can I fix this, I've been seeing information exposed by Esteban about it but i don’t understand what he says of how to correct this detail; Esteban says: “We can find a good compromise between the both (sky and soil)” and he say that
I have to change wire the ends of the RX: “Invert extremes of receiver coil and put your hand in both sides of rec. coil, time by time. You note in one extreme capacitive effect (a kind of null) when you put your hand. If the capacitive effect is produced in down part (this is, a kind of null), invert the connections of the extremes of the rec. Coil. Is better the increasing of audio in the down part when you put your hand, this is, the part of rec. Coil near the soil”.

This efect is normal or not? Is good or bad?????

8- I notice that in the two PD's green LEDs do not light at any time and in any way and I think that something is wrong may be reversed polarity of these, could you help me a little on this? maybe with some schematic correct, and as I was saying I have no knowledge of electronics I understand very little I'm no EE here in México I'm just business manager or public accountant but I am very interested in completing these projects, not for sale of devices but for personal use because I know many places here, which might have some interesting things to discover.

I have seen with my own eyes what they can do the Alonso lrl’s when he was here a few years ago
I am sure that these well calibrated equipment can do good things


9- The PD one PCB have a potentiometer multiturn 50 k.

10- The PD Six PCB’s have a potentiometer one turn 50 k.


All this is to begin to get an idea of ​​what I did, I would like you to show the full Schematic in one piece or as exposed by Qiaozhi since I have some confusion regarding the schematic that you exposed in the area of the coil connections to omega, because the RX of Qiaozhi Schematic of 1.20 has three wires and i see only two in your schem., and TX coil has 5 wires which I can’t see on your schematic, i only see 3 connections.
Anyway I will try to analyze it with the schematic of Qiaozhi.


Regards.

LRLMAN.

detectoman
02-17-2014, 12:19 AM
lrman and all, the sky-ground effect was for me a big problem when i building the pd whit rx & omega, the original pd circuit are very versatile, whit other coil recipes, then also you have a great diversity of present phenomens whit each distinct maners of make your circuits or power measures, lrman i am in chihuahua mexico but today no have very much time for my lrls or experiments due my busy particular works, the sky effect can dissapared changing whit other coils recipes, also the sky effect automatic dissapared when the pd go at stabilzed function, then came devenue sensitive stabilized lrange detection, the pd have very much secret of operations semms easy but isnt sometimes

folharin
03-12-2014, 09:22 PM
18880
this scheme published by max morgan and that made reverse engineering are changed schema components made ​​by quiaozhi version 1.19

folharin
03-12-2014, 09:51 PM
18881

this scheme has changed the components and coil omega I believe that number is not correct to aspire
12 +3 +5 +12 is Heathkit gd 348.small diameter coil requires a greater number of turns of wire

folharin
03-19-2014, 03:44 PM
1890818909

pd alonso 6 pcb correction circuit omega coil original heathkit gd 348

folharin
03-19-2014, 03:46 PM
I am part ferrite to build

folharin
03-19-2014, 03:48 PM
can someone help me on the original mica capacitors 348 gd hard to find may be replaced by capacitor polyester?

folharin
03-19-2014, 04:01 PM
18910


this key seems strange!, does she lack terminal connects only ferrite and only omega or connect two together?

folharin
03-19-2014, 06:51 PM
1891118912

tests done on the same key used in 3 positions pd show that omega loop and ferrite are always linked in position 1 and 3.This key is the same as dch not change anything

brs
03-20-2014, 03:48 PM
http://alfaris.net/up/89/alfaris_net_1395326684.JPG

folharin
03-23-2014, 08:52 PM
18920
can someone tell me if this is correct? orange and yellow wire?

folharin
03-24-2014, 08:58 PM
maybe this is correct...18930

ANDREAS
07-29-2014, 08:01 AM
Last year i have a mail by seden if is possible drawing a PD only for gold.
This is a point very interest for me and ofcourse i try find solution for this.
For experiments i use my real clone alonsoPD with full modifications (for example change MD section with other circuit stability), build a new sensor via lathe and laser cutter.
After two months study and build many-many prototypes sensors, i think find solution. The big problem again is calibration all together. In this case i use other way for find delicate for all work together.
Joke !!! i know very well what i need for calibration and all steps for fine tune, but in practice after three days without results, i find solution (very difficult)

Please look video https://www.youtube.com/watch?v=1alvya5uNW0&feature=youtu.be
This is not dream, but real. No ground or sky effects. No detections earth lines
The unit is very-very stability and silence for other metals.
Interest is PD work without motion or very-very slow motion
enjoy

Nicolas
07-29-2014, 08:29 AM
Last year i have a mail by seden if is possible drawing a PD only for gold.
This is a point very interest for me and ofcourse i try find solution for this.
For experiments i use my real clone alonsoPD with full modifications (for example change MD section with other circuit stability), build a new sensor via lathe and laser cutter.
After two months study and build many-many prototypes sensors, i think find solution. The big problem again is calibration all together. In this case i use other way for find delicate for all work together.
Joke !!! i know very well what i need for calibration and all steps for fine tune, but in practice after three days without results, i find solution (very difficult)

Please look video https://www.youtube.com/watch?v=1alvya5uNW0&feature=youtu.be
This is not dream, but real. No ground or sky effects. No detections earth lines
The unit is very-very stability and silence for other metals.
Interest is PD work without motion or very-very slow motion
enjoy


Great work my friend. I wish you good luck and too much improvement in your project. If we can detect from distance 5m we can detect also from 50 m and maybe 5 km or over:D.

DrTech
08-05-2014, 03:40 AM
Last year i have a mail by seden if is possible drawing a PD only for gold.
This is a point very interest for me and ofcourse i try find solution for this.
For experiments i use my real clone alonsoPD with full modifications (for example change MD section with other circuit stability), build a new sensor via lathe and laser cutter.
After two months study and build many-many prototypes sensors, i think find solution. The big problem again is calibration all together. In this case i use other way for find delicate for all work together.
Joke !!! i know very well what i need for calibration and all steps for fine tune, but in practice after three days without results, i find solution (very difficult)

Please look video https://www.youtube.com/watch?v=1alvya5uNW0&feature=youtu.be
This is not dream, but real. No ground or sky effects. No detections earth lines
The unit is very-very stability and silence for other metals.
Interest is PD work without motion or very-very slow motion
enjoy



Congratulations Andreas for your project, the new modification is in the RX or TX, I'm working with a LED transmitter but has not given me good results, such as a magnet detects 30cm.

ANDREAS
08-05-2014, 06:28 AM
Congratulations Andreas for your project, the new modification is in the RX or TX, I'm working with a LED transmitter but has not given me good results, such as a magnet detects 30cm.
Thank you for your wishes.
Modifications has all circuits. In practice don't need calibration by electronics via potentiometers alarm windows etc, but calibration via tune every new searching place. I need a final big test 15 august (of course with video), before i am sure for stability this unit.
Of course need more experiments for find minimum buried time a sample for detection.
I know PD can detect three very small gold-ring and a gold coin two months old buried, but is not enough
Notes here.
I understand now , why some members (top engineers for me) cannot build one. Here we have a mix electronic and cad with critical setting all together.
Please look again video. My prototype has many external mechanics regulators for find best points in practice
I understand now why never build a real clone by members. Sometime i believe the original PD has not a perfect calibration, because with hands and a electronic lab cannot make this.
Αbout detecting magnet. This is not really criterion, because a perfect calibration PD has low SENSITIVITY for all external sources
The second half august. I send prototypes for full testing other countries.
If they have success, this is a first real world long range detector only for gold.
best regards

FrancoItaly
08-05-2014, 11:10 AM
Hi Andreas

Very good work, I followed another path for my LRL and I do not have many opportunities to tune only the gold, I have already changed the internal oscillator frequency from 3 to 10Mhz without appreciable changes. But I have a question, are you sure that the revelation of gold is only a general decrease in sensitivity as the gold emits a signal of greater intensity than other metals?

Best Regards

ANDREAS
08-05-2014, 12:28 PM
Hi Andreas

But I have a question, are you sure that the revelation of gold is only a general decrease in sensitivity as the gold emits a signal of greater intensity than other metals?

Best Regards
Hi Franco
Thank you very much
Negative! gold don't emits a greater signal. I am sure now, this signal is lowest, But if i understand well, we have here a "tuning fork" in a very small range band frequency.
In practice, my PD have not low sensitivity, but reject all no interesting bands via a strange filter design by me.
I know well all members try find a formula with experiments to false or not false.
But here need more. The time is near after ten days i can know more.
best regards

FrancoItaly
08-05-2014, 12:53 PM
Hi Andreas

If I understand correctly your filter passes only the "phenomenon" generated by gold. Do you think your filter also works with other types of lrl? For example my LRL? I have tried different filters on my LRL placed between the antenna and the input of lrl, I tried different types of diodes, silicon, germanium (even the old style contact tip called a cat's whisker) and also the Schottky type, I also tried various capacity capacitors in series with the antenna but I had no results. Surely you have made a breakthrough in the understanding of the phenomenon.


Best Regards

ANDREAS
08-05-2014, 02:44 PM
If I understand correctly your filter passes only the "phenomenon" generated by gold.

Correct, but i need more time , before i am sure. In this case i have program send prototypes other countries for more experiments

Do you think your filter also works with other types of lrl?

I don't know. Logical don't work. LRL with passive receiver cannot use this method, but later i try.. maybe i find solution if is possible

For example my LRL? I have tried different filters on my LRL placed between the antenna and the input of lrl, I tried different types of diodes, silicon, germanium (even the old style contact tip called a cat's whisker) and also the Schottky type, I also tried various capacity capacitors in series with the antenna but I had no results.

Correct . As i write last posts, we have a mix electronics and mechanics design. Critical is micro setting dimensions. For example +/- 0,01mm.

Surely you have made a breakthrough in the understanding of the phenomenon.

Interesting for me is... phenomenon work with full discrimination. Sometimes i think ... this is a dream. Sometimes i think .. my eyes "see" false results. In this case i play again video and i try find my false. I have "lost my sleep" before i make a final test date 15 august for sure.
best regards

FrancoItaly
08-05-2014, 05:07 PM
Hi Andreas

Should know something more about the "phenomenon" in order to distinguish gold from other metals. I also spent a lot of time to try to learn more. Since the phenomenon is revealed by Lrls that work with different principles you may think that it is acting on "broadband", that his energy has magnetic properties, electrical and optical properties, or perhaps more. Which known energy has these features? You talk about micro setting dimensions and this suggests to microwaves and infrared, and also to radioactive isotopes. On the other hand the low frequencies of operation of Lrls suggest also to a low-frequency component of the phenomenon. The isotopes gun of Dr. Bickel was based on the principle that the metals buried many years emitt isotopes that can be detected at a distance. Maybe he was talking about isotopes because he did not know or did not want to reveal the nature of the phenomenon. His instrument was very similar to a magnetometer and could be used by an aircraft in flight, so it was very sensitive. Moreover, each metal has an emission of isotopes that is different from the other metals, it is a sort of signature that allows to discriminate eg gold from other metals. If this is true it is no doubt that even a LRL can do the same thing.


Best Regards

hung
08-05-2014, 05:11 PM
My friend Andreas.
I believe that what you have done was building a mechanical filter nulling adjustment to position the ferrite in a similar way the front loop RX coil is required, to avoid ferrous metals in relation to the omega TX coil. Tough this might work at some extent and reject ferrous and some non ferrous metals, if you do not employ an added bias filtering specific for gold, it will be very hard for you to eliminate silver, copper or bronze. This mechanical adjustment of ferrite is a primitive way of selecting only gold, when a much better and hassle free procedure is to electronically 'trap' its 'magnetic signature', if you know what I mean.
Also, since a LRL is to be taken in the field under hard conditions and subject to bumps, a mechanical adjustment of key components might well get ruined very easily.

My schedule is still too tight but I hope soon I will be able to show here the couple of devices I have been developing including the MX8, with a kind of technology I still have not seen in any LRL so far.
Cheers.

WM6
08-05-2014, 06:18 PM
.... a much better and hassle free procedure is to electronically 'trap' its 'magnetic signature', if you know what I mean.



Do you know what you mean?

Bill512
08-05-2014, 07:29 PM
Hi Andreas

Should know something more about the "phenomenon" in order to distinguish gold from other metals. I also spent a lot of time to try to learn more. Since the phenomenon is revealed by Lrls that work with different principles you may think that it is acting on "broadband", that his energy has magnetic properties, electrical and optical properties, or perhaps more. Which known energy has these features? You talk about micro setting dimensions and this suggests to microwaves and infrared, and also to radioactive isotopes. On the other hand the low frequencies of operation of Lrls suggest also to a low-frequency component of the phenomenon. The isotopes gun of Dr. Bickel was based on the principle that the metals buried many years emitt isotopes that can be detected at a distance. Maybe he was talking about isotopes because he did not know or did not want to reveal the nature of the phenomenon. His instrument was very similar to a magnetometer and could be used by an aircraft in flight, so it was very sensitive. Moreover, each metal has an emission of isotopes that is different from the other metals, it is a sort of signature that allows to discriminate eg gold from other metals. If this is true it is no doubt that even a LRL can do the same thing.


Best Regards
Hi Franco,
according to some old posts, here in this forum, the "isotopes gun of Dr. Bickel" , was a very sensitive gamma spectrometer, which is a well known instrument.

ANDREAS
08-05-2014, 08:16 PM
My friend Andreas.
I believe that what you have...... LRL so far.
Cheers.
Hi Hung
Nice to see you
it will be very hard for you to eliminate silver, copper or bronze.
Please look again video. I have not signals from silver,copper or bronze. You must be sure, before buried gold rings and gold coins i buried some foils from silver and many scraps from copper and bronze. I make a real test place with all parasitics and scraps and of course very near 220V ac camples
... is a primitive way of selecting only gold,
Of course you are correct. The best way is hot-glue as we can see inside orginal PD by Alonso. In this case use lathe , lazer, cad ,pcb program are primitive
when a much better and hassle free procedure is to electronically 'trap' its 'magnetic signature', if you know what I mean.
Few years ago try esteban with this. I think there is a better way
Also, since a LRL is to be taken in the field under hard conditions and subject to bumps, a mechanical adjustment of key components might well get ruined very easily.
About this you must be sure i solved 100%
best regards

ANDREAS
08-05-2014, 08:24 PM
Hi Andreas

Should know something more about the "phenomenon" in order to distinguish gold from other metals. I also spent a lot of time to try to learn more. Since the phenomenon is revealed by Lrls that work with different principles you may think that it is acting on "broadband", that his energy has magnetic properties, electrical and optical properties, or perhaps more. Which known energy has these features? You talk about micro setting dimensions and this suggests to microwaves and infrared, and also to radioactive isotopes. On the other hand the low frequencies of operation of Lrls suggest also to a low-frequency component of the phenomenon. The isotopes gun of Dr. Bickel was based on the principle that the metals buried many years emitt isotopes that can be detected at a distance. Maybe he was talking about isotopes because he did not know or did not want to reveal the nature of the phenomenon. His instrument was very similar to a magnetometer and could be used by an aircraft in flight, so it was very sensitive. Moreover, each metal has an emission of isotopes that is different from the other metals, it is a sort of signature that allows to discriminate eg gold from other metals. If this is true it is no doubt that even a LRL can do the same thing.


Best Regards
Hi Franco
You are confused (please this is not attack your person, but a opinion, because you try strong about LRL detection). It's simple, but i cannot publish more. Please open mind remove all about electronics and maybe you find solution.
Please read wikirota, there are interesting threards about buried metal.
Only one you are correct 100% the solution is microwave or IR fasma

FrancoItaly
08-06-2014, 11:11 AM
Hi Andreas

It's very interesting the work of Louis Rota, thankyou.

ANDREAS
08-06-2014, 05:13 PM
Hi Andreas

It's very interesting the work of Louis Rota, thankyou.
It's my pleasure.

ANDREAS
08-18-2014, 08:35 AM
The second video, for those who study the phenomenon and they trying to build a detector for gold.
https://www.youtube.com/watch?v=5RpZ_jCxM0Y&feature=youtu.βε
Interestingly, PD if calibration precisely for the detection of gold, cannot detected a magnet more than 10 cm distance and are not affected by any transmission frequency
Best regards

FrancoItaly
08-18-2014, 10:50 AM
Hi Andreas
It 's very interesting especially the revelation of the gold bracelet to more than 1m or 2m. This means that the "phenomenon" is also active for gold that is not underground. Also in this case the sensitivity is greater in the direction south north?

Best Regards

mustefa ubram
08-18-2014, 02:01 PM
The second video, for those who study the phenomenon and they trying to build a detector for gold.
https://www.youtube.com/watch?v=5RpZ_jCxM0Y&feature=youtu.βε
Interestingly, PD if calibration precisely for the detection of gold, cannot detected a magnet more than 10 cm distance and are not affected by any transmission frequency
Best regards
very good dear andreas
Congratulations:)

ozanmelih
08-18-2014, 04:12 PM
Does it find gold in metal box?

ANDREAS
08-18-2014, 07:51 PM
Hi Andreas
It 's very interesting especially the revelation of the gold bracelet to more than 1m or 2m. This means that the "phenomenon" is also active for gold that is not underground. Also in this case the sensitivity is greater in the direction south north?

Best Regards
Best direction is north-south.

ANDREAS
08-18-2014, 07:54 PM
very good dear andreas
Congratulations:)
Thank you. Need more time and extra modification before is ready

ANDREAS
08-18-2014, 08:03 PM
Does it find gold in metal box?
I believe cannot find gold in a metal box, but if.... the box is destroyed from humidity etc maybe is possible, because gold has a contact with ground. We will know in the future by the users if this is likely
regards

mustefa ubram
08-18-2014, 08:28 PM
Thank you. Need more time and extra modification before is ready

dear andreas
I wish you success .:)

fmnotes
08-19-2014, 01:08 AM
I believe cannot find gold in a metal box, but if.... the box is destroyed from humidity etc maybe is possible, because gold has a contact with ground. We will know in the future by the users if this is likely
regards

Dear Andrea hι
Do you think deserves to construct the PD;
Is it difficult to work it?
ευχαριστώ

ANDREAS
08-19-2014, 01:13 PM
Do you think deserves to construct the PD;
Yes deserves, but it's very difficult. Original by Alonso is the base, but calibrate together all is difference.
I explain more. My first results and experiments i "see", few years ago, before build the first real clone and publish here. If you remember i publish here ,my first posts this thread "....i am sure this is clone and later i start experiments outside lab..." but my firsts experiments outside all setting positions don't work and PD need again calibration, the other place need again calibration and again and ....etc etc. In practice we have a unit with other setup for all places and don't erase magnetic lines by earth. Now this problem solved.
My opinion original PD is best of best LRL for all old buried metals without discrimination, but all steps for perfect calibration need long time and ofcourse you know well what do you want about calibration. Maybe this is the true "why never this PD start mass production" by first designer if is Alonso.
Modifications for Gold is other. Need filters, ferrite with special specification etc etc
Now about some amateurs for example our country they say "i build it and work and i find gold etc etc...." i believe fantasy is perfect for ....mind
Is it difficult to work it?
It's easy with standard steps-calibration on place by user
Να εισαι καλα

fmnotes
08-19-2014, 02:02 PM
Do you think deserves to construct the PD;
Yes deserves, but it's very difficult. Original by Alonso is the base, but calibrate together all is difference.
I explain more. My first results and experiments i "see", few years ago, before build the first real clone and publish here. If you remember i publish here ,my first posts this thread "....i am sure this is clone and later i start experiments outside lab..." but my firsts experiments outside all setting positions don't work and PD need again calibration, the other place need again calibration and again and ....etc etc. In practice we have a unit with other setup for all places and don't erase magnetic lines by earth. Now this problem solved.
My opinion original PD is best of best LRL for all old buried metals without discrimination, but all steps for perfect calibration need long time and ofcourse you know well what do you want about calibration. Maybe this is the true "why never this PD start mass production" by first designer if is Alonso.
Modifications for Gold is other. Need filters, ferrite with special specification etc etc
Now about some amateurs for example our country they say "i build it and work and i find gold etc etc...." i believe fantasy is perfect for ....mind
Is it difficult to work it?
It's easy with standard steps-calibration on place by user
Να εισαι καλα

Thank you very much for your answer and your time.
We believe that the FG80 or FG90 not work in relation to the PD?
A talking about the same manufacturer.
thanks.

ANDREAS
08-19-2014, 03:35 PM
Thank you very much for your answer and your time.
We believe that the FG80 or FG90 not work in relation to the PD?
A talking about the same manufacturer.
thanks.

If you want my opinion, i believe this is not Alonso PD. I have sense about who is designer, but i don't right publish here.
My sense is strong. In this case i am "free" use some parts without license.
But if i am false about my opinion, we have only one "brake" for mass production. This is the long time for calibration. For example i want (PD without discrimination) minimum 10 days for calibration. This long time need for calibration all together and choice between many-many ferrite (same parts-number) the best for use. In this case need small luck for find the best parts for one PD.
Regards

aft_72005
08-25-2014, 02:29 PM
Last year i have a mail by seden if is possible drawing a PD only for gold.
This is a point very interest for me and ofcourse i try find solution for this.
For experiments i use my real clone alonsoPD with full modifications (for example change MD section with other circuit stability), build a new sensor via lathe and laser cutter.
After two months study and build many-many prototypes sensors, i think find solution. The big problem again is calibration all together. In this case i use other way for find delicate for all work together.
Joke !!! i know very well what i need for calibration and all steps for fine tune, but in practice after three days without results, i find solution (very difficult)

Please look video https://www.youtube.com/watch?v=1alvya5uNW0&feature=youtu.be
This is not dream, but real. No ground or sky effects. No detections earth lines
The unit is very-very stability and silence for other metals.
Interest is PD work without motion or very-very slow motion
enjoy

Hi Andreas
nice work . i say you "congratulate ":thumb::thumb::thumb:
best regards.

belalhpc
08-26-2014, 01:46 PM
Does this product is in the market. And how much the price?

fmnotes
08-29-2014, 11:48 AM
If you want my opinion, i believe this is not Alonso PD. I have sense about who is designer, but i don't right publish here.
My sense is strong. In this case i am "free" use some parts without license.
But if i am false about my opinion, we have only one "brake" for mass production. This is the long time for calibration. For example i want (PD without discrimination) minimum 10 days for calibration. This long time need for calibration all together and choice between many-many ferrite (same parts-number) the best for use. In this case need small luck for find the best parts for one PD.
Regards

Dear Andrea Thank you for your answer.
some questions
calibration of ferrites do by moving up and down the ferrite
through the screw?
The commuters ferrite front back?
Led1 is the low battery indicator?

If you replace C4 (see #116) with value <10nF, you have more distance detection.
Ofcourse with C4=100pF... 470pF you have best distance detection.
that the tantalum capacitor're replaced c4 10uf
thanks in advance

fmnotes
09-10-2014, 12:53 PM
a question
who knows how to answer me.
The ferrite coil creates oscillation in the passive receiver input?

ANDREAS
09-10-2014, 01:23 PM
Does this product is in the market. And how much the price?
Now i am interested only in stability and modifications
regards

ANDREAS
09-10-2014, 01:33 PM
Dear Andrea Thank you for your answer.
some questions
calibration of ferrites do by moving up and down the ferrite
through the screw?
The commuters ferrite front back?
Led1 is the low battery indicator?

If you replace C4 (see #116) with value <10nF, you have more distance detection.
Ofcourse with C4=100pF... 470pF you have best distance detection.
that the tantalum capacitor're replaced c4 10uf
thanks in advance
I think are very clean. The first one i use a copy from original Alonso. Without mods i see the first results. Try with this or... better use opinions from Greek electronic engineers. We have best team our country and forums with realistic opinions
best regards

daniel
09-15-2014, 12:53 PM
Hi Andreas,

thanks very much for the effort and great information here. I want to build this Alonso-PD clone and spent many hours in this forum to collect all that spread info. Its really a pity because some information is confusing and messed up and also sometimes contains erros. Therefore many beginners don't know how to build the device and get frustrated. I want to try to fix it but I need a little bit of your help. I want to put the whole project into 1 Zip file for everyone to understand and build the device.

First here is the partlist from both schematics (Mainboard & Transmitter Board):

MAINBOARD (Real Clone Alonso-PD)
http://www.longrangelocators.com/for...ad.php?t=18956 (http://www.longrangelocators.com/forums/showthread.php?t=18956)

LED
LED1 =
LED2 = high bright yellow
LED3 =

CAPACITORS
C11, C22, C32, = 1n
C23, = 3n3
C24, C27, C29, C30, C38, = 10n
C19, C34, = 22n
C12, C16, = 47n
C15, C20, C31, C33, C35, C36, C37, = 100n
C14, = 220n

C4, = 10mF tantalium. If you don't have connect serial + - - + two electrolytic capacitors 22µF
C3, = 10µF
C6, C7, C9, C22A, = 100µF
C1, C2, C8, = 220µF

Cx = 470pF


RESISTORS
R1, = 47R
R20, R39, = 100R
R16, = 150R
R8, = 220R
R21, R51, = 470R
R30, R33, = 560R

R5, R9, R10, R11, R12, R13, R22, R35, R36, = 1K
R48, = 1K2
R4, = 2K2
R18, R31, = 2K7
R37, R40, R44, = 4K7
R2, R3, R29, R34, R42, = 10K
R14, R17, R19, R47, R53, = 12K
R38, = 18K
R7, R32, = 33K
R15, R28, R45, R49 = 100K
R52, = 220K
R50, R54 = 390K
R6, R6A = 680K (If you don't have 680K you can replace with 1M)
R41, R43, = 1M

MULTITURN POTENTIOMETER
PI, = 47K

INTEGRATED CIRCUITS
U1 = LM7809
U2 = LM555
U3 = 741
U4 = LM78L05

TRANSISTORS
D4, D6, Q3, Q4, Q5, Q9, Q13, Q15, Q17, Q18, Q20, = BC548
Q6, Q11, Q12, Q16, Q19, = BC558

DIODES
D5, = 7V5
D1, D8 = 1N4148
D2, D3, = 1N60 (If you dont have 1N60 you can replace with poor RED LED - no high right - work as diode perfect if frequency is < 3MHZ)


TRANSMITTER BOARD

RESISTORS
R1, = 22R

R6, = 3K9
R7, = 8K2
R5, = 10K
R4, = 18K
R2, = 27K
R3, = 82K

TRANSISTORS
Q1, = BC558
Q2, = BC548

CAPACITORS
C3, C4, = 10n
C2, = 47n
C1, = 100µF

daniel
09-15-2014, 01:00 PM
Ok and here I've done an overview of all the components I know for this project. Can you please let me know how everything is connected correctly? Thank you very much.

https://www.dropbox.com/s/ua698j1njjsxdz1/how_to_connect.jpg?dl=0


https://www.dropbox.com/s/ua698j1njjsxdz1/how_to_connect.jpg?dl=0

reza vir
09-18-2014, 08:16 PM
Okay Daniel
Have you built this circuit.
Share photos of your circuit.
Show new and old metal keys are enabled and disabled Sense
2 display wiring circuit, and display and explain their side of the coil.

***************************
Alonso wins the circuit in 7 build
And those were the circuit changes
1 out of every 10 people who make up this circuit concluded
Set the ferrite coil to coil transmitter must be exact
Capacitors are all high quality and resistance should be no tolerance
The volume of high-quality multi-layer used
Otherwise, you may not even feel the metal
Or that feeling of depth below 80 cm

ban1345
09-19-2014, 12:47 AM
hi all
hi andreas thank you for this project
please post picture of coil's
best regard

daniel
09-19-2014, 05:35 PM
Okay Daniel
Have you built this circuit.
Share photos of your circuit.
Show new and old metal keys are enabled and disabled Sense
2 display wiring circuit, and display and explain their side of the coil.

***************************
Alonso wins the circuit in 7 build
And those were the circuit changes
1 out of every 10 people who make up this circuit concluded
Set the ferrite coil to coil transmitter must be exact
Capacitors are all high quality and resistance should be no tolerance
The volume of high-quality multi-layer used
Otherwise, you may not even feel the metal
Or that feeling of depth below 80 cm


Yes I've built the circuit and it makes sounds like a geiger counter. It does not react to any metal or magnets. But Im not sure how to connect the coils, main pcb and transmitter pcb correctly. There is no diagramm/schematic with everything connected together therefore Im confused.

Can you please connect the lines in my post 184 with the picture "How to connect everything correctly?".

http://www.longrangelocators.com/forums/showpost.php?p=150108&postcount=184

Thanks very much

Nicolas
09-19-2014, 08:56 PM
Yes I've built the circuit and it makes sounds like a geiger counter. It does not react to any metal or magnets. But Im not sure how to connect the coils, main pcb and transmitter pcb correctly. There is no diagramm/schematic with everything connected together therefore Im confused.

Can you please connect the lines in my post 184 with the picture "How to connect everything correctly?".

http://www.longrangelocators.com/forums/showpost.php?p=150108&postcount=184

Thanks very much

Nice work but you need much times to calibrate and make it work

look here here in this comment

http://www.longrangelocators.com/forums/showpost.php?p=148643&postcount=116
and

http://www.longrangelocators.com/forums/showpost.php?p=148720&postcount=120

reza vir
09-19-2014, 09:18 PM
see pic

daniel
09-19-2014, 11:44 PM
Calibration is not the problem. I don't know how to connect the parts correctly. Im also really confused I've found error on Transmitter PCB versus schematic.
Capacitor C4 is placed wrong on PCB and R7 is not existent. We really need a diagramm with all parts connected together to locate any possible errors.

I will try to complete the connections in the picture from post 184 but I need help because Im not sure if thats correct.

Here is the error I found on transmitter board PCB:

brs
09-20-2014, 12:30 AM
The pcb true image


http://cdn.top4top.net/i_a838d1e1c30.png

daniel
09-20-2014, 12:46 AM
Okay here I've made a connecting diagram of this project. Its not complete because I don't know how to connect the RX coil and Ferrite (Please help).

Please check for errors and let me know how to connect the missing parts.

Thanks

daniel
09-20-2014, 12:14 PM
The pcb true image


http://cdn.top4top.net/i_a838d1e1c30.png


Thanks brs,

your're right it's much easier that way.

UPDATE UPDATE UPDATE !!!!
Finally I've found out how to connect everything together. I will try to update my post with new diagram or post a new one in 1 hour.

daniel
09-20-2014, 12:43 PM
After digging through all the posts and threads on this forum I've found the answers.

This is my final wiring diagram Rev. 1.1 2014.
If someone finds any errors please let me know and I will update it.

Daniel

folharin
09-22-2014, 02:25 PM
I had good results with alonso 5 pcbs combination with coil heatkit gd 348..estou working on it

GOLDEN LILLY
09-23-2014, 01:41 AM
I made this lrl last year with the same configuration above but does not give a promising result. True, this lrl is very sensitive to the phenomenon but is not stable, it drifts from time to time. So the operator should re adjust the sensitivity oftentimes.

Regards...

FrancoItaly
09-23-2014, 10:58 AM
This is the fault where we have so much amplification in DC. As with the metal detectors you need a button for retune or a motion amplifier.

Regards

fmnotes
09-23-2014, 12:29 PM
This is the fault where we have so much amplification in DC. As with the metal detectors you need a button for retune or a motion amplifier.

Regards

you have an idea for improving the pd and better performance?

FrancoItaly
09-24-2014, 11:49 AM
Sorry but I don't know well this lrl.
Best Regards

fmnotes
09-24-2014, 12:12 PM
Sorry but I don't know well this lrl.
Best Regards
thanks Franko

daniel
09-24-2014, 10:30 PM
Here is my PDK housing for the Alonso Clone. I needed some good housing to do the calibration exactly. I've designed my own housing in AutoCad Light and used my DIY CNC Router to create the parts. Now I have to search for an approriate Ferriterod.

fmnotes
09-24-2014, 10:42 PM
Here is my PDK housing for the Alonso Clone. I needed some good housing to do the calibration exactly. I've designed my own housing in AutoCad Light and used my DIY CNC Router to create the parts. Now I have to search for an approriate Ferriterod.

Very nice work.
You might have problems with coordination.

daniel
09-24-2014, 10:50 PM
Very nice work.
You might have problems with coordination.


Thanks. What do you mean by coordination? Each coil can be moved by small increments for adjusting.

WM6
09-24-2014, 11:22 PM
Here is my PDK housing for the Alonso Clone. I needed some good housing to do the calibration exactly. I've designed my own housing in AutoCad Light and used my DIY CNC Router to create the parts. Now I have to search for an approriate Ferriterod.

Very nice design, daniel. You can teach Alonso in many ways.

Probably ferrite coil should be more center pointed in regard to omega coil.

fmnotes
09-25-2014, 12:45 AM
Thanks. What do you mean by coordination? Each coil can be moved by small increments for adjusting.There is the case ferrite having to move either left or right of the center of the coil . Not sure that 's the best placement in the center .
You tried to do something that can be moved left or right to do what your settings correctly.

paku
09-25-2014, 09:46 AM
is that have someone finish successfully this project

daniel
09-25-2014, 10:42 AM
There is the case ferrite having to move either left or right of the center of the coil . Not sure that 's the best placement in the center .
You tried to do something that can be moved left or right to do what your settings correctly.


No, the ferrite cannot be moved left or right in this design. But if it is absolutely necessary I can modify the design of the ferrite holder and cnc new parts in a couple of minutes. I used the measurements from Andreas's post 81:

http://www.longrangelocators.com/forums/attachment.php?attachmentid=18781&stc=1&d=1391447412
http://www.longrangelocators.com/forums/showpost.php?p=148461&postcount=81

fmnotes
09-25-2014, 01:35 PM
No, the ferrite cannot be moved left or right in this design. But if it is absolutely necessary I can modify the design of the ferrite holder and cnc new parts in a couple of minutes. I used the measurements from Andreas's post 81:

http://www.longrangelocators.com/forums/attachment.php?attachmentid=18781&stc=1&d=1391447412
http://www.longrangelocators.com/forums/showpost.php?p=148461&postcount=81

I've made ​​the pd,
and therefore I tell you some things.
It will help a lot in this coordination.
And as far as possible fixed structures,
because easily detuned.
I will recommend you for the reason that you have the technology in your hands, and you can do a good job,
I will recommend to the ferrite to create a micro coordination.
so that you can restore the coordination Assists per moment where it should.

daniel
09-25-2014, 01:51 PM
I've made ​​the pd,
and therefore I tell you some things.
It will help a lot in this coordination.
And as far as possible fixed structures,
because easily detuned.
I will recommend you for the reason that you have the technology in your hands, and you can do a good job,
I will recommend to the ferrite to create a micro coordination.
so that you can restore the coordination Assists per moment where it should.

Thanks very much! I wll then implement a X/Y adjustment in the ferrite holder. But first I have to get a ferrite from old radio somewhere.

fmnotes
09-25-2014, 01:56 PM
Thanks very much! I wll then implement a X/Y adjustment in the ferrite holder. But first I have to get a ferrite from old radio somewhere.

This is not difficult.
You can buy a ferrite.
There is no need to look old radios.
I hope to have good results.

daniel
09-25-2014, 05:24 PM
Omega Coil finished :)

Qiaozhi
09-25-2014, 08:08 PM
Here is my PDK housing for the Alonso Clone. I needed some good housing to do the calibration exactly. I've designed my own housing in AutoCad Light and used my DIY CNC Router to create the parts. Now I have to search for an approriate Ferriterod.
Nice. :thumb:

Did you design the CNC router yourself, or is it from a kit?

daniel
09-25-2014, 10:04 PM
Nice. :thumb:

Did you design the CNC router yourself, or is it from a kit?

Thanks! Actually it's a kit I've bought many years ago. I did also design my own CNC router but that complete kit with controller was much cheaper. Nowadays you get full CNC router incl. software for smaller price because competition is very high.

Geo
09-26-2014, 06:35 AM
Hi Daniel.

Congratulation for your fantastic design:thumb:.
You must know that at original Alonso's PD, Omega coil looks at top of housing (you must turn it 180 degrees).

paku
09-26-2014, 05:09 PM
ET on The Earth
http://www.youtube.com/watch?v=N30KlJI5f4k

daniel
10-13-2014, 01:29 AM
The ferrite coils from Alonso PD could be exactly in one of these atomic clocks. They are already tuned for 60 kHz.

http://www.leapsecond.com/pages/sony-wwvb/


http://www.leapsecond.com/pages/sony-wwvb/sony5.jpg
http://www.leapsecond.com/pages/sony-wwvb/sony1.jpg

reza vir
10-14-2014, 05:41 PM
The ferrite coils from Alonso PD could be exactly in one of these atomic clocks. They are already tuned for 60 kHz.

http://www.leapsecond.com/pages/sony-wwvb/


http://www.leapsecond.com/pages/sony-wwvb/sony5.jpg
http://www.leapsecond.com/pages/sony-wwvb/sony1.jpg

yes my dear .
for http://www.geomag.bgs.ac.uk/research/modelling/WMM.jpg

ANDREAS
10-27-2014, 03:04 PM
Hi all
Sorry for delay send about more infos for PD. After experiments, three months ago, i see PD need new circuits design. I make new design with new extra circuits for more stability , filters etc. Attachment inside PD a photo. I hope next week i have final experiments of course video etc.
About reject magnetics or soil lines, ground effects, full rejection all metals except Gold, rain, AC camples 220v, temperature etc, has been solved.
About searching without motion or very slow motion PD work has been solved.
best regards

ouiarabe
10-28-2014, 12:48 AM
hi all
thank you very much Professor Andreas for sharing your projects, I realized your pd but I encountered some problems
1- my setup works as a Pulse induction because it detects all metal 50 mm
2- both led blinking but no sound only if I connect the Q4 collector to the resistance R40,maybe the 555 timer is blown I do not know
please help me
thank you in advance

ANDREAS
10-29-2014, 06:55 AM
hi all
thank you very much Professor Andreas for sharing your projects, I realized your pd but I encountered some problems
1- my setup works as a Pulse induction because it detects all metal 50 mm
2- both led blinking but no sound only if I connect the Q4 collector to the resistance R40,maybe the 555 timer is blown I do not know
please help me
thank you in advance
Hi ouiarabe
PCB and schematic have not error. I am sure 100%, before publish here and of course first prototype work with this. I think you have put "bad part" or put "invert" 555
My opinion.
Check botom side pcb with your eyes, step by step for problems
Check soldering if are correct
and final replace 555 and Q4 with new
The best choice is .. use osciloscope and check all sections if you have a friend electronic engineer
best regards

ouiarabe
10-29-2014, 08:46 AM
accept my respectful greetings ANDREAS teacher and thank you I'll check and change the IC 555 and T4 and attach images and video of the printed circuit

stergeol
10-29-2014, 11:26 PM
hello!! congratulation andrea.

ouiarabe
10-31-2014, 01:44 AM
Hi ouiarabe
PCB and schematic have not error. I am sure 100%, before publish here and of course first prototype work with this. I think you have put "bad part" or put "invert" 555
My opinion.
Check botom side pcb with your eyes, step by step for problems
Check soldering if are correct
and final replace 555 and Q4 with new
The best choice is .. use osciloscope and check all sections if you have a friend electronic engineer
best regards

hi professor ANDREAS
I checked all the welds and change the NE555 and Q4 but its same problem I will attach a video
thank you for your help and I await your recommendations with pacience
thank you in advance.

https://www.youtube.com/watch?v=vrvvHAyBmdc
https://www.youtube.com/watch?v=vrvvHAyBmdc&feature=youtu.be

ANDREAS
10-31-2014, 07:04 AM
hello!! congratulation andrea.
Thank you stergie

ANDREAS
10-31-2014, 07:07 AM
hi professor ANDREAS
I checked all the welds and change the NE555 and Q4 but its same problem I will attach a video
thank you for your help and I await your recommendations with pacience
thank you in advance.

https://www.youtube.com/watch?v=vrvvHAyBmdc
https://www.youtube.com/watch?v=vrvvHAyBmdc&feature=youtu.be
Via a video i cannot find solution, but maybe...
Unconnect C15 and connect power supply. If you have the same tic-tic on buzzer, replace buzzer with other attchment pic.
best regards

ouiarabe
11-01-2014, 01:54 PM
Via a video i cannot find solution, but maybe...
Unconnect C15 and connect power supply. If you have the same tic-tic on buzzer, replace buzzer with other attchment pic.
best regards

hi all
thank you very much professor ANDREAS
I executed your recommendation and it seems that the problem is solved
I'll get a real field because I do not have a test field
another question please is it normal for the PD detects all ferrous materials at 20-40 cm and 1m the LCD television
thank you

ANDREAS
11-01-2014, 07:41 PM
hi all
thank you very much professor ANDREAS
I executed your recommendation and it seems that the problem is solved
I'll get a real field because I do not have a test field
another question please is it normal for the PD detects all ferrous materials at 20-40 cm and 1m the LCD television
thank you


It's my pleasure can help you. About PD. Real Alonso clone can detect materials and detect a small magnet from >50 cm distance.PD for gold cannot detect materials or magnet
best regards

ouiarabe
11-01-2014, 11:32 PM
It's my pleasure can help you. About PD. Real Alonso clone can detect materials and detect a small magnet from >50 cm distance.PD for gold cannot detect materials or magnet
best regards

once again thank you very much for your help
this is the result but do not make fun of my modest presentation

https://www.youtube.com/watch?v=H-Ze2_HOKYc&feature=youtu.be

RS_Phil
11-02-2014, 11:27 AM
Is it ok to use plastic casing for this PD? or it is necessary to use a plywood or ply-board...

ANDREAS
11-13-2014, 08:09 PM
Is it ok to use plastic casing for this PD? or it is necessary to use a plywood or ply-board...
I have 3d Printer. It's better and easy via this machine build everything via plactic ABS, but here i see the best choice is wood. Calibration is extreme.
I think plastic produce electrostatic phenomena. We don't need parasitic signals
best regards

RS_Phil
11-14-2014, 12:16 AM
I have 3d Printer. It's better and easy via this machine build everything via plactic ABS, but here i see the best choice is wood. Calibration is extreme.
I think plastic produce electrostatic phenomena. We don't need parasitic signals
best regards


Thanks a lot master Andreas,..

ouiarabe
11-14-2014, 11:00 AM
hi teachers andreas
I finished my PD after your help, it's true calibration is very difficult but ultimately this circuit detects all materials and unfortunately he can not discriminate
* anyway thank you for your cooperation and support.
and if you could, there he has a solution for discrimination ??
Thank you in advance
and please accept the most respectful greetings to your student

ANDREAS
11-14-2014, 01:49 PM
Hi
First for all
I am not master-teacher-proffessor etc. Simple Andreas is enough
About discrimination is simple. Remove receiver coil and invert back-front. Now if start again fine null you can see you have discrimination. That's all
best regards

RS_Phil
11-14-2014, 04:32 PM
Hi
First for all
I am not master-teacher-proffessor etc. Simple Andreas is enough
About discrimination is simple. Remove receiver coil and invert back-front. Now if start again fine null you can see you have discrimination. That's all
best regards

It's a big honor for us.,,to get a fast response from you sir (Mr. Andreas) and I'm bit follower of your project like PD,and I would like to build some of those. But I don't know which one of your best PD..,.can you give me and some other here a circuit with PCB layout?

ANDREAS
11-14-2014, 09:47 PM
PD pistol is not my design. First present here from morgan few years ago.
Qiaozhi finish full schematic after opinions and studies from many-many members.
I must send a thank for members j-player, esteban, Qiaozhi, Aft etc present info without secrets. This PD has a magic for me, because, few members try build it complete without results.
Morgan is the first member, build working only ferrite stage.
Men in my country Greece build the MD section without fine results.
Of course many members build complete this in their fantasy.
It was a personal challenge to finish it complete. Only one member with substantially help me and I will again send a big "thank you".
This is generally the story.
After first really experiments and full modifications a suprise for me is.. PD detect only Gold. This is a big chapter, but i cannot publish more.
The lesson is one. If you try, you can build your dreams. It's easy if you can study with open mind. Please don't forget with OPEN MIND
best regards

RS_Phil
11-14-2014, 10:13 PM
PD pistol is not my design. First present here from Morgan few years ago.
Qiaozhi finish full schematic after opinions and studies from many-many members.
I must send a thank for members j-player, esteban, Qiaozhi, Aft etc present info without secrets. This PD has a magic for me, because, few members try build it complete without results.
Morgan is the first member, build working only ferrite stage.
Men in my country Greece build the MD section without fine results.
Of course many members build complete this in their fantasy.
It was a personal challenge to finish it complete. Only one member with substantially help me and I will again send a big "thank you".
This is generally the story.
After first really experiments and full modifications a surprise for me is.. PD detect only Gold. This is a big chapter, but i cannot publish more.
The lesson is one. If you try, you can build your dreams. It's easy if you can study with open mind. Please don't forget with OPEN MIND
best regards

Ok sir thank you,..for a lot of information..,

brs
11-15-2014, 09:13 PM
Hi ANDREAS
Is it possible to explain more
Remove the receiver coil and reverse-back front.

ANDREAS
11-15-2014, 10:00 PM
Hi ANDREAS
Is it possible to explain more
Remove the receiver coil and reverse-back front.
attachment pdf file

brs
11-16-2014, 03:07 PM
Thank you Andreas

ouiarabe
11-16-2014, 07:46 PM
thank you Alonso on thé issue of discrimination, it is an impressive solution
big hat

ouiarabe
11-29-2014, 11:23 AM
hi all
after several attempts setting my clone pd detects only the ferrite and graphite
continuous tests still

ANDREAS
11-30-2014, 06:52 AM
Andreas,
I make to DD or concentric coil. How to make?.
Is your choice if use DD or concentric coils. I use omegac coil ONLY, because, i build a clone
best regards

stergeol
12-12-2014, 07:43 PM
hello Antrea pls help how is the correct ??

http://imageshack.com/a/img673/7211/yUX1yW.jpg

stergeol
12-18-2014, 01:05 PM
[QUOTE=stergeol;150635]here is my PD version
https://imageshack.com/i/f01wfKa0j

all pieces

https://imageshack.com/i/ipXkUpCXj

WM6
12-18-2014, 04:39 PM
Really nice design, stergeol. Congratulations.

Qiaozhi
12-18-2014, 09:47 PM
Looks like it was cut out with a milling / engraving machine.
Nice work. :thumb:

ouiarabe
12-20-2014, 11:48 AM
[QUOTE=stergeol;150635]here is my PD version
https://imageshack.com/i/f01wfKa0j

all pieces

https://imageshack.com/i/ipXkUpCXj

hi
congratulations it's a beautiful work I hope it gives good results
please what is the correct position of the ferrite and coil Omega 1 or 2

mohandes
12-20-2014, 12:55 PM
hi any body can put here all correct file in zip file .

ANDREAS
12-20-2014, 02:42 PM
hello Antrea pls help how is the correct ??

http://imageshack.com/a/img673/7211/yUX1yW.jpg
Hi Stergie, use No2. 150 turns is front place on feritte.
regards

stergeol
12-22-2014, 01:32 PM
many thanks andrea....