View Full Version : My TOTeM project
Goldmaxx
12-26-2012, 11:02 PM
Hi to all,
I currently have some time, I will here show the construction of my TOTeM project.
Since I am not a electronics expert and I hope that I maybe get some help here.
The theme PD has always fascinated me and I very much fun to construct.
It will be my first PD project and am very excited. :)
At this point, I would like once more to thank so much Qiaozhi and Carl for the wonderful book Inside the METAL DETECTOR, which made me very thrilled.
So the PCB I have almost finished, there only missing the transistors.
And here was already my first question to Qiaozhi:
There are three different versions of the BC108 transistors A, B or C.
Which type do I need, or are they all the same?
Thank you very much
best regards
Here are picture of my PCB
Qiaozhi
12-27-2012, 01:05 AM
And here was already my first question to Qiaozhi:
There are three different versions of the BC108 transistors A, B or C.
Which type do I need, or are they all the same?
You can use either type in this application. In fact, any general purpose NPN transistor will be ok, as these are only being used in the audio stage.
nelson
12-27-2012, 11:28 AM
Hi Goldmaxx
I congratulate your work and this will be my next proyect too after my vacations, so i will be following your post.
About transistors has Qiaozhi is pinting out, you can use almost any substitute.
Good luck in your new project and have a happy new year.
Regards
Nelson
Hi to all,
I currently have some time, I will here show the construction of my TOTeM project.
Since I am not a electronics expert and I hope that I maybe get some help here.
The theme PD has always fascinated me and I very much fun to construct.
It will be my first PD project and am very excited. :)
At this point, I would like once more to thank so much Qiaozhi and Carl for the wonderful book Inside the METAL DETECTOR, which made me very thrilled.
So the PCB I have almost finished, there only missing the transistors.
And here was already my first question to Qiaozhi:
There are three different versions of the BC108 transistors A, B or C.
Which type do I need, or are they all the same?
Thank you very much
best regards
Here are picture of my PCB
Goldmaxx
12-27-2012, 03:14 PM
You can use either type in this application. In fact, any general purpose NPN transistor will be ok, as these are only being used in the audio stage.
Hi Qiaozhi,
many thanks for the information, now I can finally make the completed PCB
and continue with the case.
Regards
Goldmaxx
Goldmaxx
12-27-2012, 03:26 PM
Hi Goldmaxx
I congratulate your work and this will be my next proyect too after my vacations, so i will be following your post.
About transistors has Qiaozhi is pinting out, you can use almost any substitute.
Good luck in your new project and have a happy new year.
Regards
Nelson
Hi nelson,
thank you very much and also for the tip. I will try to gradually my complete setup of Totem documented and am happy for all the help I can get.
However, it should not only be a help for me, but also for all others who want to build this project.
Of course, just as much as it Qiaozhi and Carl permit, because it's their idea and from your book.
Nelson, I am pleased that you want to build a totem too, and of course everybody else.
I hope that together we can make a good Thread with lots of information put up and at the end an interesting project and perhaps even an working PD build.
I wish you a great vacations and a happy new year, well as all other of course too.
regards
Goldmaxx
nelson
12-27-2012, 07:23 PM
I know you will get success with TOTem
To be honest i just think all this kind of devices really works and if some of them not work has expected, is because is bad tuned. To me the clue is to get TOTem well tuned and this is the hard part that must be worked together with members.
Thaks for your wishes and let me said to you and your family and members the best wiches for the new year 2013.
Best regards
Nelson
Hi nelson,
thank you very much and also for the tip. I will try to gradually my complete setup of Totem documented and am happy for all the help I can get.
However, it should not only be a help for me, but also for all others who want to build this project.
Of course, just as much as it Qiaozhi and Carl permit, because it's their idea and from your book.
Nelson, I am pleased that you want to build a totem too, and of course everybody else.
I hope that together we can make a good Thread with lots of information put up and at the end an interesting project and perhaps even an working PD build.
I wish you a great vacations and a happy new year, well as all other of course too.
regards
Goldmaxx
Goldmaxx
12-28-2012, 02:47 PM
I know you will get success with TOTem
To be honest i just think all this kind of devices really works and if some of them not work has expected, is because is bad tuned. To me the clue is to get TOTem well tuned and this is the hard part that must be worked together with members.
Thaks for your wishes and let me said to you and your family and members the best wiches for the new year 2013.
Best regards
Nelson
Hi nelson,
that is true what you say, the most difficult will be the calibration of the unit.
This is my first PD I'm building, because it is well documented in the book and I'm sure that you really do with the TOTeM as the first project,
can be learned a lot about the function of such devices.
For me it is very exciting and I'm very curious if it works. :)
But I am sure that together we will create a good calibration. :thumb:
Thank you for your wish, I wish you and your family back.
best regards
Goldmaxx
01-12-2013, 09:22 PM
Hi to all
I hope that you all came well in the new year and above all that the new year will be better than the old. :)
I had some time and the days have continued to make at my TOTeM project.
First, I have completed the PCB. I soldered the missing transistors and the connecting cables. It looks quite good, I just hope that it works. ;):)
Here pictures of it
I wait for results!!!:cool:
Goldmaxx
01-12-2013, 10:32 PM
I wait for results!!!:cool:
Hi Geo,
I'm myself very curious about the results ;):)
I will report it to you any case
Goldmaxx
01-12-2013, 10:51 PM
Next, I will build the casing, so that I can connect the Switches, Beeper, Potis und the 250 uA Meter on the PCB.
With a CAD program I have constructed a 3D model of the body, so I can make patterns for the cutouts and drill holes.
The casing itself is constructed as described in the book, only the handle I have been slightly modified.
I have from the 3D model made a 3D pdf. You can it download below.
You can open it with the normal Acrobat reader and it with the left mouse button rotate in all directions and turn as you like.
You can also hide and show parts, and zoom the model in and out.
Here are some pictures
Goldmaxx
01-12-2013, 10:54 PM
and here the 3D pdf
have fun :)
Qiaozhi
01-12-2013, 11:51 PM
and here the 3D pdf
have fun :)
Good work! :cool:
I really like the 3D PDF file. It looks and feels like a Sketchup model, but (as far as I'm aware) Sketchup cannot export a PDF file like that. Maybe you're using the Pro version ... or is it something else?
Goldmaxx
01-13-2013, 01:47 PM
Good work! :cool:
I really like the 3D PDF file. It looks and feels like a Sketchup model, but (as far as I'm aware) Sketchup cannot export a PDF file like that. Maybe you're using the Pro version ... or is it something else?
Hi Qiaozhi
Thank you!
It's nice that you like it.
I work with Catia V5, so I create the 3D models and save it as stp file.
This format is required in order to generate a 3D PDF.
To create the 3D pdf file you need Adobe Acrobat 9 Pro Extended.
So you can read in the stp file and save as 3D pdf.
And ready is the 3D pdf file. :)
Goldmaxx
02-18-2013, 10:07 PM
Hi to all,
I had the day some time to continue my totem project. The case is now finished and will paint it black.
When the paint is dry, I will install the PCB, switches, potentiometers, and the instrument.
Here are some pictures
Nice design Goldmaxx. Wish you full success.
Qiaozhi
02-19-2013, 09:03 AM
Hi to all,
I had the day some time to continue my totem project. The case is now finished and will paint it black.
When the paint is dry, I will install the PCB, switches, potentiometers, and the instrument.
Here are some pictures
Beautiful workmanship! :cool:
It looks much much better than my prototype.
Goldmaxx
02-19-2013, 10:25 PM
Nice design Goldmaxx. Wish you full success.
Thank you WM6 and also for the success.
Soon as I continue, I present here new pictures. :)
Goldmaxx
02-19-2013, 10:35 PM
Beautiful workmanship! :cool:
It looks much much better than my prototype.
Many thanks Qiaozhi, it is really a very nice project and do a lot of fun to build it.
This is my first PD what I build and for me it is something very special.
I just hope that it works as good as yours. :)
Hi to all,
I had the day some time to continue my totem project. The case is now finished and will paint it black.
When the paint is dry, I will install the PCB, switches, potentiometers, and the instrument.
Here are some pictures
Λοιπον φιλε μου απο εδω και μπρος θα αναλαβεις και απο τις δικες μου κατασκευες τα κουτια.
Ειλικρινα δεν παιζεσαι.
Μπραβο....
Qiaozhi... sorry for some Greeks...:lol:
Goldmaxx
02-21-2013, 12:37 AM
Λοιπον φιλε μου απο εδω και μπρος θα αναλαβεις και απο τις δικες μου κατασκευες τα κουτια.
Ειλικρινα δεν παιζεσαι.
Μπραβο....
Qiaozhi... sorry for some Greeks...:lol:
Hi Geo
sorry but I do not understand greek.
But maybe you can translated it for me, so I even understand it.
regards
Hi Geo
sorry but I do not understand greek.
But maybe you can translated it for me, so I even understand it.
regards
Hi.
Sorry I thought you were Greek.
Any way, Congratulations for your work.
Fantastic!!!!!
I wrote at Greek .. to send you my lrls so you make the boxes:lol:: Lol:
Regards:)
Goldmaxx
02-22-2013, 10:41 PM
Hi.
Sorry I thought you were Greek.
Any way, Congratulations for your work.
Fantastic!!!!!
I wrote at Greek .. to send you my lrls so you make the boxes:lol:: Lol:
Regards:)
Hi Geo,
no problem.
Thank you for your congratulations.
I think it's nice when other people like my work. :)
Yes that would be a good deal Geo, what you write in greek.
We might gladly talk about it. :lol:
Best regards
Goldmaxx
02-26-2013, 10:16 PM
Hi friends
Here are some pictures of the current state of my TOTeM PD.
I was able to make the weekend a few.
It looks like I will soon have the device to get through
The coil and the calibration will still be a hard job and I think its also the most difficult part of this project.
I have some to finish the weekend. The Housing painted, the switches, potentiometers, and the PCB mounted in the casing
At first a few images of the closed case.
Goldmaxx
02-26-2013, 10:26 PM
And here are some pictures from the open casing.
In the next step, I'll wrap the coils and connect them.
Wow, I'm very curious. :rolleyes: :)
Qiaozhi
02-26-2013, 11:32 PM
And here are some pictures from the open casing.
In the next step, I'll wrap the coils and connect them.
Wow, I'm very curious. :rolleyes: :)
You have the meter, LEDs and switches mounted a little higher than the original, but I don't think that will cause a problem. The calibration is quite easy once you can find the null.
Have you tested any of the electronics yet?
Sneshko
02-27-2013, 07:11 AM
Bravo Goldmaxx!
Very good job.
Congratulations from me!
I'm late with my ТОТeМ PD, but I can not wait your results.
All the best and regards!
Sneshko
Goldmaxx
02-27-2013, 07:00 PM
You have the meter, LEDs and switches mounted a little higher than the original, but I don't think that will cause a problem. The calibration is quite easy once you can find the null.
Have you tested any of the electronics yet?
Hello Qiaozhi
uii, I hope that it really makes no problems, otherwise I would still build a new case.
When I am ready with the coils, I have determines a few questions at you,
regarding the inductance, and calibration of the coils.
The electronics I have not tested yet.
Can I turn on the electronics without coils?
If yes, I will test the electronics.
regards
Goldmaxx
02-27-2013, 07:15 PM
Bravo Goldmaxx!
Very good job.
Congratulations from me!
I'm late with my ТОТeМ PD, but I can not wait your results.
All the best and regards!
Sneshko
Hi Sneshko
thank you very much.
I saw that you posted a PCB for the TOTeM.
Very good job, congratulations from me for that.
It looks very good and will build me maybe a board with your PCB layout.
But look at first, that this PD it working.
It's my first PD I build and am very curious.
I think it's very good that you build a TOTeM, we can exchanging each other experiences.
I look forward to the exchange.
I wish you much success in your TOTeM Project
regards Goldmaxx
Qiaozhi
02-27-2013, 07:37 PM
Hello Qiaozhi
uii, I hope that it really makes no problems, otherwise I would still build a new case.
When I am ready with the coils, I have determines a few questions at you,
regarding the inductance, and calibration of the coils.
The electronics I have not tested yet.
Can I turn on the electronics without coils?
If yes, I will test the electronics.
regards
The TX coil has 75 turns of 0.56mm enameled wire on an 80mm diameter former. The resonant frequency is not that critical as the TX is a forced oscillator running at around 65kHz.
The RX coil has 100 turns of 0.56mm enameled wire.
Without the coils connected, you can test the power supplies are correct, and that the TX oscillator is working. If you connect the RX coil, it will be possible to use the device in passive mode, as there is no need to balance the coils. Balancing will be required after you add the TX coil.
Goldmaxx
02-27-2013, 09:35 PM
The TX coil has 75 turns of 0.56mm enameled wire on an 80mm diameter former. The resonant frequency is not that critical as the TX is a forced oscillator running at around 65kHz.
The RX coil has 100 turns of 0.56mm enameled wire.
Without the coils connected, you can test the power supplies are correct, and that the TX oscillator is working. If you connect the RX coil, it will be possible to use the device in passive mode, as there is no need to balance the coils. Balancing will be required after you add the TX coil.
Hi Qiaozhi
Thanks for the quick reply.
I'll wrap the coils the day. I can test it with an LCR meter?
Sorry the question, but I'm not an electronics specialist.
I have just tested the electronics and it works very well. :)
The red LED going on and meter suggests out.
When I turn on the buzzer beeps, the device continuously.
Yes, that's is a great success. :)
I have made a little video from the test.
nelson
02-28-2013, 11:11 AM
Hi Goldmaxx
Congratulations for your nice work on TOTem
I also will like to know if you have any buried target to test TOTem when it get ready for field test?
Good luck and keep working has good has you are done by now.
Regards
Nelson
Hi Qiaozhi
Thanks for the quick reply.
I'll wrap the coils the day. I can test it with an LCR meter?
Sorry the question, but I'm not an electronics specialist.
I have just tested the electronics and it works very well. :)
The red LED going on and meter suggests out.
When I turn on the buzzer beeps, the device continuously.
Yes, that's is a great success. :)
I have made a little video from the test.
Qiaozhi
02-28-2013, 01:36 PM
Hi Qiaozhi
Thanks for the quick reply.
I'll wrap the coils the day. I can test it with an LCR meter?
Sorry the question, but I'm not an electronics specialist.
I have just tested the electronics and it works very well. :)
The red LED going on and meter suggests out.
When I turn on the buzzer beeps, the device continuously.
Yes, that's is a great success. :)
I have made a little video from the test.
I would suggest that you make the ferrite receiver coil first and test the device in passive mode. You should use an LCR meter to help you get the right inductance. The details are given in the TOTeM chapter, but results may vary depending on the ferrite rod used. As mentioned in the chapter, you can slide the coil along the rod to change the inductance.
Goldmaxx
02-28-2013, 11:08 PM
Hi Goldmaxx
Congratulations for your nice work on TOTem
I also will like to know if you have any buried target to test TOTem when it get ready for field test?
Good luck and keep working has good has you are done by now.
Regards
Nelson
Hello Nelson
thank you very much, this is a very nice project and make a lot of fun to build it.
No, unfortunately I didn´t have a test field with buried targets for testing.
But we have some old places from the 16th century, a friend of mine has found a Gold Gulden from the period of this place.
I will test it on this area and whether it indicates what.
Of course, a test field would be better, but maybe I'll find something equal. ;)
If I find something, I'll post it here :)
Regards
Goldmaxx
Goldmaxx
02-28-2013, 11:11 PM
I would suggest that you make the ferrite receiver coil first and test the device in passive mode. You should use an LCR meter to help you get the right inductance. The details are given in the TOTeM chapter, but results may vary depending on the ferrite rod used. As mentioned in the chapter, you can slide the coil along the rod to change the inductance.
Hi Qiaozhi
that's a really good tip, thank you for that.
Just as I'll do it. In passive mode, I can take the test as you describe in the chapter and should react to the test.
I'll wrap this weekend the coil and maybe I can test the device in passive mode.
Best regards
nelson
03-01-2013, 11:32 AM
Well, it just a matter of time to do experiments on the field. What is important, is to do lots of test in diferent places, weather conditions and of course to look on places that you know there could be some treasures.
I also have the book, so i will try to build ToTem too. By the way your eclosure design looks terrific, so congratulations for that.
I wich you luck and has all members i will be waiting for news.
Best regards
Nelson
Hello Nelson
thank you very much, this is a very nice project and make a lot of fun to build it.
No, unfortunately I didn´t have a test field with buried targets for testing.
But we have some old places from the 16th century, a friend of mine has found a Gold Gulden from the period of this place.
I will test it on this area and whether it indicates what.
Of course, a test field would be better, but maybe I'll find something equal. ;)
If I find something, I'll post it here :)
Regards
Goldmaxx
Goldmaxx
03-01-2013, 11:23 PM
Well, it just a matter of time to do experiments on the field. What is important, is to do lots of test in diferent places, weather conditions and of course to look on places that you know there could be some treasures.
I also have the book, so i will try to build ToTem too. By the way your eclosure design looks terrific, so congratulations for that.
I wich you luck and has all members i will be waiting for news.
Best regards
Nelson
Hi Nelson
Yes I also think that it is the right way, the TOTeM to test extensively to various locations.
In my area there are many places to which I will test the TOTeM.
Of course, even under different weather conditions.
I will post my experiences with the TOTeM here too, but first must function the device.
I'm really looking forward to the tests, no matter how they turn out.
You know, who wants to know whether something works or not, can experience it only by itself so what builds and makes himself a picture of it.
I believe any case that it works and I want to prove it myself.
Thanks for your wishes Nelson and am very pleased that you want to build a TOTeM too, so we can help each other.
I have a 3D PDF posted for download. You can download it and rebuild the casing if you want.
I wish you much luck, all the best and much success with the construction of your TOTeM.
Best regards
Goldmaxx
humhum
03-02-2013, 10:24 PM
Hi Goldmaxx , Did you try your Totem PD with buried object , how is result and maximum from what meter found? ;)
Regards.
Goldmaxx
03-03-2013, 08:54 PM
Hi Goldmaxx , Did you try your Totem PD with buried object , how is result and maximum from what meter found? ;)
Regards.
Hello humhum,
unfortunately I could not make any tests with the TOTeM because the coils are not ready yet.
I was not much at home that weekend and could not finish the coils.
But once I made the first test, I'll post it here. :)
Best regards
Goldmaxx
humhum
03-04-2013, 08:00 AM
Hello humhum,
unfortunately I could not make any tests with the TOTeM because the coils are not ready yet.
I was not much at home that weekend and could not finish the coils.
But once I made the first test, I'll post it here. :)
Best regards
Goldmaxx
Ok, We will wait ..
Goldmaxx
03-18-2013, 12:29 AM
Halo Friends
the day I had some time for continue to working on my TOTeM project and can already tell from the first small successes. :)
But first a question to Qiaozhi,
my electronics skills are not the best, but I am beginning to understand the functionality of these devices.
I have a couple of days thought that I had an error in the PCB and have tried everything possible to fix it, unfortunately without success.
Then I remembered some point a time that I've read in your book that one needs a battery holder with 8x AA alkaline battery.
The electronic system runs however with 9V. But 8x 1.5 V are 12V and therefore was not going the PCB.
I only had interference and false signals the buzzer constantly gave signals and you could not adjust it.
I then connected a 9V battery and lo and behold, the PD would run perfectly and quietly.
My question now would be to you, it may be that there is a provided with the 8xAA batteries, or the device is really operated with 12V battery?
My current status is:
I have wound the coil, the ferrite antenna is ready, positioned and connected.
So I was employed the day with only the passive mode.
The PD can be adjusted perfectly, unfortunately I could only test in my home, because we have very cold, wet and snow still lies.
In the house are many energy sources that are displayed from pd.
I am convinced that with the right attitude and without sources of interference the Pd has a higher scanning range.
To my surprise in the passive mode, it is very sensitive and shows me exactly the direction of the source.
I can at home with passive mode an energy saving lamp with a starter, at a distance of 2.5 - 3 meters sure locate.
But as I said, it's just in the house.
Until the weather is better, I'll have mounted the TX coil and will make my first test outdoors in terrain.
I'm very curious how the device reacts outdoor.
It is very exciting :rolleyes::)
As always, here are some actual pictures
Goldmaxx
03-18-2013, 12:32 AM
In the next step I'm going to install the TX coil and calibration it.
Then my first PD would be finished already. :)
Qiaozhi
03-18-2013, 01:33 AM
I then connected a 9V battery and lo and behold, the PD would run perfectly and quietly.
My question now would be to you, it may be that there is a provided with the 8xAA batteries, or the device is really operated with 12V battery?
You are indeed correct. The battery needs to be 9V (as shown in the schematics) and not 12V. The parts list specifies an 8x AA battery holder, but I've just checked the prototype, and it uses a 6-cell holder (i.e. 9V).
I will add this mistake to the errata list.
Again, well done on your excellent construction. It sounds like the unit is working exactly as designed.
One small point ... you appear to have glued the ferrite rod into position, but you will need to reposition this to balance the coils for active mode.
Goldmaxx
03-18-2013, 02:08 AM
You are indeed correct. The battery needs to be 9V (as shown in the schematics) and not 12V. The parts list specifies an 8x AA battery holder, but I've just checked the prototype, and it uses a 6-cell holder (i.e. 9V).
I will add this mistake to the errata list.
Again, well done on your excellent construction. It sounds like the unit is working exactly as designed.
One small point ... you appear to have glued the ferrite rod into position, but you will need to reposition this to balance the coils for active mode.
Hi Qiaozhi
Thanks for the quick reply.
Okay, then I'll procure a 6 cell holder.
I was fascinated how well the device works in passive mode.
You and Carl have done a really good job with this project.
I can hardly wait until the weather is better, so I can test it outdoors.
Yes that's true, because I was a bit too hasty.
But it's just hot glue and can be removed quickly. I wanted the device necessarily test it. :)
DrTech
03-18-2013, 10:40 PM
GoldMAxx
Analyzing the schematic and PCB are changed LED2 and D1.
PCB R19 TO LED2, SCHEME R19 TO D1.
PCB R25 TO D1, SCHEME R25 LED2.
What is the error in the PCB or Schematic totem
Goldmaxx
03-18-2013, 11:24 PM
GoldMAxx
Analyzing the schematic and PCB are changed LED2 and D1.
PCB R19 TO LED2, SCHEME R19 TO D1.
PCB R25 TO D1, SCHEME R25 LED2.
What is the error in the PCB or Schematic totem
Hi DrTech
Oh yes you are right, this will be a transposed digits in the schematic.
But it is important that you build it according the PCB, thereafter I have built up my PCB and also works perfectly.
Although it is actually no matter, because they are both the same resistors and therefore not a real error.
Qiaozhi, can you check that please?
Goldmaxx
03-19-2013, 12:08 AM
Today I have made a little test in the passive mode.
I can detect with the TOTeM in passive mode without any problems my TV on a distance of 5 meters and more.
How much more, I can not say, because the room is not larger than 5.5 meters.
I do not know at what distance it can detect with other PDs, but I find that it is already a very impressive performance.
But I must always say, the building of my TOTeM is not completely finished and the test conditions in the house are very bad.
Qiaozhi
03-19-2013, 12:21 AM
GoldMAxx
Analyzing the schematic and PCB are changed LED2 and D1.
PCB R19 TO LED2, SCHEME R19 TO D1.
PCB R25 TO D1, SCHEME R25 LED2.
What is the error in the PCB or Schematic totem
It looks like the reference designators have been swapped over in the schematic, but as Goldmaxx pointed out, it doesn't make any difference as R19 and R25 are both 100R.
Morgan
03-19-2013, 12:45 AM
Today I have made a little test in the passive mode.
I can detect with the TOTeM in passive mode without any problems my TV on a distance of 5 meters and more.
How much more, I can not say, because the room is not larger than 5.5 meters.
I do not know at what distance it can detect with other PDs, but I find that it is already a very impressive performance.
But I must always say, the building of my TOTeM is not completely finished and the test conditions in the house are very bad.
hello
very good TOTeM construction,and the performance seems to promise very good results when is time for the field tests. Hope the weather become better.
good luck
Goldmaxx
03-20-2013, 01:58 AM
hello
very good TOTeM construction,and the performance seems to promise very good results when is time for the field tests. Hope the weather become better.
good luck
Hello Morgan
nice to hear from you, I hope you are well.
Thank you for your praise and good wishes, I will you any case tell how good the results are.
But I am very curious myself.
We any case hear from us.
best regards
humhum
03-20-2013, 08:56 PM
In the next step I'm going to install the TX coil and calibration it.
Then my first PD would be finished already. :)
Hi GoldMaxx , in Which side of PD you Put this Tx Coil , Up-Down-Left-Right-Front or Back side.
Regards.
Goldmaxx
03-20-2013, 10:35 PM
Hi GoldMaxx , in Which side of PD you Put this Tx Coil , Up-Down-Left-Right-Front or Back side.
Regards.
Hi humhum
I put the TX coil to the front side of the PD.
Look at the picture.
Regards
iron1944
03-21-2013, 10:45 AM
Dear Qiaozhi.
Can you help me? Installation of Totem Pistola's almost over. But I could not find Tx and Rx coil to wrap the coil wire 0.56. Gotta few rounds to wrap the coil wire coil Tx 0.55? Wire coil to coil 870 uH 0.55 for Rx Gotta few rounds? Waiting for emergency assistance.
Thank you.
Qiaozhi
03-21-2013, 12:16 PM
Dear Qiaozhi.
Can you help me? Installation of Totem Pistola's almost over. But I could not find Tx and Rx coil to wrap the coil wire 0.56. Gotta few rounds to wrap the coil wire coil Tx 0.55? Wire coil to coil 870 uH 0.55 for Rx Gotta few rounds? Waiting for emergency assistance.
Thank you.
The wire diameter of 0.56mm is not important. You can use whatever you have available, as long as you achieve the same value of inductance.
humhum
03-22-2013, 10:02 PM
Hi humhum
I put the TX coil to the front side of the PD.
Look at the picture.
Regards
Thanks for information.
Regards. ;)
bureaupro2000@yahoo.com
03-29-2013, 08:23 AM
Hello Qiaozhi
What inductance should have, TX coil?
Bs.Reg.,
Qiaozhi
03-29-2013, 12:11 PM
Hello Qiaozhi
What inductance should have, TX coil?
Bs.Reg.,
The TX inductance is approximately 1mH, which results in the tank circuit being tuned to about 50kHz. The 555 timer drives the coil at 65kHz, so the actual coil inductance is not critical. As mentioned in the text, it is left to the reader to experiment with tuning the TX and RX coils into resonance.
bureaupro2000@yahoo.com
03-29-2013, 02:01 PM
The TX inductance is approximately 1mH, which results in the tank circuit being tuned to about 50kHz. The 555 timer drives the coil at 65kHz, so the actual coil inductance is not critical. As mentioned in the text, it is left to the reader to experiment with tuning the TX and RX coils into resonance.
I'll build it so, then experimenting resonance coils.
Thanks for the reply
Goldmaxx
03-30-2013, 02:28 AM
Thanks for information.
Regards. ;)
Hi humhum
Sorry for my late reply.
No problem for information, you're welcome.
Regards
Goldmaxx
03-30-2013, 02:29 AM
hi to all ;)
Hi vali
thanks for the note, but have already installed the TX coil. :)
Regards
Goldmaxx
03-30-2013, 02:38 AM
And here is my status quo.
The TX coil is mounted, connected and it works well.
Thereby my TOTeM PD is completely, except for the calibration of the coils.
I have tried to calibrate the coils in the house, but has not brought satisfactory results.
At the spark test, I could locate the spark only on a distance of about 1.5 m.
Qiaozhi
In this setting I can detect a gold or silver ring in about 8 - 10 cm from the Tx coil.
Is this value okay, or must even be more?
Our weather is crazy, it's still very cold and it snowed again today. :(:angry:
I must calibrate the coils outdoors, in the house are too many interference sources. I hope that the weather will be better so I can get outdoors.
Here are the current pictures
Qiaozhi
03-30-2013, 01:31 PM
And here is my status quo.
The TX coil is mounted, connected and it works well.
Thereby my TOTeM PD is completely, except for the calibration of the coils.
I have tried to calibrate the coils in the house, but has not brought satisfactory results.
At the spark test, I could locate the spark only on a distance of about 1.5 m.
The spark test is only an indication of the sensitivity to external EMI. Since your main purpose is not detecting sparks, the actual distance is not important.
Qiaozhi
In this setting I can detect a gold or silver ring in about 8 - 10 cm from the Tx coil.
Is this value okay, or must even be more?
I would consider this to be very good. If you watch some of the Mineoro videos, you will note that their pinpointing detection range (in air) is not as good. In Chapter 13, page 213, Carl shows a photo of his Mineoro FG80, and states that "FG" stands for "Fresh Gold", even though the device is incapable of detecting the test sample that comes with the unit.
Have you also noticed, when testing TOTeM, how the ring is only detected at the front-end of the ferrite, but there is no response from behind the unit?
In fact, you have a better sensitivity in the air test than my prototype. I switched on my TOTeM today and found that the meter was "zeroed" three-quarters of the way across the scale, so I probably need to recalibrate it.
humhum
03-30-2013, 02:12 PM
Hi Friend Goldmaxx, How is Discrimination for All Metals,
Do have Real Disc. when you put kind metals to Front side of Totem ? :);)
Congratulations for your best PD device.
Regards.
Goldmaxx
03-31-2013, 02:05 AM
The spark test is only an indication of the sensitivity to external EMI. Since your main purpose is not detecting sparks, the actual distance is not important.
I would consider this to be very good. If you watch some of the Mineoro videos, you will note that their pinpointing detection range (in air) is not as good. In Chapter 13, page 213, Carl shows a photo of his Mineoro FG80, and states that "FG" stands for "Fresh Gold", even though the device is incapable of detecting the test sample that comes with the unit.
Have you also noticed, when testing TOTeM, how the ring is only detected at the front-end of the ferrite, but there is no response from behind the unit?
In fact, you have a better sensitivity in the air test than my prototype. I switched on my TOTeM today and found that the meter was "zeroed" three-quarters of the way across the scale, so I probably need to recalibrate it.
Hello Qiaozhi
yes those are very good news.
I thought, because the book is in there, one could locate the spark test up to a distance of 3m. Then 1.5 m would be too little.
But if it is not so important, then is it better.
I must say that I myself was amazed because first he detected nothing, and when I calibrated the coils, he showed me in fact to gold and silver.
It is incredible that there really is a zero point and can only be located in this position noble metals. I must say that I was totally fascinated.
I'll watch the videos Mineoro definitely.
I have tested the rings unfortunately only on the front-end of the ferrite and not at the rear end. But I will test it in the next calibration, and report it you.
But unfortunately I'm going tomorrow for 4 days on vacation and only thereafter can you give the answer. That interests me now myself. Please be patience until then.
That's very good to hear that the sensitivity is good. I will try for the next calibration, if I can adjust it even more sensitive. Therefore I will try it outdoors to calibrate the device.
I think because the PD is so sensitive that it detect in passive mode in the house even if I turn on-off the light switch and it could be adjusted better outdoors.
But how can this happen with your Prototype that the calibration moved?
The red circle in the picture shows where I could detect the rings the best.
Goldmaxx
03-31-2013, 02:07 AM
Hi Friend Goldmaxx, How is Discrimination for All Metals,
Do have Real Disc. when you put kind metals to Front side of Totem ? :);)
Congratulations for your best PD device.
Regards.
Hi humhum
Thanks for the congratulations.
The discrimination is surprisingly very good.
When I use the TOTeM in normal tune, he actually detected only gold and silver.
But if I him tune critical, so I have the best sensitivity, he showed me iron after a long delay.
I tried it with pliers, what has a much greater mass than the rings.
But if I take a gold or silver ring, and move it in front of the coil, the totem indicates him immediately.
Regards
Morgan
03-31-2013, 06:26 PM
Hi humhum
Thanks for the congratulations.
The discrimination is surprisingly very good.
When I use the TOTeM in normal tune, he actually detected only gold and silver.
But if I him tune critical, so I have the best sensitivity, he showed me iron after a long delay.
I tried it with pliers, what has a much greater mass than the rings.
But if I take a gold or silver ring, and move it in front of the coil, the totem indicates him immediately.
Regards
This is amazing results for the ToTeM
we waiting for the field test
regards
Qiaozhi
03-31-2013, 07:23 PM
But how can this happen with your Prototype that the calibration moved?
I don't know the answer at the moment, and will not be able to take a proper look at the prototype for a couple of weeks.
Keep up the good work.
humhum
04-01-2013, 12:48 AM
Hi humhum
Thanks for the congratulations.
The discrimination is surprisingly very good.
When I use the TOTeM in normal tune, he actually detected only gold and silver.
But if I him tune critical, so I have the best sensitivity, he showed me iron after a long delay.
I tried it with pliers, what has a much greater mass than the rings.
But if I take a gold or silver ring, and move it in front of the coil, the totem indicates him immediately.
Regards
I think that when you make critical Adjust with Coil , if found Iron, your device have problem with Zero point, and need again adjust.
Regards.
Morgan
04-02-2013, 12:37 AM
I think that when you make critical Adjust with Coil , if found Iron, your device have problem with Zero point, and need again adjust.
Regards.
i sugest he will try the totem like it is now,and if not work fine in the field,them make the other calibrations.
maybe it is good like it is.
DrTech
04-02-2013, 09:56 PM
Can someone help me with a graph, such as adjusting the coil Ferrite TX and RX.
Distance, separation ....
Adjustments that I have to do???
Alguien me puede ayudar con una grafica, como ajustar la bobina TX y la Ferrita RX.
Distancia, separacion....
Que ajustes tengo que hacer????
Goldmaxx
04-07-2013, 12:51 PM
I don't know the answer at the moment, and will not be able to take a proper look at the prototype for a couple of weeks.
Keep up the good work.
Hello to all,
I came back from my vacation yesterday and have the same done some testing with my totem.
I have the PD re-calibrated and come back to the same result as before.
Qiaozhi
I can in fact detect the ring only at the front end of the ferrite.
I have no reaction behind the ferrite.
But I have to correct myself, I can detect the ring one at a distance of 6-7cm from the front end of the ferrite. I remeasured it again.
Maybe I found the solution for your problem from the TOTeM
When I tried to re-calibrate the TOTeM, I took a new 9V block battery.
The result was, I could not properly calibrate the PD and above all, he could not detect no ring or anything near the ferrites.
I took a battery holder with 6 x 1.5 V batteries with the same results.
After long try, I took the old 9V block battery and surprisingly, I was able to calibrate the PD very well again.
I then measured the voltage of the batteries and the result was:
9V block battery old : 8.22 V
9V block battery new: 8.94 V
6x 1,5 V battery : 8.73 V
Then I tested the TOTeM with 5x1,5V battery to operating (7.35 V), with the result that the PD worked.
So, I think that the problem is the voltage, unless I have an error on my PCB, but what I really do not think so.
Qiaozhi, could you please check with your TOTeM?
I would be interested if it is the same with your TOTeM.
Goldmaxx
04-07-2013, 12:52 PM
i sugest he will try the totem like it is now,and if not work fine in the field,them make the other calibrations.
maybe it is good like it is.
Hi Morgan
you're absolutely right. The weather is getting better and I'm going with PD in the next few days with this calibration in the field testing.
As soon as I results, I will report here.
Goldmaxx
04-07-2013, 01:00 PM
Qiaozhi
with the low voltage of + - 8V, can be calibrated the TOTeM esay by the yellow LED. :)
Goldmaxx
04-07-2013, 10:38 PM
Can someone help me with a graph, such as adjusting the coil Ferrite TX and RX.
Distance, separation ....
Adjustments that I have to do???
Alguien me puede ayudar con una grafica, como ajustar la bobina TX y la Ferrita RX.
Distancia, separacion....
Que ajustes tengo que hacer????
Hi DrTech
sorry but you must the distance with calibrate find out yourself, because each ferrite coil reacts differently and most importantly,
you will be a different distance to the TX coil as I have.
I can therefore give you no distance, because I do not even know if mine are correct.
This will to prove only in the field test.
But you must the RX coil (ferrite) try to find the zero point to the TX coil.
Regards
Goldmaxx
04-07-2013, 10:45 PM
Today the sun was shining and it was a little bit heater.
On this occasion have taken my TOTeM and went for a walk for two hours in the forest.
I wanted to see how the PD outdoors reacts.
It was just so and no special place where I went.
I've experimented a bit with the settings and have all the time no signal.
But suddenly I had a place where I had a good signel. I could not pinpoint exactly, but it was a clear signal.
I have found nothing and I then aborted the search because it was very cold again.
It was nothing special, but very interesting.
In the video, the PD was set in the active mode.
But I had the same signal in the passive mode.
If the weather is good next weekend, I'll try my luck at a good place. :)
here is the video from my trip :cool:
matrix
04-08-2013, 06:43 AM
all PERFECT!!!
I wish a hot Sunday for you next week ; Again wait.
:cheers:
best wishes
hello gold maxx .
I congratulate you. But the sensitivity is set too high. :cool::cool:
regards .
DrTech
04-08-2013, 04:02 PM
Hi DrTech
sorry but you must the distance with calibrate find out yourself, because each ferrite coil reacts differently and most importantly,
you will be a different distance to the TX coil as I have.
I can therefore give you no distance, because I do not even know if mine are correct.
This will to prove only in the field test.
But you must the RX coil (ferrite) try to find the zero point to the TX coil.
Regards
Goldmax, you change the polarity of transistors BC108 (U8,U5,U6) because I do not work because the Emitter and collector are changed depending on the circuit and is assembled, the difference is in the way he did Sneshko PCB and the other as you assemble the pcb .
After making the modification worked out perfectly in passive mode, but NOT active mode. I change the BC108 transistor U8 new one.
It works in active mode but goes beep TX and RX must be far apart to stop beeping., I think they are at the same frequency
Regards...
detectoman
04-08-2013, 07:35 PM
i cant open the goldmaxx video archive, can anybody please put these in other format? thanks
detectoman
04-08-2013, 07:42 PM
dr tech, may be you should put frecuencies change or to other armonic´´ or lowering these or higest
doctor tecno, puede ser usted necesite cambiar las frecuencias o a otras armonicas" o bajar estas o elevarlas, o no es debido el tamaño de la bobina y le gana a la recepcion preactivandola, pruebe con otra bobina mas chica a la misma frecuencia o pongala de modo diametralmente en diagonal, como se hace con los dos cajas, inclinandola un poco y poniendola a la debida distancia, tal ves eso le ayude, sino le indico por correo otras estrategias saludos ;)
detectoman
04-08-2013, 07:46 PM
hello we need a complete spanish long range forum section or hibirid spanglish, any like to open? may be is very difficultous read by who no understand our bad english apologies
matrix
04-08-2013, 07:52 PM
i cant open the goldmaxx video archive, can anybody please put these in other format? thanks
This is a famous format(MP4) . Extract it in winrar then can be played with jetaudio
detectoman
04-08-2013, 11:03 PM
i cant open these jjajaja and i yes have winrar, i not understand..
Morgan
04-09-2013, 12:55 AM
i cant open these jjajaja and i yes have winrar, i not understand..
i can hear the video sound but no image...
Goldmaxx
04-09-2013, 10:47 PM
all PERFECT!!!
I wish a hot Sunday for you next week ; Again wait.
:cheers:
best wishes
Hello matrix
Many thanks. I will all about my next steps up to date.
I myself am very curious. :)
best Regards
Goldmaxx
04-09-2013, 10:50 PM
hello gold maxx .
I congratulate you. But the sensitivity is set too high. :cool::cool:
regards .
Hi vali
Many thanks for the congratulations. I have only briefly tested the totem.
Next trip I'll think of you. :)
Many greetings
Goldmaxx
04-09-2013, 10:52 PM
Goldmax, you change the polarity of transistors BC108 (U8,U5,U6) because I do not work because the Emitter and collector are changed depending on the circuit and is assembled, the difference is in the way he did Sneshko PCB and the other as you assemble the pcb .
After making the modification worked out perfectly in passive mode, but NOT active mode. I change the BC108 transistor U8 new one.
It works in active mode but goes beep TX and RX must be far apart to stop beeping., I think they are at the same frequency
Regards...
Hi DrTech
Congratulations to your totem, he looks very good.
I built my PCB after Qiaozhi's instruction in his book, and you can only say that the PCB works so very well.
Qiaozhi is an expert in this area and I can only recommend them to you even after his instruction to build.
But as is to see them on your picture, I would say that the distance from the RX coil to the TX coil is too low and therefore you can not find the zero point.
Have you installed the ferrite coil in the box?
Regards
Goldmaxx
04-09-2013, 10:55 PM
i cant open the goldmaxx video archive, can anybody please put these in other format? thanks
Hello detectoman
matrix is right, it is a MP4 format and it is extract with winrar.
But I have here still an AVI format for you.
Sorry for the bad quality, but I can unfortunately post only 1 MB.
Regards
Goldmaxx
04-09-2013, 11:02 PM
And here a FLV format in slightly better quality.
Goldmaxx
04-09-2013, 11:04 PM
i can hear the video sound but no image...
Hi Morgan
You have already seen the video. ;) :)
Best regards
Morgan
04-10-2013, 03:26 PM
Hi Morgan
You have already seen the video. ;) :)
Best regards
yes,and it seems the ToTeM locate a target in the forest,now you need the practice to follow the signals and PINPOINT the object.
maybe Qiaozhi create a super LRL ? ...
detectoman
04-10-2013, 04:40 PM
the long range detection today arrive, with morgan alonso 2006 year pd revelations, soon the convencional plate md of enginers productions, be past thing´s ;)
detectoman
04-10-2013, 04:44 PM
arggg, anybody please put these video on basic window media vista formats grrrrrrr
detectoman
04-10-2013, 04:49 PM
at most, i have total stronger sound but whitout imageee grrrrr waaaa, no sir, i not like to dowload any other new video programs by each new video view what yours posted :(
Goldmaxx
04-10-2013, 11:15 PM
yes,and it seems the ToTeM locate a target in the forest,now you need the practice to follow the signals and PINPOINT the object.
maybe Qiaozhi create a super LRL ? ...
I will again go to this place, and try to locate the signal better.
I've watched the MINEORO video. It is really very well explained how to search with a PD.
Yes, maybe Qiaozhi has developed really a super LRL.
That would be really brilliant.
I'm very curious about the next tests with the TOTeM.
Goldmaxx
04-10-2013, 11:16 PM
at most, i have total stronger sound but whitout imageee grrrrr waaaa, no sir, i not like to dowload any other new video programs by each new video view what yours posted :(
Hello detectoman
Okay, what kind of format need you?
I will you make it so you can watch the video too. :)
matrix
04-22-2013, 03:55 PM
Hi Goldmaxx
what is happened for you ?
we are waiting here 2weeks,
Do you have find treasure in the forest ?;)
Best wishes
Morgan
04-22-2013, 04:35 PM
Hi Goldmaxx
what is happened for you ?
we are waiting here 2weeks,
Do you have find treasure in the forest ?;)
Best wishes
yes,i am curious too...
detectoman
04-22-2013, 11:17 PM
i have window media player
matrix
04-23-2013, 06:02 PM
i have window media player
You can download a free version of KMplayer and enjoy
follow this
http://kmplayer.en.softonic.com/download
detectoman
04-23-2013, 08:07 PM
thanks very much mr matrix :)
Goldmaxx
04-24-2013, 11:29 PM
yes,i am curious too...
Hello friends,
Morgan - matrix sorry for the long wait, but my parents had a car accident and were both in the hospital.
I therefore did not have so much time.
They are both back out there and goes again to them well.
I was Search a couple of times with the TOTeM, but not too long.
The TOTeM seems to be working well, but I do not know exactly what he indicating me.
I just need some more practice with a PD.
I try now To search more often at different places, so I can get experience with such devices.
matrix
sorry, I did not find any treasure. :frown: :)
Honestly, I've found nothing with the TOTeM. I had very good signals, but without success.
But now to my experiences:
I had several times a very good signal, but it is very strange.
1. I have a strong signals in the direction of south to north.
If I follow the signal, I can follow it very far, but never find a target.
2. when I have such a strong signal in the direction of south to north and turn around 360
degrees, I have exactly the same signal at 180 °. I made a little video of it.
(detectoman, I hope that you have installed the software from matrix and the video
running. Otherwise, I'll like to make you another format :))
Morgan
Can you tell me if this is normal that one has the same signal in the 180 ° rotation is again?
And if so, in what direction I have to must run, North or South?
Or maybe you have an idea what this could be?
Qiaozhi
Works your totem again?
Do you have the same phenomenon in a 360 ° rotation?
Or, do you have any idea what that could be?
I think it is best if, one tests the device on a test field.
Morgan
I'll do a few more tests and when I am finished, I'll send you my TOTeM, so you can test it on your test field.
You have a lot of experience with such devices and can determines better evaluate the TOTeM.
As soon as I have news, I'll inform you.
Best regards to all
Goldmaxx
04-24-2013, 11:44 PM
And here is the video as avi format
Qiaozhi
04-25-2013, 12:46 AM
Qiaozhi
Works your totem again?
Do you have the same phenomenon in a 360 ° rotation?
Or, do you have any idea what that could be?
I'll try to get time to look at it over the weekend.
Hope your parents are recovering from the accident.
FrancoItaly
04-25-2013, 11:28 AM
Hi Goldmaxx
This is the "compass" effect in the north/south direction or east/west. Also a working lrl with too much sensitivity it has the same problem. The key to success is to sense the "phenomenon" and not the "compass". Any circuit with a lot of amplification is sensitive to "compass" effect.
Best Regards
matrix
04-25-2013, 01:36 PM
Goldmaxx
Thank you for informing us about your experiences.
I wish health for your parents too.
Best regards
Morgan
04-25-2013, 02:33 PM
Hello friends,
Morgan - matrix sorry for the long wait, but my parents had a car accident and were both in the hospital.
I therefore did not have so much time.
They are both back out there and goes again to them well.
I was Search a couple of times with the TOTeM, but not too long.
The TOTeM seems to be working well, but I do not know exactly what he indicating me.
I just need some more practice with a PD.
I try now To search more often at different places, so I can get experience with such devices.
matrix
sorry, I did not find any treasure. :frown: :)
Honestly, I've found nothing with the TOTeM. I had very good signals, but without success.
But now to my experiences:
I had several times a very good signal, but it is very strange.
1. I have a strong signals in the direction of south to north.
If I follow the signal, I can follow it very far, but never find a target.
2. when I have such a strong signal in the direction of south to north and turn around 360
degrees, I have exactly the same signal at 180 °. I made a little video of it.
(detectoman, I hope that you have installed the software from matrix and the video
running. Otherwise, I'll like to make you another format :))
Morgan
Can you tell me if this is normal that one has the same signal in the 180 ° rotation is again?
And if so, in what direction I have to must run, North or South?
Or maybe you have an idea what this could be?
Qiaozhi
Works your totem again?
Do you have the same phenomenon in a 360 ° rotation?
Or, do you have any idea what that could be?
I think it is best if, one tests the device on a test field.
Morgan
I'll do a few more tests and when I am finished, I'll send you my TOTeM, so you can test it on your test field.
You have a lot of experience with such devices and can determines better evaluate the TOTeM.
As soon as I have news, I'll inform you.
Best regards to all
Hello
As Franco Italy told you,this is the compass efect,it hapens with very sensitive LRLs,in some countries the PDK-2.1 have this problem,and the solution is reduce the sensitivity or calibrate the LRL in the direction of this lines,this way avoid completly the interference and still enough power to locate buried targets.
Maybe the PDK videos i post in this forum help you to understand HOW TO PINPOINT the buried objects,what is more dificult is most of the gold or silver objects are located with PDK in only one direction (see the video of gold object found by robalocarapanda,where is possible to see clear,the PDK locate only in one direction) however there are other object that are located in two dir. others in three or even four dir., one good way to learn is to use the method of TRIANGULATE ,where you check the signals in all directions and make ground MARKS to understand the position of this object. Other mistery is when you finaly locate the exat point where the object is buried,still another problem with the PDKs and maybe the ToTEM too,when you lower the LRL less than one meter above the target the LRL OVERLOAD and lost the signal ,and when you raise it again for 1m or more above,the signal returns (check this Phenomenon in the robalocarapanda video) all this caracteristics was signaled by me in this forum many times.
Happy days for you and your family.
Regards
Qiaozhi
04-25-2013, 04:54 PM
Hi Goldmaxx
This is the "compass" effect in the north/south direction or east/west. Also a working lrl with too much sensitivity it has the same problem. The key to success is to sense the "phenomenon" and not the "compass". Any circuit with a lot of amplification is sensitive to "compass" effect.
Best Regards
In my tests I did not have any problem with the so-called compass effect. I suspect the signal being detected by Goldmaxx is being generated by a remote transmitter, as it is detectable both in front and behind the device.
Funfinder
04-25-2013, 07:46 PM
I will again go to this place, and try to locate the signal better.
I've watched the MINEORO video. It is really very well explained how to search with a PD.
Yes, maybe Qiaozhi has developed really a super LRL.
That would be really brilliant.
I'm very curious about the next tests with the TOTeM.
> Yes, maybe Qiaozhi has developed really a super LRL.
:lol: :lol: :lol: :lol: :lol: :lol:
Listen to these words, this is so absurd it can't be true !!!!
A persons constructs a circuit to demonstrate that those wannabe earth-magnetical-field-wave-around-detectors provable don't work and some other guy builts it and speaks about a "super LRL"!
:drool: :drool: :drool: :drool: :drool: :drool:
This is like giving a person a glass of water from a dirty river and telling its not really good and the person tests it and says:
Wow fantastic, what a delicious glass of water!
Do you know the words trustworthy and credibility????
You will know it soon because we need a credibility and describtion charts here to find out exactly what the users have to offer:
Truth or only lies, fraud and selfdelusions!
Either you are providing facts and evidence or you can go playing in a sandbox like little kids!
Its also not good speaking about car accidents in such a context,
because those could be the same "unbelievable story" like everything else here! Goldmaxx, prove that there really was such
accident or don't come up with such "excuses" here, it's not
the right place along all those unproven stories!
> Yes, maybe Qiaozhi has developed really a super LRL.
Next time I will show you here a picture of a dog and I'm shure
there will be persons who will reply: "Wow, what a cute cat!" :lol:
Sneshko
04-25-2013, 08:33 PM
In my tests I did not have any problem with the so-called compass effect. I suspect the signal being detected by Goldmaxx is being generated by a remote transmitter, as it is detectable both in front and behind the device.
Hi Goldmaxx!
I initially thought it was a compass effect in the north-south direction, but it seems that Qiaozhi right. I occasionally detect a strong signal from the direction northwest-southeast.
It seems that this is some sort of powerful transmitter operating in the VLF range.
The solution to this problem is in the previous post gave Morgan.
Greetings to you and your parents from Serbia!
Sneshko
detectoman
04-26-2013, 02:15 AM
he brother goldmaxx: may be you can null cardinal compas effect by take pd in other mode function see, you should reverse the leads wires of ferrite or coil, may be or doing change a little at other frecuence near on pd capacitors, the pd circuit calibrations are very difficultous when these configuration arent rights, due distincts configurations the pd add other vary functions how: compass effect --- sky-earth, effect, or static detection, too when rx & tx isnt in armonic frecuences came erratic, you should do very much tries, difficil due city foints electrical radiations near are very critic, the pd circuit whit rx and tx configuration, isnt easy to put a equal point, for pd exist much distinccts diverse configurations , but only whit hig sensitivity stable receptor is most easy, btw pd no work in any station climatic conditions or soils or humidity weather, need dry and sun
detectoman
04-26-2013, 02:25 AM
other of my pd have aluminum loop sistem by internal round toroid, how esteban say us, this design semms in my actual avatar, no much affected for cardinal lines, excusme please my bad english, powerfull pd sensitive hig range isnt easy building, but normal poor range detection yes
detectoman
04-26-2013, 02:30 AM
semms goldmax totem project have hig power, but isnt in right configuration, goldmaxx try these in other distinct fields if you see same functions in all, those are cardinal points detections then change any other coils configuration, you is near succes
Goldmaxx
04-26-2013, 03:32 AM
Hi to all
First, thank you friends for your greetings to my parents, they are both back home and them doing well again,
they still have some minor pain but otherwise is everything ok.
Secondly, many thanks to Qiaozhi, Morgan, FrancoItaly, matrix and Sneshko for the valuable tips.
I am very glad that you can help me so fast in this forum, especially to understand this phenomenon.
I am new to this area and I have learn through the Totem project and your tips a lot about LRL's and this phenomenon.
Qioazhi
That's a good idea that with the remote transmitter could actually be.
Strangely I have the signals to various places that are up to 40 km from each other apart.
In the next test, I will be drawing the directions of the signals on a map and examine whether such a remote transmitter on these lines are located.
Morgan, Franco Italy
If there is this "compass effect" would be, it would be enough if I reduce the sensitivity of the device?
Or is it the circuit itself, that it is too sensitive?
Morgan
That's good, I can not triangulate these strong signals, they are only in the direction from south to north and noth to south to localized.
I'll be watching all your old posts and videos so I can learn from it.
Also good to know how can I to locate position of an object.
This is a really good hint.
I can see I need some practical experience with the handling of LRLs.
But I must say that it is very exciting and make very fun.
Thanks to all who help me to get on.
Best regards
Goldmaxx
04-26-2013, 03:36 AM
> Yes, maybe Qiaozhi has developed really a super LRL.
:lol: :lol: :lol: :lol: :lol: :lol:
Listen to these words, this is so absurd it can't be true !!!!
A persons constructs a circuit to demonstrate that those wannabe earth-magnetical-field-wave-around-detectors provable don't work and some other guy builts it and speaks about a "super LRL"!
:drool: :drool: :drool: :drool: :drool: :drool:
This is like giving a person a glass of water from a dirty river and telling its not really good and the person tests it and says:
Wow fantastic, what a delicious glass of water!
Do you know the words trustworthy and credibility????
You will know it soon because we need a credibility and describtion charts here to find out exactly what the users have to offer:
Truth or only lies, fraud and selfdelusions!
Either you are providing facts and evidence or you can go playing in a sandbox like little kids!
Its also not good speaking about car accidents in such a context,
because those could be the same "unbelievable story" like everything else here! Goldmaxx, prove that there really was such
accident or don't come up with such "excuses" here, it's not
the right place along all those unproven stories!
> Yes, maybe Qiaozhi has developed really a super LRL.
Next time I will show you here a picture of a dog and I'm shure
there will be persons who will reply: "Wow, what a cute cat!" :lol:
Ohhh Funfinder
I knew that this day would come and you would write your stupid Proverbs here. I have just waiting for.
I've read some of your bull**** and I wonder all the time what do you think actually what you are?
Are you the anti-lrl Priest would like to covet all of us?
Want to disabuse them us all here?
Or you're just a clwon who wants to amuse us here?
You know what?
Do me a favor please, reserve your mental garbage for you. What you say does not interest me and I have no time or desire to discuss with such people as you.
If it would only give such people like you, we'd still be riding on donkeys because there were no cars.
Just remember one thing, the lateral thinkers have changed the world and not all the people have done all badly.
You insulted me and everyone else here in the forum. What is this?
If you want to contribute nothing, then you have here nothing to search for.
Is it so hard for you?
Me make this theme a lot of fun and before I speak anythink bat, I build it myself and make a picture of it.
You should also make it before you talk about something, which you have no idea about.
So please, let's us do that what makes us fun and do not disturb us.
For you I have a good tip, stay at home and play with your Barbie dolls.
Is perhaps better for your nerves as you get excited about anything here.
Incidentally, I thought you left the forum, strange that you're here again.
Can you do me a favor?
Give me a break with your nonsense and please do not write me.
You know what they say here in Germany
”Wer zuletzt lacht, lacht am besten” :lol::lol::lol:
Thank you very much
Hasta la vista Funfinder
Goldmaxx
04-26-2013, 03:38 AM
he brother goldmaxx: may be you can null cardinal compas effect by take pd in other mode function see, you should reverse the leads wires of ferrite or coil, may be or doing change a little at other frecuence near on pd capacitors, the pd circuit calibrations are very difficultous when these configuration arent rights, due distincts configurations the pd add other vary functions how: compass effect --- sky-earth, effect, or static detection, too when rx & tx isnt in armonic frecuences came erratic, you should do very much tries, difficil due city foints electrical radiations near are very critic, the pd circuit whit rx and tx configuration, isnt easy to put a equal point, for pd exist much distinccts diverse configurations , but only whit hig sensitivity stable receptor is most easy, btw pd no work in any station climatic conditions or soils or humidity weather, need dry and sun
Hi detectoman my friend
Thank you for your good tips, I will try to gradually everything until it works.
I'll start with the simplest.
Of course you could also be right that the configuration is not optimum.
The best would be to test the TOTeM first on a test field, so I could see if he finds objects or not.
However, I need some more experience to search with LRLs and to interpret the signals.
By the way, my english is bad too and therefore can very well understand what you are writing me.
Could you watch the videos?
Best regards
nelson
04-26-2013, 12:31 PM
Hi GoldMax
First of all i m happy to know that your parents are fine now after the car accident.
Second, i congratulate you for your nice ToTem project, like others firends here we are very curius about your results.
Third, dont waist your time reading non sense Funfinder words, because if he don´t bealive in this is ok for him. I think he must stay away and let friend who like to experiments and learn about this, to go ahead.
Finally and has i posted before and to clarify all about this phenomenon, is much much beater to buried some silver or gold on a test bed and then go for test after a year or more time. This for shure will be the best way to demonstrate this.
Best regards and keep going with your experiments.
Nelson
Ohhh Funfinder
I knew that this day would come and you would write your stupid Proverbs here. I have just waiting for.
I've read some of your bull**** and I wonder all the time what do you think actually what you are?
Are you the anti-lrl Priest would like to covet all of us?
Want to disabuse them us all here?
Or you're just a clwon who wants to amuse us here?
You know what?
Do me a favor please, reserve your mental garbage for you. What you say does not interest me and I have no time or desire to discuss with such people as you.
If it would only give such people like you, we'd still be riding on donkeys because there were no cars.
Just remember one thing, the lateral thinkers have changed the world and not all the people have done all badly.
You insulted me and everyone else here in the forum. What is this?
If you want to contribute nothing, then you have here nothing to search for.
Is it so hard for you?
Me make this theme a lot of fun and before I speak anythink bat, I build it myself and make a picture of it.
You should also make it before you talk about something, which you have no idea about.
So please, let's us do that what makes us fun and do not disturb us.
For you I have a good tip, stay at home and play with your Barbie dolls.
Is perhaps better for your nerves as you get excited about anything here.
Incidentally, I thought you left the forum, strange that you're here again.
Can you do me a favor?
Give me a break with your nonsense and please do not write me.
You know what they say here in Germany
”Wer zuletzt lacht, lacht am besten” :lol::lol::lol:
Thank you very much
Hasta la vista Funfinder
detectoman
04-26-2013, 05:43 PM
goldmaxx, yes, i been dowload kmplayer format by matrix, and succes i can look your videos, i then examine those and semms how a cardinal effect, probably you totem are work in a compass function, you need do any different recipes or configurations but your reciver circuit work ok
goldmax yo descargue bien el formato de kmplayer de matrix, y exitosamente yo pude mirar tus videos, yo examine entonces esos y se mira como un efecto cardinal, probablemente tu totem esta funcionando en una funcion de; brujula´ tu necesitas hacer otras formas o configuraciones, pero tu circuito receptor funciona bien
Morgan
04-26-2013, 11:46 PM
Hi to all
First, thank you friends for your greetings to my parents, they are both back home and them doing well again,
they still have some minor pain but otherwise is everything ok.
Secondly, many thanks to Qiaozhi, Morgan, FrancoItaly, matrix and Sneshko for the valuable tips.
I am very glad that you can help me so fast in this forum, especially to understand this phenomenon.
I am new to this area and I have learn through the Totem project and your tips a lot about LRL's and this phenomenon.
Qioazhi
That's a good idea that with the remote transmitter could actually be.
Strangely I have the signals to various places that are up to 40 km from each other apart.
In the next test, I will be drawing the directions of the signals on a map and examine whether such a remote transmitter on these lines are located.
Morgan, Franco Italy
If there is this "compass effect" would be, it would be enough if I reduce the sensitivity of the device?
Or is it the circuit itself, that it is too sensitive?
Morgan
That's good, I can not triangulate these strong signals, they are only in the direction from south to north and noth to south to localized.
I'll be watching all your old posts and videos so I can learn from it.
Also good to know how can I to locate position of an object.
This is a really good hint.
I can see I need some practical experience with the handling of LRLs.
But I must say that it is very exciting and make very fun.
Thanks to all who help me to get on.
Best regards
I believe you locate N-S magnetic lines,becouse this can hapen very often when the coil or ferrite is not well balance or other possibility is wrong number of turns in the RX(receptor) coil,also little change in value of capacitor near RX some times solve the problem, but,as i told before, the more fast solution is to calibrate the ToTeM in the direction of this N-S line and start a search.This way the LRL only locate the buried objects and avoid the N-S lines.
We have many many things to learn about LRLs,but it will worth all the time we lost with them !!!
People like Funfinder,Max,WD40 etc etc , are allways present as skeptics becouse ,you know,still skeptics that said the men never arrive to the moon,and when some of them locate gold coins with LRLs,they will say,this is coincidence...thats it
Good Luck
Qiaozhi
04-27-2013, 12:41 AM
I believe you locate N-S magnetic lines,becouse this can hapen very often when the coil or ferrite is not well balance or other possibility is wrong number of turns in the RX(receptor) coil,also little change in value of capacitor near RX some times solve the problem, but,as i told before, the more fast solution is to calibrate the ToTeM in the direction of this N-S line and start a search.This way the LRL only locate the buried objects and avoid the N-S lines.
If this signal was only detected in this particular area, then it cannot be caused by the compass problem. Otherwise it would also beep north-south wherever you made the test.
detectoman
04-27-2013, 05:49 AM
this have rx and tx, your can look the difference range detection whit only rx and when i add tx function on, i am detecting on the iron bars of above inside the column :|
https://www.youtube.com/watch?v=o_xWItsvDmo
Qiaozhi
04-27-2013, 04:18 PM
Goldmaxx - Today I made some tests with the TOTeM prototype unit. It appears to work better if the power supply is between 8 to 9V. If the battery is greater than 9V (e.g. 9.5V), the increased voltage can cause an offset in the meter, so that it is not located at zero when there is no signal. However, if you ignore the meter offset, then everything else works as expected. It might be worth using an 8-cell battery pack with an 8V or 9V regulator to power the circuit.
I also removed the hot glue around the ferrite coil, and played around with the coil balance. The null is extremely easy to find, although it can be tricky to find the position where ferrous (iron) targets are rejected. At one balance position I was able to detect a Victorian penny at 5 inches from the TX coil, while rejecting iron.
If there is an external signal being received, such as from a laptop computer, then this will cause a beep even if TOTeM is pointing away from the source. So this is an easy way of deciding whether the signal is external interference or not.
As described in Chapter 14 of ITMD, the compass and sky effects seem to be related to the use an unshielded RX coil, and the sky effect can be experienced by using either a standard Heathkit GD348 or a Micronta 4001. There is no compass or sky effect with TOTeM, since it uses the ferrite coil as a receiver in active mode.
Goldmaxx
04-28-2013, 01:03 AM
Hi GoldMax
First of all i m happy to know that your parents are fine now after the car accident.
Second, i congratulate you for your nice ToTem project, like others firends here we are very curius about your results.
Third, dont waist your time reading non sense Funfinder words, because if he don´t bealive in this is ok for him. I think he must stay away and let friend who like to experiments and learn about this, to go ahead.
Finally and has i posted before and to clarify all about this phenomenon, is much much beater to buried some silver or gold on a test bed and then go for test after a year or more time. This for shure will be the best way to demonstrate this.
Best regards and keep going with your experiments.
Nelson
Hello nelson
Thank you for your nice words to my parents, I'll tell them about youse and they will be very glad that there are so many nice people to sympathize.
They are both healthy again and are now at home.
Thank you also for your congratulations on my TOTeM, it is a very nice project and I have a lot of fun. I was thus able to learn a lot about LRL's and will have to learn about it more.
For me is this technology simply fascinating and firmly believe that it works.
Yes, I have the LRL virus in me. ;) :lol:
Of course I will share all about my experiments and results with you all.
I am also pleased with the quick help I get here and maybe it can help others too.. Only then can we learn from each other and that's a very beautiful thing.
The theme Funfinder is finished for me, I was just waiting that he writes me.
I knew that he would write to me and I told him what I have already burned onto the soul all the time. I can not do anything with such people, and I will have nothing to do with them.
Yes, you're right nelson I agree with you. I also think that it is to test a LRL to a test field the best way. Then one is quite sure whether the LRL works or not.
Is that true that if one burying gold or silver with salt, that the phenomenon arises faster?
And if so, it's the same phenomenon as when it arises naturally over the years?
Best regards and I'll do my best so that we get more results.
Goldmaxx
04-28-2013, 01:05 AM
goldmaxx, yes, i been dowload kmplayer format by matrix, and succes i can look your videos, i then examine those and semms how a cardinal effect, probably you totem are work in a compass function, you need do any different recipes or configurations but your reciver circuit work ok
goldmax yo descargue bien el formato de kmplayer de matrix, y exitosamente yo pude mirar tus videos, yo examine entonces esos y se mira como un efecto cardinal, probablemente tu totem esta funcionando en una funcion de; brujula´ tu necesitas hacer otras formas o configuraciones, pero tu circuito receptor funciona bien
Hi detectoman
I am very happy that you can watch the videos.
It shall certainly still follow some videos and am happy about every opinion or tip of you, than you can tell me about the videos.
Thank you for your very good tips. I will note it all and successively test the totem until works perfectly.
Qiaozhi has write further down a post and I think that it is the solution to the puzzle.
The device simply gets too much power and is thereby to sensitive.
Goldmaxx
04-28-2013, 01:10 AM
I believe you locate N-S magnetic lines,becouse this can hapen very often when the coil or ferrite is not well balance or other possibility is wrong number of turns in the RX(receptor) coil,also little change in value of capacitor near RX some times solve the problem, but,as i told before, the more fast solution is to calibrate the ToTeM in the direction of this N-S line and start a search.This way the LRL only locate the buried objects and avoid the N-S lines.
We have many many things to learn about LRLs,but it will worth all the time we lost with them !!!
People like Funfinder,Max,WD40 etc etc , are allways present as skeptics becouse ,you know,still skeptics that said the men never arrive to the moon,and when some of them locate gold coins with LRLs,they will say,this is coincidence...thats it
Good Luck
Hello Morgan
I will step by step recheck all about.
The problem could also come from the coils.
The coil with the capacitor at the RX is a good tip that I will also try out, just as the calibration of the coils in the N-S line.
Somewhere the cause of this reaction must be of the totem.
But I'm also quite sure that I will solve the problem with your help.
I think what Qiaozhi wrote down, could be the solution to the problem.
Because of the totem with the 9V might be too sensitive.
You're absolutely right Morgan, we still need to learn many things about the LRLs.
I am still at the beginning, but I'm also quite sure that there is no lost time and it will be worth it. That tells me my believe and my feeling.
I will not have to do with such people like Funfinder.
He can be skeptical about LRLs, but he can not condemn anybody or even insult someone because one believes in something other than itself.
He insulted me and every other LRL experimenters also and he had no right for it.
But one day we'll show these people that it is possible and we'll see who laughs at last. :lol::lol::lol:
Best regards
Goldmaxx
04-28-2013, 01:11 AM
this have rx and tx, your can look the difference range detection whit only rx and when i add tx function on, i am detecting on the iron bars of above inside the column :|
https://www.youtube.com/watch?v=o_xWItsvDmo
Wow, I have seen your video and I am totally thrilled at what distance your LRL can detect the iron.
And the difference between Rx and Tx is even gigantic.
As your LRL respond to gold and silver?
What is there to reach for noble metals?
Many regards
Goldmaxx
04-28-2013, 01:19 AM
Goldmaxx - Today I made some tests with the TOTeM prototype unit. It appears to work better if the power supply is between 8 to 9V. If the battery is greater than 9V (e.g. 9.5V), the increased voltage can cause an offset in the meter, so that it is not located at zero when there is no signal. However, if you ignore the meter offset, then everything else works as expected. It might be worth using an 8-cell battery pack with an 8V or 9V regulator to power the circuit.
I also removed the hot glue around the ferrite coil, and played around with the coil balance. The null is extremely easy to find, although it can be tricky to find the position where ferrous (iron) targets are rejected. At one balance position I was able to detect a Victorian penny at 5 inches from the TX coil, while rejecting iron.
If there is an external signal being received, such as from a laptop computer, then this will cause a beep even if TOTeM is pointing away from the source. So this is an easy way of deciding whether the signal is external interference or not.
As described in Chapter 14 of ITMD, the compass and sky effects seem to be related to the use an unshielded RX coil, and the sky effect can be experienced by using either a standard Heathkit GD348 or a Micronta 4001. There is no compass or sky effect with TOTeM, since it uses the ferrite coil as a receiver in active mode.
Hello Qiaozhi
this is very excellent and truly very good news. Your TOTeM reacts exactly like mine.
The best results I had with the old 9V battery with 8.22V.
With this power I was able to locate gold and silver ring from the TX coil in the active mode.
When the voltage was higher, the TOTeM has nothing detected before the coil.
With the old battery, I have calibrated the coils. That was really easy, I have it calibrated by the yellow LED and so long the RX coil displaced until the yellow LED is no longer became darker.
So you can calibrate the coils precise than with the sound.
Incidentally, I have calibrated my totem in a dark room, because so you can see better the light of the yellow LED. This was also the position where I could not detect any iron.
Wow, I must say that to detect Victorian penny in a 5 inches distance, is a very good performance and even better than my totem.
But I probably did not have the correct voltage, because I only had the old battery and the voltage was determined to be low.
But I can very well imagine that the 5 inches are realistic.
And Qiaozhi, I do not know if you've tried it. The TOTeM detected not only gold and silver from the TX coil, it can detect bronze too.
I tested it with a Roman As and he shows me it perfectly, but it does not respond to iron.
This is really brilliant because there are very beautiful Celtic artifacts of bronze and it would be great if the totem could also be detected it.
I will soon make a little video and post it here.
I can very well imagine that the TOTeM perhaps with 9V is too sensitive and that maybe the solution for my North - South line problem is.
Although I must say that the totem with 9V the spark test, can be detected over a greater distance. But it does not if it indicate other frequencies too.
Okay, I'll try next step to get a 9V regulator PCB and integrate them.
Qiaozhi, maybe you have, or someone from the forum a good PCB circuit for a 9V regulator?
Best with 12V input and a potentiometer for regulating the voltage on the PCB.
Thus, one could better experiment with the power in order to achieve the best result.
Qiaozhi So let us build a super LRL. ;) :lol:
best regards
Qiaozhi
04-28-2013, 11:28 AM
The best results I had with the old 9V battery with 8.22V.
With this power I was able to locate gold and silver ring from the TX coil in the active mode.
When the voltage was higher, the TOTeM has nothing detected before the coil.
The difference between the two TOTeM units is probably in the coils. Even at 9.5V I was able to adjust the ferrite so that iron was rejected, and the only problem was the meter being offset from zero. I suspect your ferrite coil may be closer to the TX frequency than my unit.
Here's a suggestion:
On page 224 (TX Circuit) it is mentioned that R21 (10k) could be replaced with a multi-turn preset in series with a 4k7 resistor. This will allow the TX frequency to be adjusted, which will then change the sensitivity. If you do this test with a new set of batteries, and make the TX adjustment so that the meter does not have an offset away from zero, then the voltage regulator may not be required. Alternatively you could add both the regulator and the TX adjustment preset for greater flexibility.
Morgan
04-28-2013, 02:46 PM
Hello Morgan
I will step by step recheck all about.
The problem could also come from the coils.
The coil with the capacitor at the RX is a good tip that I will also try out, just as the calibration of the coils in the N-S line.
Somewhere the cause of this reaction must be of the totem.
But I'm also quite sure that I will solve the problem with your help.
I think what Qiaozhi wrote down, could be the solution to the problem.
Because of the totem with the 9V might be too sensitive.
You're absolutely right Morgan, we still need to learn many things about the LRLs.
I am still at the beginning, but I'm also quite sure that there is no lost time and it will be worth it. That tells me my believe and my feeling.
I will not have to do with such people like Funfinder.
He can be skeptical about LRLs, but he can not condemn anybody or even insult someone because one believes in something other than itself.
He insulted me and every other LRL experimenters also and he had no right for it.
But one day we'll show these people that it is possible and we'll see who laughs at last. :lol::lol::lol:
Best regards
of course you just start to get some insults here becouse you are a LRL believer,i get many insults since the begining many years ago when start the amazing PISTOLDETEKTOR project,but the insults are more desgusting when come from a person that we not waiting this to hapen...
btw- in the begining funfinder also was a LRL believer and make a few schematics,then something go wrong and he turns a skeptic.
detectoman
04-28-2013, 04:18 PM
goldmaxx: my pd loop no detect metals in air, my actual video show a detection in the gate column due to what oxided iron is present grounded vie soil material of construccion, ( grounded ) these pd loop detect near in soil all metall in field tries, may be 1.5 mts distances, no detect littles irons separates, but oxidized regular size, may be due at specific no know toroid design function, these design isnt the totem, but simple earlier pd alonso of circuit 5, what i build first and modific whit loop in year 2010-2011, for null cardinal activityes and walk in north direction, pd whit any own inovations, i have others simplified lrl design in invest base on ics: lm368-ne555, and other actual lrl experimentation on lrl whit four transistors only, this is what i show in video recently whit a 1.5 v detection @ 1.20 mts these isnt tried in field anyware due i am treat put major trasmisor due somtimes this go overload or erratic
apologies for my bad english
spanish traduction no parallel at original:
goldmaxx: mi pd de aro, no detecta metales en aire, mi reciente video muestra una deteccion en la dala´ o varillaje de la entrada debido a que el hierro de la varilla esta aterrizada´ via al suelo por el material de adobe de la construccion, ( detectandolo como si estuviera enterrada ) ese lrl detecta todos los metales oxidados grandes en pruebas del campo, ( no la he probado mucho en los taps´ ) quizas a una desconocida operacion del diseño a toroide, ese diseño no es el totem, pero si es la basica pd de alonso del circuito 5, la que yo construi primero y que despues modifique con loop en los años 2010-2011 para anular los efectos cardinales y no detectar viniendo por norte sur direcciones´- the end
additional spanish explanations
-- yo he hecho otros diseños de larga detection muy simplificadas sobre circuitos integrados, los cuales no he probado debido a que estoy en procesos de conocer las propiedades de los distintos ics, pero funcionan en teoria efectivamente detectando chispas de alta tension y fuentes de electricidad y chispas de baterias 1.5 volts, a diferentes distancias, pero mi interes no es mucho sobre deteccion de tesoros sino ejercitamiento en conocer los secretos de la micro electronica, es como un hobbie de reconocimiento general de las ondas y como se conducen la onda cuadrada la triangular y la circular y sus propiedades, quizas algun dia me decida a hacer un lrl especifico especialmente para buscar monedas, y me olvide de mis electronicos experimentos, pero ahora estoy en el proceso de entender todo esto, como penetran las ondas en tierra maciza o cemento o piedra y cuales lo hacen mejor y a que oscilaciones
detectoman
04-28-2013, 04:43 PM
toroid- loop´´ on alonso 5 rx, are a modifications suggest from electronician big guru esteban directions
Qiaozhi
04-28-2013, 05:08 PM
btw- in the begining funfinder also was a LRL believer and make a few schematics,then something go wrong and he turns a skeptic.
In reality he wants to be an LRL believer, but is frustrated because no-one is able to give him a proven working design that he can put together with minimal effort ... and that does not cost money. :lol:
Although you all know I'm a skeptic, I am willing to support LRL experimenters in their efforts. Practical experiments are an excellent way of learning the truth, even if you don't like the answer. It seems our friend FF doesn't want to do the groundwork, but expects the results for free.
Goldmaxx
04-28-2013, 10:45 PM
The difference between the two TOTeM units is probably in the coils. Even at 9.5V I was able to adjust the ferrite so that iron was rejected, and the only problem was the meter being offset from zero. I suspect your ferrite coil may be closer to the TX frequency than my unit.
Here's a suggestion:
On page 224 (TX Circuit) it is mentioned that R21 (10k) could be replaced with a multi-turn preset in series with a 4k7 resistor. This will allow the TX frequency to be adjusted, which will then change the sensitivity. If you do this test with a new set of batteries, and make the TX adjustment so that the meter does not have an offset away from zero, then the voltage regulator may not be required. Alternatively you could add both the regulator and the TX adjustment preset for greater flexibility.
Hi Qiaozhi
Thank you very much for your suggestion, I will rebuilt my totem as soon as possible.
I am very excited about the result and will report the results equal to the forum.
Agrees you're right, it is also on page 224 of your book. From sheer LRL virus I have probably not thought about it. ;):)
Goldmaxx
04-28-2013, 10:48 PM
of course you just start to get some insults here becouse you are a LRL believer,i get many insults since the begining many years ago when start the amazing PISTOLDETEKTOR project,but the insults are more desgusting when come from a person that we not waiting this to hapen...
btw- in the begining funfinder also was a LRL believer and make a few schematics,then something go wrong and he turns a skeptic.
Yes you are right Morgan. One may be skeptical, but I think that one should not insult a believer. And especially not when there are strange people that could possibly help one.
This is an absolute no go.
I'm not a football fan and not like football, so I will not go into the football station and insult any soccer fans.
So what is called decency and respect for his opposite, no matter what he believes.
I would never insult Qiaozhi, because perhaps the TOTeM does not work, or I can not get it to work.
On the contrary, even if the TOTeM does not work, I am very grateful to him, because I could learn a lot from it.
Although I have no great knowledge of electronics, I do it anyway, because it interests me.
And if the TOTeM does not work, then at least I have tried it and have respect for Qiaozhi, because although he is skeptical, but he shares his knowledge with us all and me even helps bring the totem to work.
What someone wants to charge more than that?
I can only say one thing, many thanks Qiaozhi that you your know sharing with us and help us to build an LRL.
But even if the TOTeM does not work, I believe that this kind of treasure hunting is possible and will start another project and will not insult people who believe on LRLs.
But Qiaozhi put it this right. He wanted a super functioning LRL of you. best of all free and still not make the fingers dirty.
For this reason, he did not have the right people the believe in it and experiment with LRL to insult.
Goldmaxx
04-28-2013, 10:53 PM
goldmaxx: my pd loop no detect metals in air, my actual video show a detection in the gate column due to what oxided iron is present grounded vie soil material of construccion, ( grounded ) these pd loop detect near in soil all metall in field tries, may be 1.5 mts distances, no detect littles irons separates, but oxidized regular size, may be due at specific no know toroid design function, these design isnt the totem, but simple earlier pd alonso of circuit 5, what i build first and modific whit loop in year 2010-2011, for null cardinal activityes and walk in north direction, pd whit any own inovations, i have others simplified lrl design in invest base on ics: lm368-ne555, and other actual lrl experimentation on lrl whit four transistors only, this is what i show in video recently whit a 1.5 v detection @ 1.20 mts these isnt tried in field anyware due i am treat put major trasmisor due somtimes this go overload or erratic
apologies for my bad english
spanish traduction no parallel at original:
goldmaxx: mi pd de aro, no detecta metales en aire, mi reciente video muestra una deteccion en la dala´ o varillaje de la entrada debido a que el hierro de la varilla esta aterrizada´ via al suelo por el material de adobe de la construccion, ( detectandolo como si estuviera enterrada ) ese lrl detecta todos los metales oxidados grandes en pruebas del campo, ( no la he probado mucho en los taps´ ) quizas a una desconocida operacion del diseño a toroide, ese diseño no es el totem, pero si es la basica pd de alonso del circuito 5, la que yo construi primero y que despues modifique con loop en los años 2010-2011 para anular los efectos cardinales y no detectar viniendo por norte sur direcciones´- the end
additional spanish explanations
-- yo he hecho otros diseños de larga detection muy simplificadas sobre circuitos integrados, los cuales no he probado debido a que estoy en procesos de conocer las propiedades de los distintos ics, pero funcionan en teoria efectivamente detectando chispas de alta tension y fuentes de electricidad y chispas de baterias 1.5 volts, a diferentes distancias, pero mi interes no es mucho sobre deteccion de tesoros sino ejercitamiento en conocer los secretos de la micro electronica, es como un hobbie de reconocimiento general de las ondas y como se conducen la onda cuadrada la triangular y la circular y sus propiedades, quizas algun dia me decida a hacer un lrl especifico especialmente para buscar monedas, y me olvide de mis electronicos experimentos, pero ahora estoy en el proceso de entender todo esto, como penetran las ondas en tierra maciza o cemento o piedra y cuales lo hacen mejor y a que oscilaciones
Hi detectoman
You've got very good results with your LRL, it just amazes me that he also detected oxidized iron.
Your results on the field objects at a distance of up to 1.5 m is also great.
I would be glad if I had such an LRL.
I must say one thing I've learned by now that circuit 5 from Alonso puts in probably any LRLs.
How long you already build LRLs?
Do you also have your successes with other simplified design lrl?
I have read a lot of Esteban. Unfortunately, it was before my time. He must really be a guru and pioneer of LRLs.
I have also read from his illness and hope that he is healed.
Do you know if he comes back to the forum?
You Do not apologize for your english, mine is not much better.
But I can read and understand a little Spanish. I was born in Italy and
la lingua italiana è quasi come la lingua spagnola ;) :)
(The Italian language is almost like the Spanish language)
Goldmaxx
04-28-2013, 10:57 PM
In reality he wants to be an LRL believer, but is frustrated because no-one is able to give him a proven working design that he can put together with minimal effort ... and that does not cost money. :lol:
Although you all know I'm a skeptic, I am willing to support LRL experimenters in their efforts. Practical experiments are an excellent way of learning the truth, even if you don't like the answer. It seems our friend FF doesn't want to do the groundwork, but expects the results for free.
Qiaozhi, I agree with you and thank you for the beautiful TOTem project. This is an excellent possible to start and experiment with the LRL.
I have been in relatively short time, already have learn a lot about LRLs.
I am also of the opinion that one must build an LRL himself to learn the truth.
Morgan
04-29-2013, 12:29 AM
Qiaozhi, I agree with you and thank you for the beautiful TOTem project. This is an excellent possible to start and experiment with the LRL.
I have been in relatively short time, already have learn a lot about LRLs.
I am also of the opinion that one must build an LRL himself to learn the truth.
Hi
about the LRLs,you must know that most of them available in the market for sale ,are very expensive but fake LRLs,and as you do better build our own LRL than spend a lot of money in OKM etc etc, you have done well to build the ToTeM.
If you looking for bronze objects,i am sure the LRLs not locate them becouse once they stay a few years underground,they start create the verdigris PATINA,this metal cover insulate the metal to have full contact with the ground and they not create the PHENOMENON,but with noble metals is diferent.
regards
detectoman
04-29-2013, 03:00 AM
goldmax, how i say to you, i have 5 distincts lrl designs, all build whit different circuit, of those, four i no have tried due what im looking today put a major tx, only the pd loop i have been tried, all 4 other respond to energyes and hig tension or detect my computer at 2 m, tv too 1.30, may be teorical work ok, today i like too do invests on i,r cameras short distance semms how this http://www.google.com.mx/imgres?q=camara+de+termografia+infrarroja+flir&start=350&um=1&sa=N&hl=es-419&biw=1152&bih=586&tbm=isch&tbnid=DNgADpYhL-m0HM:&imgrefurl=http://www.anperelectronica.com/anperelectronica/index.php%3Fmain_page%3Dproduct_info%26products_id %3D1805&docid=36xfcoOXvT6_dM&imgurl=http://www.anperelectronica.com/anperelectronica/bmz_cache/b/b9165b1bb11f72c5fc6da5658c23117e.image.350x210.jpg&w=350&h=210&ei=h9N9UfXyBoaj2QWFtYHoBQ&zoom=1&iact=hc&vpx=2&vpy=251&dur=2301&hovh=168&hovw=280&tx=173&ty=107&page=15&tbnh=139&tbnw=257&ndsp=23&ved=1t:429,r:68,s:300,i:208
mahditala
04-29-2013, 09:32 AM
Please clearly explain how to connect the
Qiaozhi
04-29-2013, 09:38 AM
Please clearly explain how to connect the
What are you asking?
fmnotes
05-17-2013, 12:03 AM
Hello
The coil ferrite,
What is inductance?
ie . Ferrite how mH- μH ???????
Thank wait your reply
DrTech
05-17-2013, 04:22 AM
RX 870mh
100 turns wire .56mm
Hi
about the LRLs,you must know that most of them available in the market for sale ,are very expensive but fake LRLs,and as you do better build our own LRL than spend a lot of money in OKM etc etc, you have done well to build the ToTeM.
If you looking for bronze objects,i am sure the LRLs not locate them becouse once they stay a few years underground,they start create the verdigris PATINA,this metal cover insulate the metal to have full contact with the ground and they not create the PHENOMENON,but with noble metals is diferent.
regards
Hi Morgan.
If i remember good, Franco has some bronze coins buried for 10+ years and he locate them with his lrl at same distance as the silver coins.
Regards
FrancoItaly
05-17-2013, 11:55 AM
Hi Geo,
In my test field I have found a piece of metal, I'm not sure if brass or bronze. In another field, near my home, I have found
a cartridge case brass certainly.
Best Regards
Hi Geo,
In my test field I have found a piece of metal, I'm not sure if brass or bronze. In another field, near my home, I have found
a cartridge case brass certainly.
Best Regards
Hi Franco.
So, the bronze or copper makes "phenomenon". This is good......
Please look your email!!
Regards:)
fmnotes
05-20-2013, 03:03 PM
RX 870mh
100 turns wire .56mm
Thank you very much my friend.
oroboy
05-21-2013, 11:55 PM
Hi Sir,
Can the TOTEM locate this?https://www.youtube.com/watch?v=ErNasHypGd8
reza vir
05-22-2013, 05:36 AM
I need to circuit PD :frown:
Qiaozhi
05-22-2013, 09:55 AM
I need to circuit PD :frown:
See Chapter 14 ->
Inside the METAL DETECTOR - Published September 2012 (http://www.geotech1.com/forums/forumdisplay.php?63-Inside-the-METAL-DETECTOR-Published-September-2012)
please help me
how can i Connecting passive\active switch
pl1a
pl1b
====
pl5a
pl5b
pl5c
Qiaozhi
06-01-2013, 10:39 AM
please help me
how can i Connecting passive\active switch
pl1a
pl1b
====
pl5a
pl5b
pl5c
If you're referring to TOTeM, then please look at the diagram on page 241 in association with the schematic in Fig 14-15. The passive/active switch is a double-pole changeover (DPDT) type.
Hello Qiaozhi
Thank you very much for your Reply,please if you can help whit this photo
http://s23.postimg.org/vecuzt6u3/new_3.jpg
Qiaozhi
06-01-2013, 11:13 PM
Hello Qiaozhi
Thank you very much for your Reply,please if you can help whit this photo
That is the correct type of switch, but I cannot comment on the PCB as it's been designed by someone else.
Nicolas
06-26-2013, 03:28 AM
My project for king PD
is not like your project only the box
what the problem friend of the box is equally?
you call it a fraud??!!!
but you stupid or what
on the contrary it is a free advertising for your PD
and the project is not entirely your
http://www.longrangelocators.com/forums/showthread.php?t=18794
Cordially
Nicola
liubing
08-06-2013, 06:13 AM
Help PI detector project, 50X50cm can detect 5m, with 1x1m coil, which help me? Discrimination is not required,
Nicolas
08-06-2013, 07:43 AM
Help PI detector project, 50X50cm can detect 5m, with 1x1m coil, which help me? Discrimination is not required,
Hi
Look it you can find what you seek
http://www.geotech1.com/forums/showthread.php?8003-Delta-Pulse
Good wish
liubing
08-06-2013, 07:57 AM
Hello, NICOLAS, delta pulse is not hit me five meters, I did, but I would like to improve on this basis, enhance it, may I ask what do you do? Thank you for your answer
Nicolas
08-06-2013, 08:50 AM
Hello, NICOLAS, delta pulse is not hit me five meters, I did, but I would like to improve on this basis, enhance it, may I ask what do you do? Thank you for your answer
Hi you can use big frame my dear 3x3 m you can go to it deep
About your ask. I make and to repair any type of detectors
Welcom
mustefa ubram
11-24-2013, 07:36 PM
Two ways to increase the power to detect:
1.Increased to 25 cm long ferrite
2.Increase the output power of the transmitter
What do you think?
mosha
11-25-2013, 08:50 AM
Two ways to increase the power to detect:
1.Increased to 25 cm long ferrite
2.Increase the output power of the transmitter
What do you think?
This device made by a skeptic to prove that LRL detection doesn’twork, and you trying to do modifications to make it work, doesn’t make sense.
regards,
Mosha
Qiaozhi
11-25-2013, 10:03 AM
This device made by a skeptic to prove that LRL detection doesn’twork, and you trying to do modifications to make it work, doesn’t make sense.
regards,
Mosha
You cannot prove a negative.
The purpose of TOTeM is to allow experimenters to build an all-electronic LRL for themselves, do their own tests, and make up their own minds on the subject. It was also designed with the idea that experimenters should modify the circuit to meet their own requirements. The underlying concept of TOTeM is based on data that is freely available in the public domain. It provides both passive and active modes, and reacts to the usual laboratory tests in exactly the same way as certain other pistol detectors. It also works as well as any other all-electronic LRL on the market.
Skeptics often get accused of rejecting LRLs without having any personal experience, which is also one of the main reasons why TOTeM was designed, built, and tested. Many people want to build their own LRL, but have no idea where to start. That's where TOTeM comes in.
Nicolas
11-25-2013, 12:37 PM
You cannot prove a negative.
The purpose of TOTeM is to allow experimenters to build an all-electronic LRL for themselves, do their own tests, and make up their own minds on the subject. It was also designed with the idea that experimenters should modify the circuit to meet their own requirements. The underlying concept of TOTeM is based on data that is freely available in the public domain. It provides both passive and active modes, and reacts to the usual laboratory tests in exactly the same way as certain other pistol detectors. It also works as well as any other all-electronic LRL on the market.
Skeptics often get accused of rejecting LRLs without having any personal experience, which is also one of the main reasons why TOTeM was designed, built, and tested. Many people want to build their own LRL, but have no idea where to start. That's where TOTeM comes in.
Always the Skeptics at first glance and without any experience
But there are so many who have succeeded in the LRLs manufacture of electronic devices effective. Like Andreas Morgan Nicolas and others.
Thank you for clarifying Qiaozhi
mustefa ubram
11-25-2013, 05:25 PM
This device made by a skeptic to prove that LRL detection doesn’twork, and you trying to do modifications to make it work, doesn’t make sense.
regards,
Mosha
hi mosha
no.I think that is practical.I remember Esteban finds many targets.I think the plan is feasible
Qiaozhi
11-25-2013, 07:21 PM
You can purchase an all-electronic LRL from a company like Mineoro, which involves parting with a large sum of money, and will definitely buy you an expensive education
OR ...
you can buy one from Mozzie_1957:
http://www.longrangelocators.com/forums/showthread.php?t=18932
with a cast-iron guarantee that it will never find treasure in a million years
OR ...
you can build your own.
The problem with building your own homebrew all-electronic LRL is the lack of information on where to start. You only have to examine the available information on the Alonso PD to see how sketchy the details really are. TOTeM, on the other hand, is fully documented with nothing hidden. It is the ideal platform for those who want to experiment within this gray area of metal detecting technology. Please be aware that there is absolutely no guarantee it will lead you to endless riches. It is simply a replication of the so-called pistol detector technology. It detects sparks from a great distance, as well as a CRT television - just like the Alonso PD, and those from Morgan - which (of course) does not necessarily imply that it can catch the PHENOMENON (whatever that is). However, it provides a solid basis from which to work, and in practice you can appear to be following a signal line. As I've said many times before, I have no problem with anyone wanting to experiment with all-electronic LRLs, Any experiment is a good one.
Two quotes from Thomas Edison:
1. “Negative results are just what I want. They’re just as valuable to me as positive results. I can never find the thing that does the job best until I find the ones that don’t.”
2. “To invent, you need a good imagination and a pile of junk.”
Dell Winders
11-25-2013, 08:12 PM
As I've said many times before, I have no problem with anyone wanting to experiment with all-electronic LRLs, Any experiment is a good one.
Why should anyone care if you don't have a problem with people experimenting with just all-electronic LRL's? Who do you think you are? Dell
Qiaozhi
11-25-2013, 09:51 PM
Why should anyone care if you don't have a problem with people experimenting with just all-electronic LRL's? Who do you think you are? Dell
Are you worried that LRL experimenters, encouraged by this forum, may discover something you'd rather they didn't know?
mustefa ubram
11-27-2013, 11:40 AM
new Version of reciver pcb:D:)
mustefa ubram
11-27-2013, 11:59 AM
new Version of transmitter pcb:D:)
Nicolas
11-27-2013, 08:02 PM
new Version of reciver pcb:D:)
Hi mustetfa
Good work for your PCB
But we like some details for your LRL. If it possible
Nicolas
11-27-2013, 08:42 PM
Type of other Lrl detectors
https://www.youtube.com/watch?v=LYOKcotA-YU
https://www.youtube.com/watch?v=oB0Of7cxbyI
Nicolas
01-12-2014, 12:17 AM
hi
do you share this pd all file
thanks
Hi dear Mohamad look this quote from Qiaozhi you can understand that
See Chapter 14 ->
Inside the METAL DETECTOR - Published September 2012 (http://www.geotech1.com/forums/forumdisplay.php?63-Inside-the-METAL-DETECTOR-Published-September-2012)
Nicolas
01-17-2014, 11:39 PM
The difference between the two TOTeM units is probably in the coils. Even at 9.5V I was able to adjust the ferrite so that iron was rejected, and the only problem was the meter being offset from zero. I suspect your ferrite coil may be closer to the TX frequency than my unit.
Here's a suggestion:
On page 224 (TX Circuit) it is mentioned that R21 (10k) could be replaced with a multi-turn preset in series with a 4k7 resistor. This will allow the TX frequency to be adjusted, which will then change the sensitivity. If you do this test with a new set of batteries, and make the TX adjustment so that the meter does not have an offset away from zero, then the voltage regulator may not be required. Alternatively you could add both the regulator and the TX adjustment preset for greater flexibility.
Hi Dear Master Qiaozhi
Is that you solve the problem ? for the totem works in all countries of the world.
Maybe you're right for your setting.
I also 2 years before I encounter this problem. but I solve this problem . I found a good method to cancel the effect of the compass.
I suggested a frequency that varies between 30 to 75 kHz adjustable to calibrate LRL in any region of the world in a split second if this problem is encountered .
Dear Morgan (http://www.longrangelocators.com/forums/member.php?u=2717) I am with you when you go down on the earth to locate a treasure fled the frequency goes completely .
Directory you can watch here is my little video with a mobile phone by a friend during our experiences of my LRL .
https://www.youtube.com/watch?v=X7WN3NJFFdY
look here is 59KHZ and Goes 1KHZ and 0KHZ when touch Ground
https://www.youtube.com/watch?v=eqjjc6ZPS9w
But in compass rest and also increases
Note: I am against the electronic swivel but my friends think otherwise hihihih
but even as it rotates. this is a first experience for 3 years beginning
Thus a buyer of my LRL has found gold and silver together in a tomb . a near distance a bit long 600 m and a depth of 1.80 m
Dear Qiaozhi to help Goldmaxx (http://www.longrangelocators.com/forums/member.php?u=5702) to cancel the detection of the compass using a capacitive or resistive potentiometer to find the right frequency in his country.
I do not know his country to help . because I can define the frequency by my caluculs . and the experience of my buyers LRL . I want to thank Williams for his LRlman table definition of frequencies .
And thanks for FrancoItaly (http://www.longrangelocators.com/forums/member.php?u=691) for their attention to the effect of the compass. but it must neutralize adjustment of frequency.
Waiting for your good news dear Goldmaxx (http://www.longrangelocators.com/forums/member.php?u=5702)
Nicolas (http://www.longrangelocators.com/forums/member.php?u=5987)
Goldmaxx
01-18-2014, 08:00 PM
HI
HOW ARE YOU SIR?
DO YOU HAVE TOTEM PD PCB FILE IN PROTEL OR PROTEUS FORMAT???
THANKS
I AM WAITING YOUR ANSWER IN FORUM
Hi mohamadder
Sorry, but I have only the book “Inside the METAL DETECTOR” from Qiaozhi.
It includes all the details to build a TOTeM PD. I can only recommend this book.
I am a LRLnewbie and have learned a lot about LRL with the book from Carl and Qiaozhi.
Of course, I am experimenting further with the TOTeM.
Check out the thread from Sneshko that he could publish something from the book
Here is the link
http://www.longrangelocators.com/forums/showthread.php?t=18794
Hi Nicolas
I have made some small modifications to the TOTeM, but I can not test the device properly.
The problem is that I need a target (phenomenon) in order to locate it and to calibrate the device after that. I have done many tests on places, where what could be, but all without success.
I also think that, as you have already written, the problem is together with the right frequency in my country.
For this reason, I've built up from a few months ago, a small test field and buried silver coins. I hope that in a few months is build a small "phenomenon" that I can calibrate a LRL and locate it.
Now it is winter by us and I can not make any tests outdoors. But I still have some projects, that I want to build and test them in the summer.
Best regards to all
Nicolas
02-07-2014, 03:15 PM
new Version of reciver pcb:D:)
Hi Mustefa Thank you.
Here is your PCB
king40
02-07-2014, 03:30 PM
Hi mustetfa
Good work for your PCB
But we like some details for your LRL. If it possible
good question :D
Hi Mustefa Thank you.
Here is your PCB
Hi Nicolas,
You noticed the problems on this pcb ?
Just to call you attention. :)
Nicolas
02-07-2014, 04:32 PM
Hi Nicolas,
You noticed the problems on this pcb ?
Just to call you attention. :)
Yes my friend thanks I have said that to Our friend Mustefa for correction.
and I have a lot of PCB and I have to check all.
mustefa ubram
02-08-2014, 08:03 PM
hi nicolas and other freinds
I've looked pcb.pcb is correct.The problem is related to printing pcb.You have prepared in the traditional way:)
kahyal
02-14-2014, 06:43 AM
hi nicolas and other freinds
I've looked pcb.pcb is correct.The problem is related to printing pcb.You have prepared in the traditional way:)
it's for all friends...:)
Nicolas
02-14-2014, 07:20 PM
hi nicolas and other freinds
I've looked pcb.pcb is correct.The problem is related to printing pcb.You have prepared in the traditional way:)
Thanks dear
This method of printing is professional my friend not traditional
I work not manual
I am a professional and I am a seller too.
my prototypes are without varnish without epoxy without silkscreen without enameling
but the other yes.
roccocoin
02-28-2014, 08:29 PM
The TX coil has 75 turns of 0.56mm enameled wire on an 80mm diameter former. The resonant frequency is not that critical as the TX is a forced oscillator running at around 65kHz.
The RX coil has 100 turns of 0.56mm enameled wire.
Without the coils connected, you can test the power supplies are correct, and that the TX oscillator is working. If you connect the RX coil, it will be possible to use the device in passive mode, as there is no need to balance the coils. Balancing will be required after you add the TX coil.
still a pleasure, I wanted to know the diameter of the coil rx? 100 tourn 0.56 thread, but the diameter? tank
please give me this information because I can not find it and I did not pre-read the book, then I will buy sicuramente.tank and good evening
Qiaozhi
02-28-2014, 11:07 PM
still a pleasure, I wanted to know the diameter of the coil rx? 100 tourn 0.56 thread, but the diameter? tank
please give me this information because I can not find it and I did not pre-read the book, then I will buy sicuramente.tank and good evening
The RX coil is wound on a ferrite rod.
See Chapter 14 of ITMD.
roccocoin
03-06-2014, 06:48 AM
The TX coil has 75 turns of 0.56mm enameled wire on an 80mm diameter former. The resonant frequency is not that critical as the TX is a forced oscillator running at around 65kHz.
The RX coil has 100 turns of 0.56mm enameled wire.
Without the coils connected, you can test the power supplies are correct, and that the TX oscillator is working. If you connect the RX coil, it will be possible to use the device in passive mode, as there is no need to balance the coils. Balancing will be required after you add the TX coil.
hello, but you rx 100 tourn but the diameter and how? how many and great the rx 100 tourn? and not explained that diameter and rx can please tell me how and the diameter of the coil rx? tank
roccocoin
03-11-2014, 08:22 PM
hello, but you rx 100 tourn but the diameter and how? how many and great the rx 100 tourn? and not explained that diameter and rx can please tell me how and the diameter of the coil rx? tank
and right mounting for tx and rx? correct ?tanks
roccocoin
03-12-2014, 09:40 AM
and right mounting for tx and rx? correct ?tanks
La bobina TX dispone di 75 giri di 0,56 millimetri filo smaltato su un diametro di 80 millimetri ex. La frequenza di risonanza non è critica come il TX è un oscillatore forzato esecuzione a circa 65kHz.
La bobina RX dispone di 100 spire di 0,56 millimetri filo smaltato.
Senza le bobine collegate, è possibile verificare gli alimentatori sono corrette, e che l'oscillatore TX sta lavorando. Se si collega la bobina RX, sar* possibile usare il dispositivo in modalit* passiva, in quanto non vi è alcuna necessit* di equilibrare le bobine. Bilanciamento sar* richiesto dopo aver aggiunto la bobina TX.
P.S.You can figure out what and where the TX and RX and the? you have made a big mess that you can not figure out what and where the coil and the coil TX and RX, please, a little respect for those who are not so handy with electronics ...... the RX AND ROLL WITH FERRITE AND 75 OF THE SPIRE? THE TX AND EXTERNAL COIL WITH SPIRE 100? TANKS
Qiaozhi
03-12-2014, 10:37 AM
Roccocoin - If you want to make a post in your own language, then please also provide an English translation.
Please read the forum rules -> Basic Rules of the Forums (http://www.longrangelocators.com/forums/showthread.php?t=10526)
In particular, this part: "Although this forum is open to everyone everywhere, I ask that posts be written in English to maximize participation. If English is not your native language, just do the best you can."
roccocoin
03-12-2014, 11:02 AM
La bobina TX dispone di 75 giri di 0,56 millimetri filo smaltato su un diametro di 80 millimetri ex. La frequenza di risonanza non è critica come il TX è un oscillatore forzato esecuzione a circa 65kHz.
La bobina RX dispone di 100 spire di 0,56 millimetri filo smaltato.
Senza le bobine collegate, è possibile verificare gli alimentatori sono corrette, e che l'oscillatore TX sta lavorando. Se si collega la bobina RX, sar* possibile usare il dispositivo in modalit* passiva, in quanto non vi è alcuna necessit* di equilibrare le bobine. Bilanciamento sar* richiesto dopo aver aggiunto la bobina TX.
P.S.You can figure out what and where the TX and RX and the? you have made a big mess that you can not figure out what and where the coil and the coil TX and RX, please, a little respect for those who are not so handy with electronics ...... the RX AND ROLL WITH FERRITE AND 75 OF THE SPIRE? THE TX AND EXTERNAL COIL WITH SPIRE 100? TANKS
Excuse me immensely, I had translated for me and then I did copy and paste directly. ancora.ma excuse me could you tell me where the coil and the tx and rx? that rx and the ferrite the baby? tanks
Morgan
03-12-2014, 10:00 PM
Roccocoin - If you want to make a post in your own language, then please also provide an English translation.
Please read the forum rules -> Basic Rules of the Forums (http://www.longrangelocators.com/forums/showthread.php?t=10526)
In particular, this part: "Although this forum is open to everyone everywhere, I ask that posts be written in English to maximize participation. If English is not your native language, just do the best you can."
Hello
I decide to put here the news of a GREAT TREASURE OF GOLD COINS found recently in Greece with the PDK-2.3 model, this is not propaganda for sale PDKs, its the amazing find of a ceramic pot with a hoard of gold coins.
I stay silent about WHO FOUND the hoard, but it is cientific evidence that the gold inside sealed ceramic pot also irradiate the PHENOMENON.
About DISTANCE and DEPTH i dont know yet,this is today amazing news.
It willbe great if the person who foud the pot,give a gold coin as a souvenir :D
Regards all :)
18882
mustefa ubram
04-06-2014, 06:44 PM
hi to all
I would like to start construction.This is my box:)
Goldmaxx
04-06-2014, 07:57 PM
hi to all
I would like to start construction.This is my box:)
Hello mustefa ubram,
Congratulations, looks very good. I 'm very curious about your experience with your Totem project.
Best Regards
Goldmaxx
mustefa ubram
04-10-2014, 05:10 PM
hi Qiaozhi , goldmax ,morgan
Please help to adjust and calibrate totem?
adamas1
08-31-2014, 11:35 AM
Is correct when approaching my hand at TOTEM was whistling
rtl_2014
10-16-2014, 06:09 PM
dear friends.
after 2 week working on my totem pd i can test it on passive mode.:cool:
it work good with electromagnetic filed and ionic radiation devices.:)
at last test ( attached video) near the ferrite loop it can sense my watch tick tick and beep for each second changed.8)
http://youtu.be/Sdyxsla7lJc
but on active mode when i release the active/passive Switch to active mode red and yellow LED and the meter and buzzer turned to ON and by changing the active pot nothing happens
i changed position of ferrite and test it on each position please help me to calibrate may totem pd.
tanks
beast regards.
Qiaozhi
10-16-2014, 09:00 PM
dear friends.
after 2 week working on my totem pd i can test it on passive mode.:cool:
it work good with electromagnetic filed and ionic radiation devices.:)
at last test ( attached video) near the ferrite loop it can sense my watch tick tick and beep for each second changed.8)
http://youtu.be/Sdyxsla7lJc
but on active mode when i release the active/passive Switch to active mode red and yellow LED and the meter and buzzer turned to ON and by changing the active pot nothing happens
i changed position of ferrite and test it on each position please help me to calibrate may totem pd.
tanks
beast regards.
The ferrite coil adjustment procedure is on page 231 of ITMD.
Saiman
01-15-2015, 08:51 AM
Hello Qiaozhi
Thank you very much for your Reply,please if you can help whit this photo
http://s23.postimg.org/vecuzt6u3/new_3.jpg
HELP ME
you have 4 switches, I saw
Why should the name of each switch
and how to connect with PCB
Saiman
01-15-2015, 08:52 AM
HELP ME:)
you have 4 switches, I saw
Why should the name of each switch
and how to connect with PCB
Thank:|
Qiaozhi
01-15-2015, 08:29 PM
HELP ME
you have 4 switches, I saw
Why should the name of each switch
and how to connect with PCB
See page 241 of ITMD.
Saiman
01-18-2015, 04:34 AM
HELP ME
you have 4 switches, I saw
Why should the name of each switch
and how to connect with PCB
:)hi all friends. I hope all healthy.
I have a problem with the switch LRL TOTEM PD
see all photos in LRL Totem Pd forum, I made the decision. Switch probably like this
I really hope any help from friends forums.
to correct any that is not true.
Thank for all.:)
http://www.longrangelocators.com/forums/ a+0awAAAgAElEQVR4nOy9d5Rc1ZXvz++tt2atN+/NmnljpK5cdXPOt3KOXZ2TOkitHJFEkEDCYHLOwYBtjMgGAwZjG 2MMmGybYJywAWMwJgoMiCR1V9UN55zfH1cSAiMPY4s3aw39XXf Vun27Vbqn6u7P2WefffY5CM1pTnP6Yuug/+obmNOc5vRfrDkKfFZBCP+rb+H/qSCEn9rkT73uXTkgH9G+b/JF+8z/qzRHgTl9uvZngftSYO853KP/N/cwpwOrOQp8VsF9hNB+LWTfP9z34t7r3vl/dHzG2/i8BCEEAOxr5Pu05VNu4wDezyfe6hN3MqfPQ3MU+Fv6677ub1jg/v4GQgihu/dACOxzuAh94gpACEAIPou1H1gi7Ptuew1v78knWvRXlvk32v5J gnz229h7D3Mg+Fw1R4H/UBAhAKELIfQexY9+AT86vB8/cdF7biFECH1k/97JvlDYlxH7XPH+r092xX9tq97rP9DAfemzW47juK77n/uY9n8L8COH4lMCChBCAFwIAdpPS8E+QgfU75iTpzkK/G3tRgAALgDAcf5zhvH5CULouq5nqP+wSexFwG5TdF0AAJidbb3 55luvv759+/Y3Xn/9jddff+Ott97esePdt9/e8c47777//oe7ds3OzrZnZ9vttmVZruuCz880bdv22vsJX2NOB0RzFPgbgns 7cNd1AQCWZT/y8M+vv+6Ga6657uqrr73mmuuuv/6GW2659Tvfue2WW269/fbv33nnXffe+5P77nvg/vsffPjhnz722BO/+tVvfvOb3z711O+feeYPzz33/PPP/+mFF1586aVXXnnltddefX379jffeOMvf/nL22+/vePtt3fs2PHejh3v7djx/rvvvv/++x9+8MHO99//8MMPd+3aNTsz05qZac3Otmdm2u12x3FcCBEAwMPTAfEFIHS9jt Z1AQDw1ltvX7x42dTUoonxqYmJhVNT04sXL12yZOnixUtWrFi1 Zu26Qw7ZsGHDoUccsfnII7ds2XLMsceccNxxJ51wwsmnnHLa6a efedZZ55577vkXXHDRxRdfevHFl1x22de//vXLv/nNbVdeefU111znfXQ33PDtG2+8+aabbrnlllu/853v3n779++4484777zrzjvvuvuee++559577733gQceeOGFF7 zPf874PyfNUWC/gtAFwPFA4PW6z//xT8uWrsrnyoV8OZPOe0c6lYubqVQym8kUctliOp3PZUvVanet2 l0p16uV7lq1u1rpbtR7uxv9Pc2BnubA0ODYQP/IQP/oyPD48NCCsdHJiQWLJsYXTU0uXjy9fOmSlUuXrFi2bMWKFatWr 167YcPGQw89fOPGQw8/fNNRR23dvGnrli3HHPPlrzzyyM8QQgdiwPwxX8CztXff+WDjhi PyuVI2U0yn8rqW0LWEoScZRuB5WRQUWdZ5TmJoQVWMuJlSZF3g FYFXBV4ReFkQJO+QJEWSFJ4XvR9FUZZlVZZVSVJUVdd1U9dNw4 jrumkYZiqVzmRy6VQukykUC+VSqVKt1svlypo1a1566aW9jT0g X+6c9tUcBfYrCAB0XQQAQtB1AULojjvvLhTq2Ww5mchpakLgVV HQWEbEYhRJsCTOUgSHxSgsRtGUwFACjtNYjCQImsBpkqAJnCZw isBpgqBJksFxCscoHCMpkqEoFseoaIQkcIaheZYRSILBcZokGJ YRWFZgGUEUFF1PJBLpbLaYzRYOPfTw9977AB0A29g7hfERUJ7/08sDAwviZs40M4Kg0DRH4DSO0ZEwHgnjoWAsHMLDIczvC/t94YA/0jU/OH9eIOCPBPyRgD8cDIQCgVAwGA4EQuFwNBKJhcPRYDAcCkVCoU gwGPb5An5/MBgMh8PRUDDq94UC/kg4hEUjeDRKEjgrCmoqmcvnysVipVyu3H777V5L50DweWiOAvs XgN6xt6u99ls3m4lCPJ7T1ATLyATOYTEax+hohIhFyXAIi4RxL Eb5feH584Lz5wXnHezv6vL5fAGfz+fz+f1+fyAQDAQCPp8vFAq HQmGfL+AdXV3+rq7A/HmB+fMCB3/J5+sKeRbl94WDgWgoGItFKYoUJFHPZgrFQiWXK/T29j/77B/QPhH7f7C5+w65f/27P9Qag4aR1/W0ICoYhmMYSRIsgTMEzpAEi2M0x0qxKDnvYL/fF/Z1hfbgIOT3hzxrD4UiPl/AA8Fey+/q8vv9Qb8/6PMF5s3r8vkCFMkSOIPFKCxGx6IUTQmSZPCcEjczxUKtWKik05 lt27btvcl/sJlz+mvNUWD/gh4IPsLAN755tSjH4/Gcoacokg+HcAJnWUaiSI6hBYYWOFYSeCXgj8yfF/R1hX1dIb8/GAiE/H6/3+8PBoPBYDAQ8Hd1dQUCgVAo6PcHfL6gZxV+X9DXFfJ1hQ7+kg +LUQKvUCRHUwJF8gwtampSU9Mcq6aShVKxns+Vm82+fSlwAJq7 DwV+8avf5QoNXc8lEnmWFYPBcDRKiIImChrP7fb8JVELhzCPAl 3zg76uUNf8oN8X9vmCnsH7fIH58317jd878a77fIGuruC8eV1d XX6eE2iKZWiBoUWWkQVe17U0RYqamsznKvlcJZPO3XzzzejADH/m9Cmao8D+BRF0AXQBBNCLf3/10stFJZFI5lUljsVoX1eYocVEPBs303tHzopsBAPRrnkhz1ueN 8/X1eXv6vLNn9/l8/nnz++aN29+V5fP7w/4fH7PHjzb6OoKeOb0pX/v8vvCPCdzrCQKGs+pomDIUoJjdDwmJOPlXLaaSRfGxiZef/119DHb+IfMY19/+2ePPZnN1+NmQVWTBMn4/UGSYErFeqlYL+Sr2UypkK8U8hVVMbu6/KFQJBLGAv6o57n4/XvZF/zESSAQCoUigUAoEAgH/dF5B/vmzetiGCaRSMbjGUNPJeL5uFFMmmWKkEXezGWr2UyxUKjce+9P 0BwFPjfNUWD/ggi6LnC9aUKIEDrn/K/KWtowM7Jk4BgT8EfjZqbZPVCr9pZL3aVivVZt1ms9sqT7fKFIB ItG8UgkFonEQqFoKBQJh73zSDgcDYUioVB0z4l3JRoOYQF/xNcVCgaicTNVLtVLxUax0F2r9FeK/bXyIMfEdS2XzVQy6cKSJct37NiBEDpQs+i7J+QhRAg98PCj6Wz V0HOKkmBYIRSKcqzU7B4sFZqVck8hX6uUu6uV7lKpGgpFQuFIJ IzFomQsSkYjRDgUi0RiGEZEo1g0inlBgVgMj0axcDjqXYmEY+E wFvCHfV0BhmEKhVKlXK+Uu7vrA/XqYH/vZCHXI4updKqSy5arlcajjz6G5ijwuWmOAvsXRBC4EDgQOJ5tn H7m+YKSUtSkKpsUyXfNDyXi2Uq5mcvW8rl6IV8vFWu1ajNupnx dQc+8YzE8FsMjkVg0imEYQRCUd8UzDAwjvF9FIrFIGIuEcQ8E8 +cHWFbIpAvlcncx3ygVeov5nr6eiWy6rqnpbKaYTOTWH7Jxdra FDtxQ2Xsfjyn3PfTzRLIkSUlFSXC8FPCHKJKvVnqzmd0tLZcal XKjkC9FIlF/IBgKRaMRAotRkTAeiWAYhhMEhePkXhbgOOk13Ps0wuGoFyyYP9 8XCkUURctmCqlkPhHPm3o+l6k3akOqnE4lS5l0uadn4Omnn0UH jndz+oTmKLB/7aEAgq732J16+rmcGJfVhKbEGVr0KFAuNXLZajZTzeeq+Vy5Xu sxjZSvKxQJY5EIFosS3nPv2fxe2wiHoxhGeLbhmYpHgWAg6veF 58/z4zila8lUMh83crqaNbRcqdBTyDVkMZ7NlOJm+thjj9+bk3cAr cKztHvue9iI52U5pSgJTY8HAmGa4quV3nSylEwUk4l83MxkM8V MuuDF+aNRwvMFYlEyFiO8pnmHZ/leGz2PwPOPwuFoIBDy+QKhUERVdUNPGHoqbmZNPZdNV+vVAVlK pFPFRDw7tmDyjTf+gg7oysU57as5CuxfECK42xfwnrzjTzydFe OykogbaUU2u+aHEvFMIV8zjayqJCXRkEQ9Ec/wnOzrCkXCuOchx6JELIbFYlg0huE46YHA44JnFZ5hhELRcBALB mIBf2T+vACOk6piKLJp6BlDy8aNQjHfLGS7ZSmez1UMPXn22ef uuc0DuYzHe7cf/OheVc+oakaW47l8KRyOMrRQKTcNPSOJphewkCVdFJRAIBIMRr3 5kT1NxiPRmNf/EwQVi2Ke/XvG742JvPnCQCDkhQ8lSRF4RZFNRU6oSjKZLNSqfbIUz6TLcTM 9MbFox4530ZwX8LlpjgL71z4UQAhBhLZ++XhBTshKPJXMZ9JFz xfI56qKHGdomWUUTY0LvEKRfMAf8SbVI2E8GiEiESwcjoZDUSy Gez3kRwOBPR1jMBgJBqIBf9jXFTz44K5IJCrLiiAokmRIgqEp6 XSqks/WZTFeyFcNPXXeuRegA5pIs9vGIEQI3fb9OxUtralZRU3W6z3RK M6xUrnU0NQEx8oMLcbNjChooqCGQ1goGAsFYx4FohEiGtnt++x taSgU8WDnHd5YIBgM+/3B+fN9fn9QECSBlyVR5zlNkRNxM18uNTU1lc2U4mZq4dT0e++9 h/b4KWjOHTjQmqPAfgXh7nU+LgQIIQDRpqOO4UVDls1splTIV+fP Cybi2Vy2LAoaSbCamtC1hCioimyGglg4hEfChJdKsMcpIAmc9k ID4XDEs/+9o+U9eTWebXRFIhFJknleFHlFFDTTSKdTpXyuZmi5Qr6mqfFL L70MIeSl/aIDYRgeBDxDu+W2H0hyQlWyiprq6xuOhHGGFkrFuiTqFMnLkqF rSYYWk4kcgbOhIOZ5AViM8l5xjKZIliDpaAyLRjHP/YnGsL2DoL1xAW+KhOMEgVd4TuE5VZGTqWSpkK+ZRqpYqJhmfM2 aNbOzswekjXP6VM1RYL/yEACACyCACNkOOmzT0QyvS5JZLNTqtd55BwdMI51OFRhapEheU +McK0mipirxUBCLhIlohPRSCWNREsdoAmcokiNwOhYjaIrlOIE gKCxGxGI4hpHRKBYOx8LhWDAQ7uryh8MRSVRZRuBYiecUTU1mM 5Vcpmoa+WqlJ26mb/3ObQghbxkyOjAUQHspcNOt3xOkuCynFDU1MTEdi5I0xRfyVZaR SILjOUUUNJoSZMnAYnQ4hHuhQRyjvVcCZ0iCI3AmFiMYmpNljW WFWIzAYgSOUxhGRCJYNIp5s4Y+X4DjBI6VaUpgGUUSjFSyWCw0 dC1VLjVMM3XCCSfO2f/nqjkK7Fd7x8keBhwHbTjsKIbTeUGvVZtDgwu65odMI20aaZLga EpgGYmmeJYRGVqMRkgvEw7HaByjcYzxsu4okiMJFotRLCMKvEy RHB6jPbPxXIZImAgGon5fKBSMCrxCEhxJcBwrq0oyl62Wit26m q2Um+lU/oEHHkS7UfX3+gIfr2nipUq6LkQI3Xjzd3nBEIWEpmWWLl1FEix N8elU0UthoinBAx/Hyl4zsRiDYwyBs15moXdQJOddoSmeJDgsRnm/xTAai+32CAKBkM/nZxiOpngcY1hGlgUjYWSrlV5dy2SzlXg8e8bpZyGEEJxLH/68NEeB/WofCiAAkWXBdes3M5zBskqj3rtgbKGvK6xrSV1LerZBkRxFsiw jcqwci1Ke5VMkR5EcSXAUyXuvFMntzcPdp+dkPV54mci+rlA4i PGcTOAsSbAsI0miaeiZUrFbFpPFQj2XKz/++BMIIQCcv39E8HEKQIhcgACECKFrrr+J5Q1JTCpqaunS1Z7Np 1NFhhYZWvQawjKSJOo4xmAxmsBZkuBoiqdIfk9LOZriaYoncQ8 KDIHRHh0IjCFwBsepaBQLBEJ+f4BleZYRKJJnaZlnFUUw0smyb uTjiWI6U7riiisRQgjOJQt8XpqjwP61dxEBhBChdsddu/YwltV5Xq2Wu8cXLAr4o5qaMPSUZxsEztIULwqqwKseBUiC87pE kuQoWvAOhhYZmvfo4LkG+x4EzkQjRMAXCYcwUVBJgvPe3AubFf J1SUjkspXBgdGXXnoZ7YkL/J228akUAAghdPV1N7GCJkiGrMSXL1/LsgqBc+lUwQsNUiRPU4IoaLJkEDjrIcBDg+cmeAfHyhwjMaTAU iJLCx4U9m04FqOCwZDfH+A4nmV5LxGbY0VZMjOpSipZ0fV0rdb 48Y/vQgh5A585fR6ao8D+BfZUF4IQQDTbslevOZRldY5VatWepUtW+ X0RUdA0NeE98d46AlFQOVaJRSnPJHavBaAFmhEZRmQZSeBVjpE YWmAZkWVEhhYYmqcp3jshCTYWJb0FdqKgkgTr9boCr2pqKp+rq XI6nSquXnXInskz11sL+Pc08OM5xx4FXIAQQtuuuYHhFU5QFTW +fv3hqhKPRSlDT3GszLEyy0jeXfGcgsVoD1UsI+0dLLCMxLGyK OoCr/KMzDGSwCo8p3CsxDIix0oeDkiCjYSxYCDCMDzD8CTB0BTPc7Is GaaeS8ZLupoa6B969NGfo7nQ4OepOQrsX2B3SMBzBnbNtFesXM 8wGsso3Y3+VSsPCYdwnlM8X4BlJALnGFriWIVlJCxGe6bLcyrH KjQtsYzCsYrAq7Jo8LzKcTLPKzyv8JzCMhLLSJ6FUCRPEmwkgo dCEZrmvbE0x8qSqCuyaRpZXcskE/kjNx89M+OFzd2/f/nAX608AHt8ga998yqGlQVRU9T4xvVH6FoSjzEJMyvwKsfKHuAU 2VSVuOcC8JwX4d/bFlngVVkyREHjeIXjFI5TPIJwrCzwCsdK3vorHKPDQWxvWJGhB VFQZcnQlHQqUVblxOTEwueeew7tM004pwOuOQrsX7spsLvc3c6 dM9PTqyhKYRi5Xutdu2ZjLEp5c3iewdOUKApG3MyqioljDE0JA q9yrMpzGsfuPhEFQ5ZNXlQ5XuEFda9tCLzqGRhDiwwtETgTCoV xnIyEcQJnvCwdSdQT8ZyhZxXJPOvM8+DuesdembADUn30oxqKX 73kGxQt8IKqqvFDN25OJrJEjDa0pHcboqAJvBo3M3EzQ5E8gbO eg8Cxsrfu0GuOIhuyZHK8zgsaL6gcJ3vrEb134FiJZSSaEiJhA ovRWIzGYhTLCAKviIKmyqlUoszS8qqVa9566y00V2Lk89QcBfa vjwoOAoTQBx/smppaStMyx8q1anP1qvUUyXOspMgmy4iSqImCqiqJuJlRlTiBs zQleH0jz6myYIq8LvC6KBiyHJcVU5R0UfIMRhEFXRINUTAEXvO WElIUGw5HaJolCIokGK+HFAVV1xKmnlZEfdsV27wKSHuiFuDvG jbv919ddPElNCMIgqoq8XVrDk0n8jTJyqJKUwLLiJJo6Foqmcg beoahJW+ygGUkgVcEXhMFw2upJCRUJSVJCUmKy4ohSrogarJoK KIhC7rAKzwne2MKiuREQSNwhmNFUVAlURc4I2EUJE49dP3GmV0 fIOjsnQ2Z0wHXHAX2K7hPDWyE0DvvfrBgYpqkJYaRq5Xm6lXrv UGswKsUybOMLEtGOlUwjbQ3l+71e96ryBsCp4miIYmmIidULaU oSVmNy7IpCpooeIDQRcEQBdUDQTRKyJLGcZL3v6iKKfCKJOqGl lZE/fprr0W785q84gIQQvCftxGwv5jCeedfRNE8y0qKbB66cXM2VWA oXuBkbzzPc54jkOM5jWVknpO9wY7AqwKviYIp8LokxhUppakZV U3JckJRkqJk8rwmcKrAKgKreFwTBY2mRIoUVCVOkRzHyopiSJL OsaoiJmRBX7tm7cyuDxECELhzq4k+J81RYL/aO1MIEEQIvfHWjsGRCZwUCIKrVZuHbtzMMRLHKhwr05RMUzLPq V4ZMi9Y6PnGnvcrS3FVSYq8rohxQ89oWlrR0rKWlpWkJJpe5+n VLxMFTeA1STRIguMYmaVFjpUFTpFFnaFEhhJVOaEr8SsuvxwhB PdMoUP4yS0M9qePNxHsW2UM7lOh4NTTziZIlmVFWdKP2nx0qVC lSY5nZZ6TvRCgRzeaEnhOk0TTa6ksGbIUj5s5TU0pctJQc7qeV fWUoqQ1NavKaUVKKnJSkeKyoEuiLkumJBqSGGdohWUVjlV4VuY EhWQEkuAFTtMUc+nixe+9+w5CaK9T9hkRMEeKz645CuxXe0uMe M/T9u1v9fQOkZSI43R3o3nk5q2ypImCuidmLlCkwLEyz6mSqCtyX JFNWTIU2VTkuK5n0qmSqWUMNW1qOUPLKVpGNnKantPktKqkVCW hKnFZMhQ5ripJVU4oYpxnFJ5RRE4TWJWjJYYUGFIwtYyhJc45+ 2wIgeM4+6PAxxryGSgAd5ct2z1AOO6EU2IxiqZ5QZC2bvlyqVD lGEkRDZ5TaEqkSM4bBMmSocgJRU6oSlxV4pqaUJVEKlmKx3O6l tGVrKZlZC0lq1lVzetKXpdzuprVtbSuJXUtpWtpTUmrckYWkyy jeQEURpBpXmZYRVOTumr09fa8+KcXEELAhfAzhD/mjP/v0BwFPtIn+00AgOtA10UAIoTe2P5Wo95HUiwWI+uVxqbDj2JoU ZFNSdJZVmQYnqF5hha9YL63psDLKdK1pKGnE2Y+qedMNaOrad3 IylpK1TKamtW8K2rS1FOGljLUlK6mVTmpqxlVzvC0SRMKS8sCK 3sjgoSe0ST9iMMOa7V2eeVPvI58j0l/ZMn7dvKfahsQeXEP5CK0u/wwgAggBNFXjj81itMExbGssHnTllQyRxGcJOgcqzK0yDIiz3sF hXUvY8I7TCMdNzOGkVWUpKKlZTWlGVlZS0lKSpbThpY3tIKh5k wjaxpZTcl41FCkuKokJSHO0ApFCjQjcIIiiIampQw9kc1mH3v0 ZwghCD62UdJff2t7f/ycH5P/hpqjwG7t6Qw/wQEHQtubPdv++luN7n6coMKhWKlQO/KIo1laEnlNkQ1RVDlOkGVN1xKqYupawqtBZujJuJmOxzOmmTG1 lKEkdTWp62nVyIhKQlVSqpwxtIKuZjU1rWsp00hrWkLXUqqaUG RTFpOKkBZYkyEFnpVEUVOkuKEk4mp84eTEW2+9gXbP7Xme/N7djT5Ggf14AQghZCNoIWjDvWVWXYCgt2XaMcedHMaoCEaSFH/01q8M9I8aajJp5pKJvKYldC2RiGfi8VQykY2badNIJuLZZCKXT OR0LWmamUQyF4/ndDOrGGlZS0pqUtUzupkzjKyuZzQ16YFA15KmkTKNlKGnVCWtq SmBV3lBkRVTU9OamorHU5lM+s4ffg8hBIDruuCv94Py9oD6VED M6TNqjgIfE9xnPywIIYQuhDZELkLolVffqDb6ogQTCGHlcvfxx 53SrPeX87VaubuYr+haQlPjppEy9GQinvFAkEkX0qm8ridlxTD NlFfbX9WTspaQlLiupxPxYipRSZglSUpoakrXU5qR1I1UIpFOp 7LJRNY0cpqSViRDkQ3TSGdSpXyqWMmVJ8cXvPTibj8ZAOhtebh nd7OPQmh7zeNTGws8L9tFyILIcpDrQOACiFyEjjjqy1GMIkhOF PWjtx63aHJpvdJTr/bUa01FNmjKSxmSFdngWIljpUQ864VFvQiiqsXT6YIsGwwnC4oh awktnklnS5lsSZR0hhYFXhN4XVUSppky9GQykU/E85qaEAVVEJR4PFMt9zVrA81aT2+jftMN16LdBdE+2gfNW/i05/U/4N2c/rbmKLD3GfpoX2Hk9TAAQehAZLnAQgg9/8JL+VIDI4UowTf7RrduPb5WbXZXe6r5WtrMUTgXCeGxKOllEHq LAhTZ4DmZIJgoQUWihKqYhp7ESJZgBEVPqmrC1JPpZDZhpgmMw 2MMQXAkxWt6QhQVkZc02VSVJMPIJMmxDJ9O5XoaA72Ngb5G3+j I8NNPP4UQAg4AACK4e1Zzz7hg7/5/n74CZ08zXehC4CDXho7rOMCynTYC0HHg+o1H4DhNUbyupY7eel xPY6BUqCXNdCqVoSgmHMJCQSwaIb3VE6FgDIuRoqASOBOLkeEQ RpGsLOuxGBHDSFVLqHpc1QyWE2VJIwkmFiHwKIVjrCTqPCfiGI 3FaJZRGEokcBrDcJFXitlqvdDsqfRUC8Vrr9qGEAJg96ZJ3rHn C0IAfALccxT4T+uLTgG426sE+wbYXOi60HaA67ougJYLZhCCz/7++VSygnFiiGD6h8Y3btxczFayiWwpV6qV6yTGRkKEtx9B3Exl 0vl8rqIqJsdKOM5EMDwSxRVF53nJFwiRDGfEU4pqciwnMLQmK1 gUxzDS285EFFSa5nCcJAjGy9IjMAqLxjRJSSdShXSxVqyODA48/8c/IIQcGzgAAui6wALABtDZvWfZR0FDzzsAH2s0gBBA5ELoAAfAD6 DzAeoA5LrQcSCwbLByzYYQxZGcnE0Wjz7i6EatmcvkFgyNbj3q y7oWx6K7V0znsuWFU0vPOfvC4487OW6mGVogcSYWwQ3drNca0U g0EAypmmnoCZ4TFFFcMDykShJDsgTG0CQv8mq10hgbnervH0un SxyvspyIxXBVUnrrzUahWi9Wyrn89269DSHkOMB2XACBC7yasA 7wvjIE5ijwD2qOAt6KIXfPNsHIhbADrI7bcuwOBAgi14Y7EUK//f0LRrxMcjzNcosWLlu35tBCujgxPHbhOWcf9+WtFE6SOOP1/4MDo2eecd5jj/7q0ksuV5U4TfEUSeEYPjUxuXR6CUNSBIYbuqGpmiJyq5ZOb1i7 SmAYlmYInBJ4pd7o/drXt1155fVHHnlMtdwjsgpH8kwMXzDQf/zRR65cOF0v5BeODb+5/VWEkOtCF0CAXBd2ALRcYAFoQy/HBrgQAAQgBC76RJgQQOgiAJAFkOXCXcBtI/fDV7fveuNtgOBsx1m8er2fFWKc1Kg0v3zE1kq5MjoyfOqJJ558 4sn1ap3ASJpiaYrLZcvLl635xtev+s4t3xsdmZePL6QAACAASU RBVCBwhqV5LIqXCqXTTjnlsI0bcDwmSpKqqHFNP+yQtScdu7WS z3IkzbMiQwulYu2mm777y1/97pJLL1+0aLmqxiVBZUi8mE1cffml12/7+roVi4vZxE/u+RFCyAWut1MUAMAFruNaDrQBcgH04gX7dXzm9B/qi04BtGc/QgBcxwG2g1yAbOC03RZCcNerLz/4revaf3kTIfTkr57VUkWK4lmaX7xo+dqVG4rp4qGr1y2bmti6+ fCeRiMWwWlKoCkhnSr0NAcXT69Yt/bQuJlhaVFkRRojJoZHrrti2zFHHkmEQnFNk3lhcmTwmM2HLp8a zxi6xHIsxVIUP7Vo+TXX3nz+eZesXrm+kK9yDM8zNIOHpxf0fv uay+667eal48NLp0Z2vPOGt4uas7v7t1zQdkEHQAtCG0DHBY7r 1VAHEH0EAW8ogKCDXNd2XbvjOggh+6nnvr1g5XO334EQ2jXTXr x0FYazDCXUio0jNx7ZXWwMNvq6y9XFi6bOO/dsAiMIjGJIXhJ0SdQ51suYyqWSWVlUSJyURWHtmlUXXnCuLAui IOqKXkjnVy5Z2lMrL56a0ERFYEWCZGXFGBqZqNX7arXedKpAkz wRo0SaziW09csXb/vqhWefdFy1kH705w8jhBzgOLbrensXO47j2i50XOi4wHbdvTOm c77A36M5CuwecDousDvQbkNgAWB3EJh1X/jDTxYuvypbs5/9E0Loicd+aZgJnpE4Wli0cMmqZWvL2XItX0wZxhmnnrp2zSEEz jK05M2fi4LurcMvFmq5bJlnJQpnEro5OjAw0N1gSSJhGKZmlPL ZbNIc6etdtnARi1MMwRIEy4saw6kcK6dTBUk2CJImCELgqEY5M 9QoHL/psLH+xmHrV+yc2eFAx3Jdy3JdB7iO7Tht2267wHGg4wDXAcABw PEmA/c4y7uH0y4CDgCu67oWmPngrXvuurfafWOE2v7t6xFCb83smly4 WMA4iRDLxcbmw7d0FxrlZCGbSE8tGD1842GqrGty3FTTqXje1F JJMysJZjKRLxXrCTMtCYqpG6osMxRBEYShmqaWymfKpp5IJdKL phaZekIWdZHXZMlUlKQkJTPpaiJe1NWUwKuqqOYT6Wa+0psvjt Rqoz3dzz/7NEKg41ht2+k4TtuxO8C1gOVA24WO7XQc1/JA4Lrwo9KE6KPpkjn9bX3RKQAgclwEbAht5Fho1nItx0aO9d6v fvnDkfFf6PlH6n3Wc89AhO597FHTNEVOJGlm8dIVq1euL2QqtU Ilm0wvXrSkp2fIMLK5bLVYaKSSxVSyGDczyUQumynlcpVUspDN lPK5IkPToWCApihNMwwzWSyUdc3MZ4r5VD5tZlOJfDpdyuYq1d pAvTFSqw+Xq0O5Qk8qXUkmcvVyvVGqlbLZYjp98knHurBtu47V AZbl2gh2ELQRsgFwgAtcABwvSIBcB7iO45UgcF3ouhC40AOB4y DbRa1XXv3hIRtfOnbrfUONP1+zDSH08vvvDU8u4gieIbhSd+/GzVsrhXq5UEtlCoN9I0sXrswmq5XiQKM2XMjVM6liMp5NxgupR Llc6i3m68V8tae7V9f0aCRK4KTAq5qazKQrqVTR0FOCoOZylUq lt1Lp6e8eHuwbGxldODg43tu/oHdwoqc5Uq00m83mYG9fOZevZPNLF47vePtVhDoWsNoOsPe4NQ hB13Vc13Vsx7Y7rusAAF0HzVHg79AXnQIQQNdxO45tO8C24KwN 266L2vYbjzz6x1u+8863r7tpcrj9wtMIoR/d/7ApGzzL4jS5YvW65csPyaVrhUylXulesnjF9PTaSmWw2Rgp5Ls b9cGFUysWTq3o7RnJpEuVck8uV61Ums2efk6QohiOkYwoGbKWT KZK8XhelhOiYPQ1h3u6h3t7RkaHpwaHJscnV/b0TjaaC5q9Ez19493NkbGx6f6+0VKhVkpVrvza1xCyHde1LYBA B3Xea730Qnv7a9CahbYFLKdj2Zbr2i7oOLbr7o4LAICAi6CLXA e4FgBt6FhodufO9958A73+yq2Lpv5w7S0IoVffeXdoeIrB2RhG lnv6tx5zYiXfLBYa1e6BiYkVa1YeuXBifX/PkmS8WsjXL7zg0ptvuu36625ZvGhNMl4pFXtyuUpv70AymSIJN halGEY29XwiUTbjBU1PcrxcKHf3Dk7U6kMD3UOjI+Nbjz3uK8c cv3zFIZlGX6E+3GxODAwumF66rFBqZLK1DRs3tlrvIWC5DnBdx 37pD09defGT55zxlwd/6ratTseesTsd2/a8APdjC47+0S3bvjj6olMAuS5wWrOwPYvsVsdxWwBYyHFcCwGE 0Ms/ue+qyYnWH59FCP3w7vtlQWVZmWLZww/fvOGQo0qFvr6esYVTS6cXrly9YvPo0PLu+mjcKC1bsuGhB578/VMvPv27F1cs22DouXKpr14f7O0bkSSDpPgYzvKikUhXkpm6ouU kKSnLiUa9v1HrbVR7m/X+Cy+49KGHHr/zhw+eeOK5hlEqlgYrtaHJhasmp1ZUCrVStvSd669DCM66wEaW+ 9bzjxy75cfjC28fHv/jN69GszNt6HyIQNtxbMd2XHvP0kPkutCjAHCAY7k2ADMunHUhQ gi98uaN08ufueF7CKGX33p7aHiBLCtGPD42sej0My7s7Rkf6J8 aHZ0eX7B8+dLDRgaX9zQme7oXjAwvPPWUs66+6oZ77374W9fe1 qiNdtdHBvoWjI5MpFI5iuJIkqcoOZGoFIt9up4VJJ0XlWSqWCr 3FgvNcrX7G9uuevmVN5755fM/u/vJBaPLlHiuXl843Ld0/bpNjcZQNls78qgtHXsGQggt2Hn+uTsmx59cPv30MZuvLxRfuv0 OZDmu1XIdx3Nz9hkRoDkKfHZ9oSkAIXQRtIEDbQsBxwKg7ULbQ bbjdiBACL12zz3XjI1Zzz2HELr1R/dk89V8uTtbKJx4/ElHH3XS0ODiRmOkp2d4dHTR8iUba+Xhgd6pxYvWLZpa09czPjK 0aNPhx37lmNMmFiwbG1k6NbFiZHhKEg0C5yhCkKREuTxQLPaLU orjNEU2ctlCuVjN50rr12184L6Hv3XdTVdtu+HM0y7ubYx3V0c He6eWTK9evWpDudhMFIvf+d7NCCHbBWjm3UeOO+J7kwt3PfnY6 zfd9I1M31uP/MIBELRdxwE7od0Clu3s3mENeDk2LkIAQQcC12nblgVtBAF8+aU bpiefvf5mhNCrr70yOTFdrTdy+fymjZvPPv2iBePLG7WRYqbW3 ejfuP7I0eHF3fXR8bEl69YenstUSVwkYvzkguWbDzth0dS66YV rFi1cns2VcIIhCI7ntGb36OjwdDKRZ1mB48RMutDbHOqu90xOT 1140XlLF6+o1Ma66wsXja5asXj16PCS8bFlGzZu7u4dM5OVE04 5pePOONBGtvvEuRfcPr0K7ZhFCP3ykgt/ec5XQce1Xcd2bK8+irs7h8rTgSm78EXQF5oCCCEXIuAiZAPXdV sQtBzXadtWq+XCDoKzr//glhtGBtpPPYUQ+vb37sonSs18vVmpnXPGOetWb2o2J7L5ZjpbH h2dOHrL8T3dIz3do2Oji5cvXV/MNxlKlaXEhkOOXLVi4+Kp1UumVi2eWqZIeixKYDEqky4tX7Juf GyxqiRoiuc5obfZM9DfPzAwuHLV2uXL1wi8SuB80igcvenEQ5Y fMTm0aNmiZRvWHFrNDRSrPXf/9G6AIIKg85tf3zrQ88GDDyKI0M6ZZx98+C/PvwhsF7astmW1XGDbruvsLkPgAui60LGB1bHttuO0nPauTrvdQ tABf37uxsmRZ665DiH00p/+3FvrN8xkuVDZumHLMUd8pVzsrRR6q9larVo7asvRixevKBWb/X2j4wumly1ZV6sM1atDa1cdsWz60MnxtRNjKxYvXl2pdmM4hWO UIupT40tWLF1XyJQ4mqUwrF6pLRgaH+wdGRkaXj61tNS7KDK4V jvs/NETvrn4iBOHRsdHBgc3H37ExOh0Klm58OJLIbIQ7KD3Prh7asm bX7tk108ff+n79+98+SVoQ7vjup0Zx+7spgBALvioqPIcBT6jv ugUAC6ANnA6Trtlt1pWq9WenZ2dac20rVnktt74/ndvGB7q/OZ3CKHrbvquyqk5PT3cHDj5+FMXji/PZZv5fDObrfb3Dx9z9HE93QPVSu/I8MKRoUWT48sH+yenJlZML1o92D+1YHjZYO/E2OhCw0xgBI4TZCFfmRifHh2e1OQ4Q3I8xw8ODvb09AwODg0MD C+cXDI+Ot2oDq5YtO6IdVumx5ZPDE9Ojk5+ecsxzVp/f63nid887iIAAHz3zp88WG++efk3frhu0/fXHf7uk48ihFwL2Far7bYdF0DLmycAEELHBbbt7to1O7Or1W51 2jOt1ozVmYWO48I/v/zd8WW/v/p6hNAfn36xpzogi3q10tyy+StHHnZsKddbKvTm8tV0OnPYoYev X394qVSfXrSy2RxuNocH+hcMD032NseajQV9PZOlYk+xUCsWyj TD4hhpaInuen9fcySTKlAEjRN4pVYrVqvF7npf/3BfcyI7fRz9tSf+1y3v/9/rXqfPvTu7/vR8c3rlsvXLJxZlkpkrrv02Qsh1AXr9nfsrg8/09z+2aOwn9cG7BhbsfPIX0LEsq2N3XGAj4HjZE3Om/5/WF5QCH6XZQ+BC2O5YO3fOzM62W63ObKvdallWx0aO+8pdd184N LLr93+EEG279gaRl9KJzMjg2FmnnzexYFk+11Mq9mYypUK+csa pZx22YfPi6ZWLFq6slHtrlYHe5lizMVop9TcbIz31UU1OZdJFw 0ziBEWQdCadz2XL9WqvLOo4TnGc0Nffn8lkc7lSrdqslpv9PaM jA5PjQ9O9teGB7rH+xlA+VVi5eNlws3usv8dLHEQIvXPXPT8OR Z4aH376G5c8eeSmWyvVzpO/coDVArMdx7Id5DjQdhxvotBxoe3CmZlWq9XpdOxWe3bWsna1Hc t20Bt/uW3zMU99/wcQoaefeq5aagqCWizXv3zMiUdu+ko2XSuWevKlumkklyxe8c3 Lrz71lLM2HXH0grHp8bHp0ZGFi6dXjC9YPLFg+cLJNWMjiwr5a iqZxTEKxyhJ1guFWiHfSCYLGE5GsFiuXB6dmCrky/lUoZYrGvm+6BGX/fPXn/qfV7920I07/vVbLwdPvyuz+bKRJZtyicIdt34XIQCADd969Ufl3GODfdaLv0P bX3to6ZpH1q6H771tQdB2oGUj10bIAsiBCCCAkIPgHBA+o77QF EDISz1DluXOtjqW7XTadmu202k5VsuBHfDeM8/9/MabZ998D0J09bU3JMyUpib7ekfOP/eSJdPrivneQr6ez5UNLb565brrr73plpu/d9aZF5x6ytnHfeWUE44/7cwzzj/h+DNOPOHMiy/4xmknnVXIVRlWjGEURtD5fKVe66mUu0VBxWIkhhGNRnPtmkNWL l87PDg+MjA+2r9gweDC0cFFQ30To4MLFy1YumHVxmsvv3Z8YHL B2MIXt2/3HvC37v3xbZLY/sHtCCH07ru3LVz2xGkXIxu0oO22HWChDgSu4+xOkHSh48JW2+q 0bdty3JlWe7Y9O2u5sxZ6b1f79TdnP/jAgug3v3l20YJlqUS+VmmefMIZZ5x03kB9rJRv5PPVZCIv8OrK lWvvuONHDz3403vveeDuH9//ozvvve++B358170/vOPeB+577BdP/HZsbJKmGByn8BiV0FOTo9P93SMpI0dESRwnaJodHh6/fNtVV1539Zknn3fuGZefcurFx3/91qGbngrc+sr/d8Mr/3TTW13feoM69yFu+tg7738EIYSAhT587/sjg69dcBGyXITQizfeenXPkP3nly2I2g60HeRaCHRcYAEEkAuA 7aVMzqUSfQZ94SlgQ9BBTgd2ZmyrZbVnWu2ZdmumY7ccZ5cNds 4gB1ht4Djoxutv6a33NxsjU5MrLr7o8sM2frlaGSzm64VcydAM AqP6egauveb6++978NGfP/Hoo088+vMnHnzgp/ff9/C99zz4xKO/vuyrlyuyQdMCSXEkxfU0BybHp5vdAwKvRqN4DMMxjBgeGv3Zw4 899tNf/vTBxx99+PFf/PxXD9736E8f/uXPH/nVrx7/3Z+e/fOpx52aS2UPWbLyvR0fdFzkIvT+k49+u6dqPf4YQgjNuD/YtPWHx5+B2sh24AxAto1Q2wGWDV0AHNexXMd2Oy2rM9NxZu3OT GvXbGvnTMf90IYf2HYLdFousNFvf/Hs2PDSZu9o38D4scecduJXzm5UhoqFZqnUTMQzLCOGQ5FGvbHl qCPPP//8r1781YsvuuTMM8846aSTTz35rNNOPXfD+k3JZEYUJYpkKYpPx DMjQ1P9vQviRiYaJSIYHo5isRi9acOWH93xw4ceuOcXP3v814///smHf/Pow89e//ALpet+/X+veuGfbv7wf9zW+ucr/9C45fHb/vT6h9BGzuwjhx/10NFHIbeDEPrNpVfdOLkcvPWmAzp227E70LF3rzVwAdp3WcEcB f5DfXEpgABCALk2dNsAdKAz41g7rfYH7c6ujjVrW7NOpwVnZzq zrdlW24IQff2y6zKpeq3SX6/1nXLK2QsWLMnnGsVCM5+vGmaSpplgKMSyfCqV7unpqderlUo5n U5nMtlstpBM5jQ9nognGIYlCZqm+Eqx0az3ddcGRF6PRLBoNBq NxmJRstk9sOnQo0494bRzTjv3vLMvuuDcSy86//JLLrri9FPPXbNyfa3UnS9UDt+8pb2rAy0HuhZ49fWbxpf87MzT 0ez79i9+d0tj7OXbboFwpu3abRtaANiObTm2CwBwAei4yEGg7d i7Ou2drQ9m2rtmrc6s67RAZ9bdNevMztoIoscefLyYbZjxAi/HNxy6Ze3aTdlMPV/oLhS7k2aWpQUiRkYiMb/fHw6FgsFgMBDw+7r8Pp/fF5p3sJ8kmHg8LokyjtMEySfixXJ5oNkYM81cNEaEI5EYhkWiU RzHaVLQlUwqUUjnC9lSoVqpD/RODQ2tSgxtJI+7/t+uef6fbpw96Ip3/unKZ4p3PX3ZL5/73a0//l6z9qfzT3t52zduq1ZeuvIKaLddqw12WW4bOA5ou04HOA6AECA AkAM/fVAwh4RP6AtKAQR3h5Bty23PWG4HOC239WF79v2Z9s52Z7bTal kzFpjpuJ2OY3dcBNGZZ1woqWlBTSSSueOPO7m3Z6iQr5eK3YV8 XVMT0QiOxQhvl26/p0DA7w/4fIH58/2hYExVdU1TWZalKZahpVKxXqv2NhtDAqdFI1gkEgmHIzhOR0J4 oCsUC0aiwSgWpUiMYxk1lSilk6VsstBbHyhnu08+8ZxOB7Y7dr szg6ydb9x9zx21sT+MrnqsOvjkkUei916x3Z1w1gG7YMcGHdex XQcAAFzQ2tmydnXclm3PdNofzu6abc92nFbLabfdlg1nLLftIo TQffc+mE3lzXhakI2Nhx21fNkhuUy9WOjJZRsJM0vE6GgYj0ax WAyLRCLRaCwSiYTDoVAoFArFQkGM5wTD0FmWY1mRooRsqtqojf T1jJtGNhLGwuFwKBQKR8JRIhqL4bEwHQngGEZSFM9QalpvNBLD 1WRPNtcdH1mvHPeD+ZdvP+gb7xx0xSsHffMZ6qaXNp37wA3LTv jp6iNevu5mtGtXx+l02h0w67ptaNmg7bo2AC4Aju0ACG0IdheK +ljNlTkKfFJfRApA6NXWQQggq2V/+P7s7EzHatntXZ32rnZ7tmO1bcuyLctyOo4z46JZiNrw7NPOUW TTjOfyhfpXjj2pt2ekUGgU8vV8riaJRjRC4RgdicSwGIFhJI7T WIwKhaLBYDgaxWJRXFEUWRZpmqZpXuD1armv2T3U2z3CMUowGA 6Hw+FwKBbDsSiJRTAiFotFoxwrCLyiyvF8plotNauFRr1YLyWz l551ng3hB8BuWx3b6riu0/7jy9tvu/P9Bx5EH7zTdjpO24a7XLcFXMuFlmPbjrcGf+eHM61dLaftgD2H 1eq0Wx3Hdl0b2G3HbrsIoXvvuS+VSprJhGYmNh2xddni1aVsvV buLxd6NDmJRxksSoXDGBYjcZwkCJog6FAwFAgEoxEi4A8zDKvr GsPQBEHRjJBOlrrrI/29E7qWCQWjoVAwHA6FIxGMIAL+YKgrEPEFSByTZJHjuLiRKBca jXJ/tdwdzycn1k0/tP319Q/94d+uevaga98+aNsr/+vqV4Sbto/c/uytf35rJ3IQQsixYNt1OsB2UMeBtgNdFzqOY7vO7tDAx60ezHH gr/SFpACCcA8FbAvMzFpW27Etx2rbVtvutG3LcizLcju7gGW5FnIs ZFvwhONO0pVkwig1G2NfOeb0nu7RcrFZKTXTqQKJs+EQHgrGwu EYHqMokotGyFAQ8/nCAX/E7w8GA0FJ5GVZIAgCxxiO1YqFnmZztF4d5Fk14A8Fg4Fg0B/D8Eg4Ov9LB/sO/lLX/IMpimZYgeeUZDxXLtQblZ5GsVFKFa674hqEkG27bsfpdOwZx7Y QQgBBF1kAWRZ02o5jOR3Ldi0IOtCxHK8T7HRs23btjuO2HdBxQ cex2u223em4NkJevSKEELrtO99LJhNmKpnJF47eesySqaWVbKV eaKTNPEPKIT8eCeJ+XyQSxr391L70712++b7587t8XaGurgBFk bzAYlg0GotRJJtKFBq14b6ecVk0QsFwV9e8YNAfCgX9Af+//O//9a///E9f+pf/HQ2HcYphBEVQtEQyWS5Ve4r9tXjtqMOPdizXBegPO2aveXZ75t uPHnTVcwdd+8ZBV7/2P694Onf37y949qVndrzvfa2uA20bOA50LGh3XMdxbeD+NQXQn hHB/uIFX8A4wheHAh/LIfEW3iMAHQdYHdvpWLZlgZbjzrot2207tjM7g5x258PZd7fvA C6cbe06dMMhpqmZcX10aOKEo0/v6x4tF5qFbDWTLNAEHwni0RAeixA4xqSS+Uy2FArjXV1Bvz/o9wcCfp8scSQRDvrnExjJMXKp1NvfP1ksNrAY5ff7QyF/MOTz+ef9+7//27/+y7/8n3/+50g4SJM0Q7EcJcickjGz5WylWW7Wc/Vbb7kdIWRbttu27bbTdt2dyJ4Ftg1Ay3E6jus6wLFsu2PZrmO5 ruO4AEDoQqttux0XWgBaAHZct2M5Hce2AHrvw1dv/9Hvz7/shRtudV5759rLtplaPJkqZgr1LVtPWDixuJKvNIr1dSvWl3NVI krROMNQHEHQo6MLLrzwki1bjmUoJugPhX3RaCBiKFIqoXZ1/Xs4EqVIrpCt9DVHm/Vhidf88/2RUCgajgb8gRgRrndXdVWXGDkupWXGFEhdoPVSstrId/cVm81s5bhjj5/ttBy7hYCNkPt2x7nx2e3Zb//ioG++cNBV7x607aX/8bXf4Vc9f9xjr9330mszzixCbYRcZANoW47bcdwOBA4E0Cuj5m 3b4BWSchF04ccWI8M9w0SAINhdx8h7Vv77BxK+sBSAyKsybkG4 C7izbttyHQvaLdBygO266P2ZF6+47pHR4d8M9z61ZsPOux/buGSjoKQkIzs4MHH81pN664PFXG392sPOP+fiQq7C0qLASSIvJ eLpr1502W9/+8xVV1/HC1IoHIlGotFwcKC3USmmw/75eDiqCEazPtxsjPT2DGmqEQj4KQqPRoM4Hj3mmKOvuGLbooWL KuViwowbihZXzIyZOmzdxuULl/ZWuivlyl333A0Ranc6ruW6bRe0XLvj2LZtWVbHtju2Y1uu23Jh C4C261quZTnAhdCFdscBFgAdF7Qd2Hbd2Y4z24Y7Zx49+ZxbS9 1Pb9l098DwL1Zv/vF5X8sky7KcM5L1rceeMTm1IpetTC9c9rVLt512ypmqrEuCrMq aoekrli2/5aabH7j/odWr1gV8ETLGYMFYPpnctHFd0lTnz5sncHJ3ra9e6Z+eWjkyOE YRJIFHCRwLB8Onn3rm079/7mtf/+bA0Egmk9fVRCFVyhq547eecMt1N69atDSfSF584bkAOm3bsi0 XdFzoQAeh19qd+1/ZccTDLxx81a8Puur1g65556Btf/4/257K/eCFTT974ccvbt/V3omQjZBjI2RB5ALo1S8Gu5caQAdCB0EvdviJnv9jFNh7eY4C/1308XzS3dt0I2hBMGM7HWvWblvtNpjpgJk2anVevuOeK9PFt7/+DfTg3U+uXvrI4hXfP++q/r5VxfLo9MKVp53w/7P3nuFVltn6+J4550xxZpyxAVJC+s5O723v9N5D79K7SJUOUgU UFKQXAQHpgiAiiGIBbPQSIHRCCglpe7/v08v6f9g4w5T/t7nO76izrnx48zHXWs+d9axn3fc9Pz+7OC0lq2+fgYsWLJ47e7 7NGhweGhkdERsXk1hS1HHE8JHTp89MiE9s397L38/q2bpdSV7u2JeH+3u392zXPjYqMSerKC+nZMSwUaUlpTZ/fz9vLz8vz9ioqM2bNq9bv3HQwGGZ6dlxMXFx0XGp9pSOhaWb12 3cv2NvaW5hfm7GufOnNQCiwmQMCcqEEExLpiQXlHPMOWGCE8Ww YFhxphkTf+0FOOUCu38Ew6CUar5wZnNBh+r9B4ARfebKR1kdrq 9898NdH7696J3X5y5ZtnRN7+59Ux2pBdkFpYUdlr69IjsrLzgo NCoiOioiOioiKjQ4JC46Njra7ucbHOBn823vGeLn36dr17iICM 82bUICg9PTcrIzCnp0e6lXj96pKUlt27Tw9WoXZLV2KuzSrVOv jMycpPS0lKyMqNi4xHh7dmrOmFfGLX5zyctDhiVFx+14bysACK YZVswUQgF/Ip3fP8TrrzR0+ODkMzvKLBsfWtY2WtZUPL3mrP3j26NP3j72oL qJGgACk/KB9gAAIABJREFUQLrN3JgGojVXXComtH6sv6CkVH8TcX8CAp5o E37ud4RfLgpoqUCB4pqbjBGKKeGIgiGUwTUWZ7fs/uqtlRorDeD8+NP9mXnOb76rvFt9+cLVU19+u2zx8qz03PTUbIc 9tbS445BBQ8NDI6LCY+OiHJFhsWFBkYF+QTb/IKtfYIA12NfH5tvWO9wWZI+L8fH28PT0joyMy84uzMsryc7KLS 0qCg0M9G7XNtDPNzw4JDQkPCoqPjrWUVzcLT09LzY6MTYqrkuH rn269e7fs19BZm6nkryK2zdBAkYKcW4Ig7tv8xIAQAMwSgTjkg mO2I8zDuFW7KSYEUQpZu4JiERSMGVWPKz7/LR+5NSSwZ27u0uKbm/ZDADANUfi44+Odu3YNT0pNT0pLS05vTAvPzkxKSoiNsme5khID QmKCAoMCwoMCwmOCguJsPp6+3q2sXq0iwgIsvn4+Xm2C7L5ZWR k5OUVZqZnxcfGhQRbvdu3DrH5hwYGBgba4uMSk5MzO3Xo2bVj7 4SY5PgYe3pyRufiLplJWbmp2elJ6QcPfgwAlAiJlaIcVd2v/vyLR4c/rv3kYM3XX0KzCwBcgp1pdE788lrAe+csa+5YNjRYNtdb1t/5y4pzqfuvjT11/djDR43YcNeA1IpLIiXVXEqupAImBddSgBTAmWLqsfDcv4j/5Xr934xfDgr8g0f3YxSQTDKTIyxNqjBTlHKEGTYFbaS0yWBYgl DXFi09UthB376rBQBIZ3P90sVLM9MyM9KyU5MzkuzJmelZCXGJ 8XH21LQ8e0JqSGBYWFBYWFiEPSklPCrWxy/Ap613kJ9/eFigr5+Xl7dXeGRMTm5Rfn5JUnJqSEiwl4dHkL81NCAwLCgsKi IuyZGRkVncs9fgoqKuDnt6bIwjIzU3P7skJTE9MzW7R4+elbUP teQEUyalamq+uWTxlc6973bt/UOXnmXLNoBTaK4ox5xjRgWiilIphFJSU0yJSRhmHHNBhMBMuSh BjDDgTAFuLFs4f3d2rrh6VREmMdNCHfjwUMfSLmmpmSmpWQn21 JzMvNz0nPjw6MQYhz0hIzgw0uob6O8XFB2VmJqUHODnYfVp6+f pFR0eb/UL9PfzCrD5ZGRl5eUXZGZmhYeG+np7+Xh6BlkDwkPDbCHBkeER 8dGJudklPboPys7qaLdnRSU48vM7ZqUUZqcW5mYUffnFKQDgXA kqgctLi5e97xt5OCZzd0zS+126m9fvaKE5UyBACH4TmTtu140/WRn27jdPrbtiWV9n2WBa1tb+Ze11x767409WflpbU08ePp4dKK EFU5wowYRWXCku3XpFyq3YKt0WLfpHdecfXR9+lmDwy0GBvwvt JqApLRmjhskQY1hQRCgyGDKJQQlRlApgqnb/B9vsCZXv75JEEYMJwhvqG5a8+VZ6amZaSmZKUrrDnpqfW5QYbw 8NDQ+PjIoMj46OiA0ODAsOiQiPjg0OC/fx8fPz9g+0WsPCg/yt3l4+XpExcZk5BbkFJfEJjtCwcB9vH39vv5CA4NDAMF+fAB9v m80WlZVVWlzSLS09JyE+LcmeU1zYPSOtIDU5a+iQV5qakKZSGV gRKa7f+ygz72rPAY9mzi6f8dq9PR8rU3GhCaecEUYko8CIFFxp qSkmFBOOOcecIkExE4YQzdhkBCi/vnzDuqTUiv0HASmBuCJSUnXk8LEOpV2TUjKS03LsyVmZOcUZad lRIeHRoVERYXEFBZ2HDh01YsjIwpIeHn7hHr5B3r4Bvt7eEaHB wbYAb1/vwNCwzMy83NyCtLSM8PAIq6/Vx8snwD8wwNfm6+kfHRKZm5GfnlWYllWaGJsdH5MZGpua36FbT l5JWmpOXk7xhbNXQAPHilMFjejr/iPvzXwTKhtJ9UNcdZcZLkoEJ8AJaKyACgApNL1Jne/fqpv87YOIjed+v/62ZU2NZVODZc2tF9ZfSttzfdx3DcsuV55tbELAARRoCqA0k4pK IZVQUgFI7ZZreqzhLKWSSiuAf/ni8DOIXygKwI+anIILbBJhMOUSwsm5wSiihFDOODBZvWf79vjo 2yuWa+xCnDEXBaQa61zL3lqZnpqbmpKdnp5nt6cX5neIj7GHh0 VGR0aX5HdcsmD5/g8+PXTo67Fjp/v7Bvt5Bfh4W318fMPDg/0DfL18fWITHRk5+Vl5hbEJ9ojwKC8vH6t/QKA10M/bPyerYO7shUvfXj1q1KREe3pIeEx4VGKiI6tjx5cy04vtiWmjx 443kaAcnExILeu/PrWntDvcqHL/WRqAC2EIxYiSWFEmOGYCC/UEClDCGOEUC4KlSbAgEpzk3FtvbExOrDx4GAQIgwknlUhxDIcP HS8t6eFIyk1Oy493ZKfllObkFoWHx0SGR5cUFE+aNnf/h0fOHdlXvmPerM72SE8vf9/gdu29w0L9w4N9vb28Q0OjM9Jz83KKkpPSQ4MjrP4B3p6+Af5Bn h4+QwcMP/n1D9+euXz485NdO/VyBMXbwxyRcZmlxS+V5vVITs4vKO5efu0uaBAG00xD5cOjJcVV Sxa7jn/jvHAVJCcaGFWccMIIY5wzyYjQgj++HQGrxE27b9WM/+ZhyKYrv11TbtnQYNlCLGurfrX+msfa0/2O3lt1ofa0adaQegACwBVIrhVTkiuplLs3kFJJLqWQbu7yz/Ni8EtFgR/bO8EVQVwYXBqKIDCRxkRRjDRyVmzfvT0x7f66zYCllBoRylxCm rqpzly8aEVGamFKSn5Kan5sbEppSbfUpKyI0JikuOQeHXsMGzR 87IRX573x5r4Dh/JziwO8An09A7y8fMLDQqxWP28f35jYxIzs/My8gqjYxJCQcC8vHx8fP6vVlhCfePSTY1989vWBDz5euWJ9SnK GPSk1Jj4pPjG9S5eXsrOKku1pc1+bKZiSVGHKtRCPduz5IiKq7 pUx54YMu7Vipa6ploSYVCKqGFGEckQoJVIKrZUmCFNMGGYMM4o EMxRFFJqcN95evTc9x/XJUZAAErSJRRPmTq4YfHTweEFhd0dyviM5PyYhPSuntLioY1Ck IzI2qSAzw+FIiwoKXt4zni9IYEsLJucEWNu1ae9liwgMi7QG+L f3CguJzMzIy8stSkxIDgoK8fcP8Pb2tdlC/PwC576+eM68JT269Bvfa9DgoKjBz7QZ0S6gi1dor7QOnQt6OJJ zevQf/LC2ATgogwEHdP7SrqjI4ymOU91e2pWQdXrBYt3gElQwzBjFjDF KFSWcMyalePzP+/GZZTeNR9tuPnj1VE3MlnMtNp23bLhu2VRr2fjAsuqK98ZrCe+d m3Km7kDlo1pCAABAaSU4w0oyJblUgknF/4MCP8N4bG2lBBcUEYGoQJyY0kAKU6ERbjj0yYfhcfdmLlDXb5C bd8Tth6S+mZiGMoWrgcyf+3ZqckGyIz/JkRsTk9KhQ/f09JyY6ITEeEeCPSEiItjm3a7tC8/ERIQmJsYHBwb6+VitfraI0DCrj5+fl29CnD07uzAjKy80LDowK MzXN8DqbwsICHQkJvXv0z8qNCo8MCI2PNaR4MjJyYlPsMfFOTp 16pmTle9IdKxcs0yDlBhzhICIS8tX705IaJw9vXnBnP1R0Wemz IBmk1GFmWJUCJNRwimRQio3CjBMBOICMWEwhjkQaP7y1Lb27U6 n5N2ZtvDMnDlfLphf8fW32hTKEIrofR8czcnvmpicn5icG+tIT 03L7tShS0R0UmxCZmJMYkJYWK9ojzszHTAn4uas3D4J3gEerSN sITG2iHCfYH8Pv8iwuOyswtycwpiYhABbkM0W5OvrH2ANDA4MT 4xNDQmKDvcNym/lPfZ3Ld+yPPuO5Zm5//XCqGc9BnrZOvnbJg8ZAgAagDLJmWi4euvEgiW1Rz6F+1XVm7e8 lxBX+8kxrTUlnBLNCHAM3OSSMa240lwqKRXl0pCKuJVZAdR9Z9 NXTte8C3WdP6n2WHfyqXfPWNbetbyLLOsan373umPrt4vO3r1s EKYIAAdF3UwsoYVUbhNHrX6OOPBLRQHQbsceIQRBlCFOTc6bOU EKCwGYfT3mtfde8PsgOXN9WtbK1Ny1XV5yni+TmDEs6uqM6XPe SMoosGfkJqZlR8U58vKKc9LzwgLCwkIiQuMSAuMcsSmFg8fM7D VsQnBkYpA1OMA/ICIsIjwo1OZjtXkHpCSkFuR2yEgvCAqKDLCFWK3B3l5+wcGhMR ExSfGOpDh7ZHBUfGRCfk6Bw+6IiooNC4vq3KlHUUFJUqJ917b3 QWuMhYG5aeL66tqKGxUgADRUb929MykNXyuXEijVhErCFMOCEe FWHqSYMsI4YsJkyhDUkJJCzfGT3/QfcqnPkFO9Bhzt0WdX/2HXPv5Cm0oZXBK9c8eB7JyOKWn5KelZsYn2pNTMjsVd4iNiIqM cMbEpfRzWq9McMCeAvpE0t8AWabUGB4RFBYdFhcXarCG+7a1R4 Yn52aX5OaVREfFW/6CAgEDP9t7BwaGxUXFJcSkZqdmO+ITMsMh+wdHDn/Wa9ts2C37daonlz8ssz86yPDvLM+LkqnXl35w2KFcAoEAREBIo B6ivP9Cl+Ozi5cCBUEwYJ0RyApxoLqTUXGqqFdeKS0GFokxRou njsw0cQEiFLj2q3ltZPfrLO/G7y3+7usyy9p7l3RrLuhseWy71OHTpyINGBAwAhHarngu3X6XS +ufXEfxyUODvva4fzwW05IogyZGUTiabODGlybikqO7suQeHPq 36+NPKg0cq9n/y4ItTqLbRdArhguY6PHnKa8nJqekZ6fHxcf42W15Rp559R3TpO 6LbK5Nf3/nxW8fOLz55a1sN31dHOo+b5usbGB4clpacEh8dY/Ox2rxtGclZRbkds9OLgwMjbQEhfr624MDQ0OCwqIjoZHtyuiPN HpucbM9KsqeFh0QmxDpioxKLCzt36tA1OTH5s8OfgQZiCGRKjE XV1ZtNtx5QKhiAPPndjpQ416VvlFISK0o44pIQyYh0C/JRwhjmzKTMxaWLC0MgRDGlijBBmEQcXAJMEKamLkENLoXeuWNf RlpeWkpmSpLDHh8XF5v47votg/r0S0lOz0mK2zc8ChYF89nhHwxNzIvwj462h0c7OnfrnZdfavWx Wr2tjrjUktyORbmlkeGx/v42q9WWm5sfExMXGBgUEx9jdyTFJiRFO1IiYxPjbGFFXsG9X/Ad/4LXjD+0XGh5frHl6SmWX0/5k+cce87pdVsvrN767cLVUEcBACoqPyoouLFmAyjAUhMuKBHuI SKXggMXmmot3X6GSmuuJH9s0CDdDmdKulVKOYCsxLW7KiuGHL8 Vv/P+r5dft7xbbXmv5rcbyrocuPrFvUYADMCFlkJpqZVUbgO7H7cN lPx/U87/1vjloMAT+wLqb2wixRTBAiMuXYw3c2JIaghqYMkpCAGMa8pBKq p0M2EukymsUINr2phXE8JjE6Lt+SXduo8Yv/TAZ5vPXH/vZu3GGrzqgXNdhWvTbefGqw/33Xo4ZtHSpJTMPr36TXx1amR4tI+nn80anJGaXZTXISez2GYN8/L0i4uxDx44NDUlLTHeXpBXWFRQkpdTnJtZmGpPccQm2qPsWSk5 a1duHDxwZFJy+olvTmkA5qSAOZjoi8nzPus7BqqqwGgom7tgf8 fOsrJCciwJllhwIimjjAo3ChBMKWLUYMzFhUsQkxLkxBi5iHBi Qk0inJoY0jCoYVBkUsHU7h37MlJy0hyZWWmZcdFRAQEBM2fMPv/D+UM7d3369oS6eYlils+jt0sPLZ218q0VbyxY+sbri2fPXmS3Z 1g9fWzeVkd8Rkluh9LCjlGRsV5ePt7evl27dpv46qRXRr4yecL EmTNmTZ8+e+rUWRPGThk1fGy/voP69B+4f/ee1weOHNQ26HXv6Km/ajnN8tt5lv+aa/nvBZbfvvlUy5OTZ1UdOnpt5oKPu/aXN+9xoQmRjArOJMeKIsmY5EoJrf5qavyvzM6VklQIQZRGWgJw AAoA1cj15sXb+R9XtNl02bK+zLLhQYtV19784d49hDVopbhQgk shlBCac8W4JELSn4HrwS8KBRSAfrwsLt3Co6CYQogamHKDM6fA hhROyQ3hwtSkzDQoMiQ2NDEBOaXpYpSp+iZz1qLlnUZOmr3nk9 Wnb+6oxFtq2ZYatvM+2nO3aff9ugP3a46U3z967sax768d/eLcV1+c3bJ5V35+SVBguFd7P5s1OCM9pyi/NDer0Oof7O3l5+fr36GkdP2adfv27Nu/d/+H+w4e/fjTw/sPHdi1d8+W7RveWfvJh0f37vooN69DVk7RhbPnBWhMBDWJJMh5 4ts9OR2OvjTg69Gj38ssvr/zmDYAMWZyLLHWSDPKGOHuGwFGFBuUOClzcW4o7FLc4NQlTAQux KhJmUsjU5kmwy5MDAxS7dm5LyU5OzUlLzMtPy46McDfv03rtgP 7Drry4aZHK7obc0Lvzk89uXry5wc+/OTwZ58f/Wz3tvfT0rIDgyNtfjarX3BiQlZBTmlhXmlkWIyXh6ePp5dPe89 RQ4f/cPK7M9+c/uHUD2XnL5edv3jtwqVLZy9cOHPh4vmyDWu2ZOZ1jEnJ2r5515U Pj6/O7zO/fcRIy39PsfzPbMvv5lj++Iblz2uf8z/9+jJXldOdWiYFp1IixZFiXDOthQQt3MbsT64B/5UZoKTmTAuhlZSKSY4FI4qCVgBKg/ysqq7vkVstNl+xbKqwrLvr2H72igsBKKG4VFIo6TZ+kZpyzdR/UOCnE+qJItCP9wU0CC5NkxJDUJdkTkFdjJgMIWGaEpsSY4WRpI aULilMcGJ1va7p0M37W69Vbr7bvKUOttSoLffNWcdOzD9wqMOo 0d1GjhozfuLUMROmvDJ+7Mixo8dMHDdu4tQp0zt16BoWEhEWFB 7gExhmC8/NyCvILcrOzPP3tXl5tPfxbNu+bcsRQwZ+uPeDXdt2frjrg4N7P zj84b5PDxz84qMj33/xzdZ338/NKUpKyigu7ny7/I6S2qCqgShElcbceeHyhRVrzi1eVv/Vt4AUoxpxTbBQVAiqGVYcc3d3jE1CXZg0E2pwihQxJHMJ6RSym XOXICbHiBOTUScVzZg3G5qrnXv2xydnJqcVpCZmJUckB3kHt2/tGe/Z6tSEGJjVki+JWT0gyebrG2QLDfWzhtmCwoND4qJjw0MjAvyD/X2C0lNy8nJLCvOLI0PDvNq18W7b2uvFlkHeXn06dR7Wu9fQl/oM6td/0ID+I4cOGjNs6KxJ0yaNmeRIyUxJyclIzD28/3N3vmpu3zm5+f0VJd0XekeMtPxhpuVPb1qefu1Xf57mE/vZio13z5exH/cmKVOcaym0lJIpIX7UHHuc9ycdS/TjAbFSwIXCgmPJsKRcYCmou1T237wbuf2sZeMjy5o7adtOXTSR AlBMccGUVFpoBYJpJf7/aYs/lfglogCA26ZHgwbJJDYZQRIjhZFkSHAXE01UNXHmFMzkHFOBMT bI3YfNR8ofbLxyb/nVBxvuNW6/07ji5OVR67Zm9x/m7Wn1bPViixefb92upZ93m5AAT+/2Lz7//F/+/Myfn33mzy88+5fQwKDYyNiwwLAAn8CI4MjivJLi/OLcrBybj9WjVRuvti96tW3p59k23BYYGRQaGRQSaPUPCgoICwx MjIjKSU7LSE53OFJSklN7du9dVVUHDLgpKJEECYokY+7rLTAAl 1Am0wwp5RIKCcoEFkJQ4XYwJiZlJqUuygxBTclNLl1ENCHZTIS LcpNSAwsDKRdWBsFOIiVs33M4MTk/yZGVlZSWGhVta+/t9Zc/bO8RAQvj9cLwQ0PD0/1be7R5oe0Lz7Z79tl2LzwX5OcTFxUZGRoe4GcLDgjNTs8tLiwt zi+MCgv1eLGFV5uWPm1f9G3X2qdt6yAvjwDPdh6tX2zT8oX2L7 bwebFVqJ81JS45IyktKzUjMyPn+PGTAEDI3zrumoqaTzfu2lDc f9L/tJposcywWGZZfjPL4rm2dNjtE9831TUAAGhQQgslueZCiR+z/Y++5o+t3R+jgKRCUCmw4hQEMCoJZUoC6HuEFR88++t1Vy1rb6Z v/+ZWs0sp7SZmUtBMgxJCaPXPikb/QYH/m/EPPILHvymmqMGoKQjSyBQUMW5S4aLCSamBJGYuxG4+ch68/WD19TtLrz1YfrVu+0209ouyvmNnpiSnJcWE2to8H9qqhfXF1j7 tPII9PaL8faIDfUJ9Pb1btfJu1dqr1YveL7aKCLLFR0aFBAQF+ QdHhUaX5peU5BfkpKfavLy9WrXybdvCu81zfu1ahfh5h1n9g32 8fD3bebdv7+fRPsjbzxEZm5mSlpmamWxPe3nIqOYmJ+WCIwIGp ZgiyjkShCiKpDQFI5RSRrEQSCmsJRaCUEmEck8HEWUm5SbnSBJ DEsQJYtRk2KQIMxciCBNsYm5QZnDTYELC/r2HMxw5OckZjujQqEBP2/NPzS0MRQtSYGHMlyPi7S/8j3e71u3avejVqoV3y+c9Wzzn79EmItgWZguweftFBIbmpuWV5 HXIz8gL9bN6tWzh27qld+sXvNu09GvfOtjPw+rb1tu7rY9XG1/PFwO82kQE2VLsjozkzKy0vPy8kgvnLoECZlCBOcGCE/V4G0jAucOn9k1ZOM07aLjFMtHy3wssv3vd8uxs76iPlq1qetTo zrDkWinQWkspH7fwT/iayx8JhcpNKNKKA3AFWoCQiipGJGOSaRD3Be904NKv1tz49bLz oz6/4gSQnCjFsJZUKiWo+Ffq5z8t+eNfNgpokEwyg3NDcpdmpsKIYU wwZVgog8rrda6Dt2rWXq1edu3h6rKandcqT1U2VjXzceNnRETG piQkpAYFJtt8A73bBPt5hLZvF+LZ1tr2BWub5wPatrC2aenbpl XbNs+3afdCkK+nzcsz0MfXx8M7LjK+KDe/U2FhckyUtV0bn1Yv+Ld93qf1n/3bPWf1aOHfvqV3m+e82jzr2+6FAI+WtrYtowN8HTERmanJaUlJ k8a9yk0mXEyYgmCFsTSJMCkjhHJEOMYUOxk1BOOUaEaBEIkxZZ hJ8SQKCGYKYkiEJEKCmYoibSDRTFgzoobBsEtgl8AmBwE7N23N ikkodiR2Lkp/qWvWmCSPhrlZ6vXIqgWpYxM9w9u1CvZtGeTTNtzXK9SrnbVtyw ibT1xYoE/bF33atAmz2goz80pzigtSMxJCgsK924R7t4rwfzHc2irC9mKQ9/N+7Z7x9XjO5tki0r9thG/rcN92SVHh9tjY7NS07sUld69flYo6iWEQig3OkUZYISwZo+4cN t5uPLh885rOPSf/7i8TLb+aY/njNMtf5ngmfLx4LW4y3CmXSnEhuHTDgPwrDKjHAyKtlHCTCAWA 0CCVJppx7dIaCwmSCwB+T/CsXWd/tepOu82XvnIaoJTmQkjJOGGaCPcU8u8JR/9Bgf+L8c+cMHfehBAIUYI1M8HEqplQgRkX+kpj84d3q1aX3199 rXp12cP3r9WevNtY6SKSSNZERg0ZlRgT06NT4fpl818bNzg3Ma wkJbYwKTo9IbA0N6F3x+xce4Q9yDcp2D/G3zvYs21phr00O9X7xRY2T8/k2PiO+QXFmZkdcjI7ZKXYQ3yyYqxZ0b458bakSJ+4kHbRtpb2s LZpMd6FSYHZUT5FSWHdi7KyUxwpSYlzZ83SVClDMkNQl6QuxZC mSHNTS8QxxQYhAglGlcEkJYISZlCGCZdCK6ndhEKOBDcEN7VBN EaMuzhvlsKkinFCgTgFbSLYSUQz0Vyv37w5OTaqa1riJ+8vP7l mSvnUJDXPn86PW1EaPG1w5x2rXt+6aEbvkszkSFtSiF+sv0dWX NjSedOzHbF+7V6MDw/tmJtfmJbVu6TDq0MGlKZEFyfZOqUFds0M6ZoVPrCzvVdhdOeM4 N65kYNK4weWxvctsS+ZMXrcyAGpjri+3bo8elCppTBNA2FKkBA mMENjSg1GnEy7sGbunCq4dPjknnGzXveLmWD5zWTLf02xPLXAN +HQkjW4yQQAqYH96GoulP5RbgSe1Cj+K6FYghJacs2lplJyJji WQgBsulX17Oozv1l5beSXt5yglaJMK6IoU8Tdc0it/jYd+Kmxjn4pKPBk/JU0DgCcC0Q4IpwhzlxMYtXsEt8+eLT+6p2VN2rev+c8XN5wvtr 1EJkmcxHslAYxmtCYV15JDA8ZM7DnwV1rZ0wc0CUntmdmbDd7+ NR+XT7fvuHUgR0n9u0YXFKQGmJLCrWF+ngM691p3VsL40IDA70 9s5OSuxQUdMjOmDp6xOgB3QsSg7ukhfXMDO+RETpvXO/tK2YsfLX3Kz1SxvVOH98zZUwXx9yXux3fu3niyCH26MgVS94CD RgzhJhhMkwVwgIjTkxBsJQUlKnAJSQSiEtMpHRxaSpKuZBKSU0 wZ0QKLDmS3JTClMLAhBBqIlR2veqTz81L5eDE1GUaToM0m1zCe 7t2RUTHJMUlLB/T7d6buWJBsHoj/OjIkFH5YduXzt0we9zhjUs3L349MyQwPchqt3oXJETPfGV4x6w 0/9at0mKjuxTkdczLHTto4PCenQvtYcWJ1u4ZwV1SAlbOHF72xY4 T+1ZtXjT6tQHZU3rYJ3VPmDOk4OCGee++MyszKWrUoIG4wdREM 4NTLEzECWEUIWRghITAAFRS5KTYpI/BABrrmg4tWDXfK36K5elplv9+1fLriQERl0+ddCddud0ZpRZaS i21Uk8OCx6rC4DbpUYxLYTmSnLBuRBKAlRrlb/n+/9ZddVnw+kTTS4NUknKlWBaih9VCf7u4P8HBf5vxuN8P5F+ABBC YcQY44RwTtUjlzh6s2btpTubbtd8cP7mtjfWHBw/4/be/eB0YSdlzYw6EWkmc16bn2C3Z2Sk5CbF98vP6puV3DszsWdKxNS ehVN6lfRMjXlj7IjRJmR+AAAgAElEQVSx3TulBvklh1qjA73SY 0NTo8Ot7dqE+vnlp2d0KSzsXlzQozgvMdQnI9qna3pIzzTbyx3 tn29b/NHa2Uc2zdu1ZPTUXo7Xejtm9k56Z0KvxZOHDOpaEh8a8v67GwE AYWJialJuEG4iTjCniHFEjbtVZmUdRZQRYTLpJFK5tDQUIUxKr RVQLCgSDEmOJDMFMwXHEpBZ9cGuo9lZ5zp2Oprb6d7WI9KlCSJ mMyZcfHvu3JTX5swZ+/JnE7LY/FBYEHNmjGNkslf3rOgeafGp1jZZ0f49sjNyI0JyIoIcgX5xAb6 R/r5Bvt7BVr/C3KyOxfmdi/PzUhyRvu3i/Nt0SgnpmRnSPy/i7Ql9x3fPGFYat+n14a8Pznq9T+LCPklvDC18pWtyt5TIjLDAy ePHYi5NphCSzBTUyQhmJqYUcSD6/oHjFzfvEY9c3FSISsI5pUJIAACzznVw8dqZXhHTLH+Ybvn9pN+ 32tBvpFIKAJjSWCshhZJc6b+zK3iyThRoAVqBAv2YcuaWMX7/dtXza87/ZlXZ2BO3CIDiREgltFL68V7C/3pF/9viF4QCfz38T6CAllwJk0uTYwkXHjbvKKt458aDdbeqDp26tG7 IK1+MnVT2+uKt2R2ub9irTYVN7jSxiVj51dsnvvr2q8+//vzwJ9vXrOyVndon09EvM6ZvRmjnRGtuhHd+pLU4JjgvOigzyhZ lbds5N2P04IE9OnQoySvs16t3aX5+p4K8Xh2LOxWmJEV7dk4Lf ikrdEzX1OEl9iTvP3VJ9J47KG9275QF/dPm9k1ZMKx4dK+84X26DOjV85sTJ7TSxKQEC4wFMhk1BTcYMC0 uXN3doVf5tt2KcmVqaQLBwJHChBNMFNdaAkGCmIIgwYhkWCDMJ JOk/NrmwtKLS9bCg4Y7S9a8n5nL796SRGOnQC4DUykAXF9vdc5OwHP Dvh7jGJFq65kd1z8/tk9WRGd7UKc4W4dIa+e4sIKoIEeAV++i/LNff/3Vp8dmT585YfS4nt26ZWWmvjFv7mcfH3y5d8fsKM9++ZEvd04Y 1TGxR7KtY6L3kNKo6b2T5vdyLOyVPmdg8b5NS498sOOjXTvP/vCD5JKbRBpEmNwg0kDADa0lwxdOfRDp+KJ0KDzAmgClhBIhXVI YEhO3jiqY9U17J7w2wfLcbMvToyx/Xt6tX/nFiwAgpWZSU6Xkj0f3H1FAP0YB6X5R1loDCK0A9C3BQ947999r rmbtOV1BiNIgpJKKaa30P903f1rxi0EBN1HcvUOmQCtQUinQjE tKJBdwo7px5/n7q68/Wl324Oz92nMfHDo4dQY8qAGsLkydcbB7ZzAbKDFIE3a5JGEalF sHG66dOd0/J7lrZkzv4sTeOdGdk8J7JgV2TrDmJkQU2BOyo4Kj/F7cvHopANy/eX/JojemTZpQlJPXu3P3ihs3ayvKuxcld0gJGtkxYWyXpAnd01/p4Hi5NHFSl+S5vVLn9k55rU/au3NHmdXlzvrqhvoGEzFsYmUQSpiLCOZUpJkTQqG+8XK/4btbeFasWgdEcQQMKUo0phpTTgh1s+wI4sQUHCmBJUfcRNoQwq y5e+vTI6zWCQDowFfvJybi62eJAOyUxCUkcTm/Wl83Kx5NtzrfSF/dO65remjPgpiBmWEDM+JGdMod17O0V1pCQUxQiT3UEdBuQOcCM JzAYd+2vYvnLe7Xs19GSsbxo8cBYM2CuSVxASOKYl7tkji5m2N i1+TRHe2T+mTMGpA166WU6f0ypw7vXPPgsf+iFsCckpmCUkqoi ahBTKJMDXWNl0cP/SLY/9v+o6HayRnmLoaxIlQLLKUhJJFCKQAADbe++m6qb/REyx9nWJ569Tnfq8e+AgAugIvHVwD3P/C/3yN4fPKfPNYaNAfdpPW4r278fsXFNiu//bK+WQOAJFpjN9fwpzUO/If4xaAAgNJaaJB/QwGtAIiUDwn/qubR2vI7K25WbCu7d73WYFjQZhd1OiVp5Ocvfdq938nXZmtCEH P7l0nkJNxJSDMXFK6fPd2vNKN3dkKPtMj+JY55Y4dvXTjtvYUT hnUtzI8N72CPiLG2XrZgFih4eLd22eKlC+bOKcwuGNhncENVLX tUN7pnp74ZUaMKYyZ1iR/XMXpC17hxnaKndE2Y2yt1zktpr/ZwLJs1jDofSI4518SU1BDM4JgIkzCKCaJOUI03Nq06WVx4Or/wzqqNgABjaVKDEIKxxlgRzKSUWmuKOUVSYBBYcZMKZAqDs2agH FBD1a11y79MziubNhdMJyWMGlJycF45cnNOIp7evmZujHFq6zu jx3fLsvcoDB/VI/PAu6/ev9i1qSL5m6PdhnVLyo0Nzoqx9S7Man5QoVz04M4Ply58+6Xuf XPTC44f+RIAtry9pIs9bERB7OiS6LFd4pZN7L731b7v5sVvz4n ZnR29JzN2W07yxbdev7vvg+tffs0lMADOgQo3pwcEksBU2Yr1p wYOvjtt3LERI6C6iVGOTI6polQxLBmRlCkmNRHC3RTcv3rtrdy ur1men2L504gXPMuOfwEAkv/drfBfxz+okiopAGZ9V/5fy39oseHyV80IAJRiRBP502cc/yJQwD0EFlq52SBKKC21VJoD1Aj50Y3qTRcq1l6v23T9wZVGl2Z aujgxpQJVfXDPl7EZx0IdxrGvBFLU4BgJ5NKmk1HUSAyXYnDz8 u0+Bdmv5EfN6xH30fLJzbfLzKo7qLL85ndfDi3KKYoKSgrzW/TaJEC8udq1Y9P2xQveLMwqGtZv5KMHD2V907T+ffulRI8tjJ3Q IWrb/EHnP1p+au+S7Ytentc/e87A7Ikvpc2e0Luu+joXhBBBTalMQREnBucmxwgphpt/OLOn+0Bz78efDRhwdc0KoAgzZhIuTa1MxTElRCiltAaKBTElRy CxEogRjAmS1Kk11mZ5+YmxY4+nFJweOlbfqxam1FzwuvLKDQPr ZgY+mBtt/rCRUzx/+pzS7MTOWfELpw0HelA3Z0LjX0CM3LFqfGZEUEZkQLec1Ie3bg KTF74/t2ndxn69+uenF544dhIA9m9c1ykheHSnpCEFEYc3zuHV52oWzT 3n4XfH0++Gn+9tX2tFe9udlv7lz7e/7Off2KkDKuloFnS+1av//Z27rn5+nFFZe/7Ktr4j6OmbF1euOTh8KFQ2CZckCBMiKVGUSIIF5pKBZkpKpcSP Z/Oj2W9OtPx5puWPE573uX78JLi9SZ6YE/1LfcEnv93CC+9dvvPCitO/W1s28cR1A0AJLjmX+j+9wP/h+LvUPl4W0/BYR05zpRnAN1V1ay/efa+sYs+FO9drDVMAphKbTGENBMyy2+ahz88MHHR8UH9VUSsNK UxOTEINRAyCKQhGq77Y/d34zNsTI2oWJVftmwD1l4WzGnhjc82tcb1KCqJ84gLbzJk4Egy sXerbL79ZtnhpQUbRyEGvNFbXAjLnjR3ZMzVidIeE2YPzaMW34 Lwlm+6a1Vf2r501tX/OjMGFs0b1qLx+FgQjiFIiCeEmFsypqEtwzqHq0eEhUy6v3AaPn PsGDrm6ZhVwhjh1MSENkKZihBPibgWAYoENwU0tsJSYcSIxpoR iIRRxUTCZOl+2MzPv+or1wIA1VDzYOBhN8WyY4t/w9WolMSNiweypRTlxXbJjh3aNO3tiujJLhPOPzoriWSMKC+Ni0 8NtJSnx98suA2EVN+/t3La9b68+RdkFZ058C1qfOLC7sz1odJeUV7o4ThxcB+C8tWrZd 8+0wX/x0s94k+d8zBd88LMexu+fa37qmZrfPl37u6cb/ufp2t8/c7uFx0UPm1HY85Yj5+zAEQ3fnLm6cNFn/frD3QptIkwwI4phxYjChCHOBWilJWipheBcurcLPpr95oRfPTP e8ofZKbnu4y2lVG7nNqWerJgn6+ev30qD0vK2FCHbyy0rr3Y9e KEJQLsVjPXfZIv/F6v73xk/OxR44kqnn9CWBwmglAKptHsErBjA5fqmbVfuril/8N7V8suNTViBMCV3cYHpo9v3m+80AAEAaD7+5Qa7o+GzzzQmFD FkmghTBNDgrHp49K0Hs+NhThDMbg8LA4+Nifl2yxKJDWrSzUtX dbPH9kiNSQoJnjJyhGxyKYNdOXt55dsr89LzXh05Dj1qBEaXzp rSNTVkQu+0Sf3zTh3aCrQJuAuU68i25RNfyp8xoGjGgA7lJz8D TqlBMJYYCYQ1Q8CwAI5vrnn3YFzuo5XrHq1f81VGwcWhk51nbw kiMUMmlQYFg2pMHpt1ESyxKRhWjEhGBEdKYtl4oezbd9aquiYA gEbzg15dvlswXzY8qNwwEE1ub0zyrdj0smy+xynjBC2cPblzfm L/wtReWUkj+sZfvZAO0K78+9CBhe27Z0SVOEKK7FE3zp4BwuoeVB/68ECf7t07FhZeOf0DaH726IFuqRHjemRP6Zs7c1iXslPHoK6q6 ejhz18ZsTU3bXth2saC5M/HDmYf7W3esOlUdo+zWT2+Le52ITP/3jPtnb97vv63TzX85Zl7nl4VQVGNkSknAmO/njsXsAsz7WSAqSJYMMQEEQKAgVZaaCG50kRqAgoA3hs4ZpTlT+ N+/dzmfiO4iwqtf3wqkKAlaP14sUz/i4LSUoNWNwUPe//Kr1dc7X34QjOAUopp8bgX+CnrFP8cUeCJzx9XQTQoUFpT4EwrJ bTUcOnRow1lN5eXV28ue1D+yOQcEOUEU45NUPzEylUHXh4BTTU ArGrP/vfSi5znzmlOEKLMBIlQw9cbKlfk1c7wVNM82FSf21Pjdg5OmpA XM7w0fcGM0fMnT+iXWzowK+ulzNicSJ/xA19ijfXKNCtu3luzfE1OataMVyfh+kYQasOi+X0yoqe/lDe9b/Hkfl1PfLi34e6NM58eXDCq/5whXWb2L5rRv/Ti0Q+BYY4oQsxEzEkENoRyMTDR6ZVrduV1/qC029GM7BM+YR8Gp15cvweIEgRhKg0MiCpKhBRaK2BEUCIo4RS 7dQcZFxxdubIpLe3im3Pg1uWHm7bsyk5tOvDuw02jXDM8nZM8K tYO500PCKWm4eQU71izrG9B7IiihKHFSd0LPXZu8gDuhartr42 wdU/175xs65Ftv/bdN4AFaUTHj3zZvVPPTiWdy89fASFvfXdySGH65J75c/oXzHop9/WhfQ5sWLF369qZU4ZMfLnT5BElYwcUbF4xXwJjAEaDy1XnMpxG c11tzf5DeMP7p7v1vRgYW/XHFk1/errx+Vb3WgZ8m1hc9+33SlHGMSWYEU6RkhS0AKU0ByaUlEJLpd wrBbXX7rzqHTPZ8nR/y2+/2/cJAIjHShMSlAD3zeCfC+pHGWKl1C3GQ7Zc/PXyywMPnzMApAbhljH4z43g/3L8aDulQYKQmoFQSoCCu/XNW8+Xry6v2lR2/0a9AUwzQkyGmUk4YYqL5q+/25uccXvQy8acBZ+mpF94fa4ymoUhCQMumx9++k7d5GAY/zyd1LZmWfa5lf1mdYsfmBMzqGP6sE6OQQWhA7JtwwqjBuXH9Mk O7Z0btnrhFNZQqc1m56P6dSvXZCSlzZ4yXTS7gOKj2ze+0jFjV t+81wcUzO1fNLN/8aJRfeYN7janX/GcAYVzBhZP7pN/4oOtwBDDyDQxQYRgLp0CGphsxqip0ayqElV1+uKlw106X3tzCd Q3IUZdHHOslAsEkhwz/RgFOCOcYkYxpYQzzE3KNUYP9+z9OKfw+7zOxwtK7q5+vX7DUHO Sn3OyT9X6AbLuFmGATU2bDOkyHl09v2nBhMk9kyb1jpw+wrPma jIwz/Mn2r/cvfUrXWNH90zauWqO60G5NpzCwF9/dqJLabfOHbreu3FHY1J3/crqmWPnDS5ZMDB78aCMRf0zZvdJm9kv+7V+mXP6Z8wbmD29X97 WJTNYw0ONKcXMJYBSUAgAQAC4nLjxzKVH67ZdK+1x7QWPxmdef NjS57uA6Du7dwAA0kCQlEhxzpUSIJSUmmuppRBKSwXuF53q85c ntvCdbPnTeM+QuvI7GrRUSmgltBRKMTcv6F+aF4IAJSoZS9zx/W+W/TDi6BUMAErC3x4df8LxM0cBd2jQWgkmJBcAAC7BD9yqWFVWsf3 qg1sNhmCaEkyoiRiVSAmXIlRqk6Gvvrvy6tyrIyfWbd4MtdXU4 AQrzZy1ny55OD0CT/Kvn5+Dvtjgqi2ruvnDnlVzlr7aZ8WkXium9Vz12sBV0/usmNxhxeQeC17puWXZ9Nobp7WzWjjruWGufmdVqj1lyfwFCpnK bKq4/MP+lYuWj+31zqiiFaPzlr6S/fao3LdG5i8alrNwRO68YflLJw+4fupTwIgjZprMRZlJOEKSYk0 RZybVRAIFeGTuGT/5wnvbgAiTCZeQ0gBwAaOMIqae6AUIEYQKSiVBTJiSYU2Zct647/zuDLpy7OG2YcZUX2OSb83akbjhBtKCG0S5sDSJNJFurq288s2x be8cWvfaka09XfdiwPVs5TX7x++N3L9m9ue738HVl8Go4c21mu HT335fUlg8dMCgusoqbSJaX1tT9v2x997c+frQ/YsG7V/QZ/+bA3YuHLhj/oAtM3utmdRty8Kx5T98KowG7TK0iQ1CTSqJIShWiHJMhVswjNa jxm37bqcV3Pxji/pnPC/7RV6f9qbrzn0NIJDkjAtgoLmSkmottHutR0sNTEsA2D5q4kTLH 8Zbnnr35VdBgVCaaC2UllJRreU/X+/dfBOtpWQE9LQzd55660TC1u/KXCYooSSRWv4HBX4CobWWWnIthBSmVp/cfrD8+t0VV+98X/1ISiBYEaKYW56HCEIlEpJyJgTDWhEuNADFihAlRX3NsWX1U6LY JL+KhVnOqx9z0IJKaKpruHPx0lf7Lx/beu74exdO7L7y9d7rX+2+9tmess8/aLzzPeA60VxDmxskYfv3HBjYd/C+3Xskxdzp1M4m/ODG+Y82n9gy78TWqae2Tzm5Y8rJ7dM/3zLt4Jrx+1ZPKfvqA9VYrV2GNDhHiro4cwliKhNrjNxUKE5NwV zU9aAG1zUiLFxMuZikpnJPBykWSmilgBDh1hajVBIqnZQzxDmm LkYpgELVD7eOdk33apriUbmmP6+/gYRyCm4QFyGYI8ZcWJnN2qhxVdyru3mh6d5y8TBUNf7GeNSl4c 4n9eWXcc1tQPXM9choqqPYqK6uPLhv//Ejx1CTIVxENDvBaDTuXLz15d7rxzaVH1tx4/iaa8ffvfbpxosfrf1h/5r7Zz8H1yNlmMyFORYUS4IVwZoTzU0tkMSIuQxKqBIAdbdul0+ fc9EnBP+p1b2nnvmhWy96v04J4ERzLaRmQlEulODwWB5MaqGkB lV37cbkFraplj9NDUyUTqIAuAQlQQvNpJJa/TNJWGstNQjFBcDii3f+uPKH51adPvawEUBzxR8Lm/0/qex/U/w8UeDJV5/HrCGttWRSiwuPmtZerlhzrfLo3QdOLgXXjAhOgRKgWFMiCOEEC 0ykwbWLA6ZATEmJUKyx5tNlldPD0NT29xdluq4eAS24gblhUIK 42SSaq3hjhWisko3VqqFW19eqRw91Q512NfDmR6ypETe7qIs6G 8yqB7XNDU0MIe40ldMAs4lWXq+/8tXD84frL39Se+Vw5cVD988fuXf2aOWlk6K+AsxmZZoCMWYKYg piutUQFMGaIEmwokhwzBXTkgNFgmBJiSKIUywEFhxLd9tKKCeU MyoYFgJLQgTBlJuEc4Ub7j/YNMI11cM5rd2djcNp/U0imNkseLM0iTC4Ipgx05TYAFcjGKbmDRKt5rWerK4Vdc0EWgU mU4ZJnE7kNJALmU5EMQeuQYBAnBmUu5BsblLOOvnoHq8pZzVXe O11XH0NP7hGKstJ9S3dVAeGS5qYuIh7OZISLRAwQ1OkEdXNjDc RYmLuMrWpAQBubdn5RUDM3ZbeV57zPtljMK+tJxIE51xiAlJKU EJRDUwBcBBCURAAsG3MlMGW37/8Xy2+3/GRe/InFHCtmdZ/ey94spxAa6UVZxxg4fmbT6083XL9tc9qnQCK//jM+L9b4P/m+MWggBRa61rEtl2uWFX2cNeV+81MglaSC0mkxFog4EhJIiURA nFOFCZKGZyb3ORK8obao8sfTo3mk1tXLoxvKjssFFBDcVMYRJm EC8PQ7lkc4hJxjaV2CXAK5eLcRVkz4k7CDM5MwbESTHPMGSIcU WZg6TLA1QyuJmhugOYmaHaC0wADgcvUBtImFiZmmFBCCeEUCWo KhiRFmiLNkGRYUSwZUQxrQbRESppSmpIh9yxQsB9RgFJOCGOEc 8wFFhJTTDkDoM13KzYPd03xap7qV7XxZdlwR0mJsMTNSjRLaXB CiEkYpZxRxk2skAm0nLhG0uanXXXx3DyksMlNxgxCTUpMhk1BD EGcgrqYQJwZnLgoNRg3qTSRxoZ0NWkXkS6uTKlNASbTJpImpgY hJsWIYSIxFhQpYWphaG5qhjRBAhPGCGemQEghDlLCo4s3vusx/G4Ln7IXWt9ev0oAKAFMciokV1qBEFpJpUCAFppqpQFqrpW/2iboVcufFmSUAigNoDkwBULBv2gF3FuGGrSUAmDh2du/W37muVVXjz18jAL/zET4ycXPEwXgR6f6v35rrbDWX1bWrrtSvbms5kq9SyouJaaCUy I40ZwAx5oTySlnhHMiBaLSZXL8/7H33uFNXdnauGzJsuRuY5veTQklIUMyyaRM2swkIW2AkEISEnr oxbaam2QV22AIHYybqm0gPZOeSYBASG8EMimUUBOawdY5u+/1++PIBlLm3vnm9907X56sZz1wJB8dnX2017vXXnvtdyFgyrG3a o8WXRq19fqu4vr2PS8AZyqGNirbEcIqIu2EIUoVzBSCEVNVhhR Gooy1M9JGqMpJG6XtTNvAg9spiVIUJUqbiqKUqpxFiVCwaEfsH CJtGLdz1CZQOyNRzhRBFY6jFKkUYYoQwVFCo5QpnLYzpgiiCqR wpHKiSqJKogqKpZY/Q5DASCKVY4Vr+wgwZhgzhAiiTEUME2CC0DOfHwxMPWfvo1oHHq qdT1qPUCJ4u8rb21VEVFVQhakoShAWUUEUTlSQWGHqpnOnLoue S21rncTQlySKaBQxRImC1XaktmGqMNxOSJSRKNEOtC1MVGFMpU zR+I6EGgWlTeJ2TqOEKERVmKpqkQuOVMEUEAqwqCQKp1Eu2gRv 57idqApSMFYIxpQBQPTLg29fem1rWs+PBlxy6OlnAABzxjGXLF ZVTGglqqngPEY/tOLOBxbokgp6DT365W4BUhDAXHLOJf+xLyA7qcelEABVH+03rf qoy7ovX//+HAB07kr6H+vY/zfkV4sCHdRy0EE8C4dV5P/qwNq9h17e/z0CYAITQTHniDBEBcICEY2SmyLMKBKsjamqQoHggx8e8IxpL+7 33dIbW/e+Chx4lFOMFESYiqWiEJUyxLlW7BBxhLgSpShKcZQShRHEVYVp L6kSU6xQNUpxlBNF0ChjCqMKpSrFKkWII5WrUYoUilWOVaZGSc cxR1GCo5RGGW1nTOE4ypDKVZVrmwVVlSEqVCIUzDECrAJWpBoV nArJGCEoSomCGSEiSlgU1JMfNR9efjMr7KMuyDvc8Dg69xXnvB 2DgjlRsYIoQoIpnCCFYQUUzBSVEMnJd+qZ+WprxtkzI5S2RobO kXbG2ilXOFMYaSc0ypgSgzAUJco5jKOMKAy1E+2ZUIVQlRBEVc RUpO0aRlq1SKIyrDKicqwIEpVckUyRWOUKZlHKMBJEEUjhCDGK GUOCIhAI9tdv2d1v9MnkHrtuvwO3/sClZIxTpi0FSgqSCSm55EJQKQFge33ocV36Ql3SzrogADABUSk JsJ9SiWooIASA5BzA9/F+05qPc9drKCCFYL/5Av+J0sk3LiSL5XUJiQB2HDqxYc+hmi+//ercOWBSanvCKCeEYcIQYZgKRAQmgJCgSBLEVYYFOryvdto5S//vSkadfH+LAFARZwoVbVS0MalIqkqicq5wpnCqqSqIwlGUYZVhl SGVKUioKscqpyrlKmUKwQpBUUZVTlWOolRpJ2o7Vdup5ttTVTB VUJUzxKnKqBo7UyPbRlGGtXFVFUQVSOUIcawyjISKuEq0YKcgq lSRjBIZxQQzwjjDFLUzjJGQKgDHP+yqO15yHbb2Peka+cOTbtR 6XAVABON2glRAquZQUKIQplCmMBalVGGYqQS3oOOjyenUtrZJh O3HKkMdwQiCJFE5RYJiQVSOFYIVhKIIRRFWMVYwUjBBhCLKFEY RI5ggpCKsEoSpQnmUMYWwKOVKrLFY4RRJLXarIKFigbBQEVMRQ 1ggLBACjAAAdj+x7tOufd/r2etgYwMAEM45iznsIsY5BkKCNtgf/vzLwm7D83Upz5Z4JGNSSMaBcnZhnC+WYqylnAghOGUAno8PJKz 7NLNm9ys/nAWQWlbmbyjwHyQSgHdkCmnFyaWMLQAfQrjpiwN1u797+eAxDA BUSyyjjFNGOEGMIE6IIBrjHBIUSYq5IMqxt/3fOS8/Yx/wfaSQnftepVRBiKiMRRmNMqpKhARCHCNOVc4VwaJcqFKokimCq YKpnKpalrsgiBOFUoUyhWKVIoVhlWPEkULVKEEqRQolCqMqpwr jCmMK5SrlKhWIcYWzKOMKJ6pm4QIrHKtCuzJGgqqCIomQZhgcK RyrXEW8nfB2rDCiCiYEZhIhyrga/eHkjlVHXSO5vc/B8huPf/ycAKBEKJRgjFk7YqrQEE07IAojCsNRQVTJ2TfRszPxqXT1h+E0 2kBoq4IowgwhgZCgBGK3hAVSOVYpVQhVCFMJR4wjxlTKEROYC4 WzKKMKpQrhmHOVaQ3kUc4UzlRtzBdIlbEEYUWbj8QADqkcaV+k ClXhioSzX32z84qbjiYP/ODW+2hrq5CSCSE7yAU7aSW4kNqkoPbtNB4AACAASURBVO7uRxf oDAXDRgu1TQAIAZKznxp0LP1UMi4oB1j+8Tfmte+lbPj8peNnA AQX/29nDWryq0IBAOCg+X1MSq5VmmVCMoAdh07Wff5daPfBb9qiHIT gRFImBGGCEiwokRQLqkEAFgQLhIUQUv3uva99f2krGfbt0nvQd x8zwVQVUxXzKJPtXCqCI0mRpCrnChdRzhVNBVcEjXKmCqYKrso Oo2VIobhDkUKxwpDC1ChRo0RVKOqYR+B2whTGVcFUxlXGVMYUp l2WqEBUiVWJsURI4k5VJVG5ojIVcaQyrDKqMIy4gqWiSk4JFVG FEQGAz3xzsH6Kau1FbF2/c1976r0nQQJXESGtUY4QBqZIhjhVGFGYNrBrTg1WOSVHoq1u9X Q/9UyycvZxQb9RVYRUTKOURTlTONfgQ9UQUDBVMkUyRTJVMhWoIk iUay+5IrjCuSqYGvtXm0RoF2FIYlViBBgBwUCwJEjQmI8DF6jA iCuYqYoABHsr1n6RfckHPQfvq68BKTkTUlApGMgLeOil1EhMQ1 MXLtaZ7P1GnvnmG5BAmVAkY/Dj8KBWv0IKAMoEQOUX+1NW7xhc88Guk+dAcs7xb/wC/3ESI5UVTArOOSecMpAnVLTls/31uw+9tP9oGwAFSoFKLkBwJjihQImkWFIsKGIEMYw4IQBcPfJC 6Ul7vxPFV53d9RQVRMUqVjBWCFOZUDlXtYmDxEgwlXOFU4VRlW njP4kyonCiTRC0sjmqIJpHEFNt2OckynGUYYXjKI85CKogisBR RlXRoZKqQBQgKmAVsCoJAYxA84cx0uxBKIgriCOVUcSYSolKCC JEJSoTSApKMD709ZGG6acdPZSiQT9U33Xygy3ACVURpoSplGCm UBUTlRJGMMYYYUyoRlKGKaVnMG4+d3I0bTVGz4wmqIViRFRJoo pGahpruMIvuO1OOBAxtyLKNBeDKYKpkqmSatVEFK55N0zlGrbi jqZhBBhJjARCIvbyQhRQuYopQgIJaPvHN+9c+cf96T0+mTARiO CMS8GkYB01aTo6CQAAfLNt21xj9jxd8htP1AKAwjlmlAn+cygg uRQg8A+U3vnsF8aV7z708scnAbQiJb/NCP6DRPstpADBGQdJJUjOQWAMYvvh72v2HAt+sf/bs2cZAJUgNJpJIamQmApKgGOgWDJCGFYxZlLCyU+ePlZ6lWIZc qBxDkdHKZO0HYjCCCIcMYGFQJIh6AzOkwv8806//aeqzXU1vfDNi0+TF4945/Vi24iZh7avVkVMQUJRJVYFR0yomKmEqJQgTCQDwCe3NRwvH42K M07n9z3YsBidPUyBEcoQ5goSGANBlCKFIkRUhqIUUaTSNq5i2S YFimLyhnruVtpmjJ7Io+0hjlWmcKYQolKsavxFF968/CfNJyr/pQYyBRgCcnEzCQKsnoe8DtUetUSKpBgpGIk29f1J0/Z16bVr9LXfv/+BRiMIP7brWKLfV29tnxKfMV9n2rEuCABIAmeIC/qzKCCkBBDfEDqyYbdh1Z7pL32qAAhJqKACfs4X+H8KFn51KCBB cM6loEIKziUnZ6V45h8Ha3cffuHbw1GQWtlJIbgURHDOmeCUES IZAYyEirlKGCOUtx3ZVzuV2C/5vmj0qY83S+AMM0pEO+ZIc9FVwZBkGCiSVDvA8jwKKBd1fe2cn 1P4Jf1XUUBFQkEcIU5UThROooIokqqAMWAQauuXh54r+sF9RdT e93Dl9cdfXUtaT2IJbYRECUGUq5hizLXpN1MRI6pW5pRgrGKGK WXkdeX0GNZqRK0pytn5jOxXCVNJO1Mwb5exyj4KvwC/5AWgcIEiSVSJlV+Euf8DFFBVSVSEEQEBh1uef7/HkLd6DT0YaQEAkAL4TzgBJUghzxw95rzy5sd1CWvvnUzbsZCAB WHAfuZcrZiVYPsoGRH8PG7dnkkvfXoOAKS2uvgbCvzHSAd7AIB kQjIuBKdMgvi2Ler//EDD5wd3Hf2BABecCC6EYCAIF1wywTFTiMRUEMLasVSIBFBPvx8 6VjqqtWTEd6GFDJ1QOTBECCEK5lgzD1UQVVIsGZacAKdA8PlZ+ o+7/i/0+E7955b/3/IFVEmigikUqyyK+Fkk2zDHnIFAJz585ejqh87Z+ipF/Y9W3HH6k+coYEoIb8dCEQIJLb8wBiWqQIrEiCsEIawShTNKCXn nXOs43BpHTqUoZ2dTugcjhrFKMSVRYIogiHXY/IV3+zMN72wp/gWl/zIKCIQEVShBnAo498lXO//w54+7D/6isERS1skgepHfLoFzAQCBSfNm6RLm9h6KDp0EACw4k+JHdGOx YLMEALmfkpGhz3VrPp/0soYCUv5S7uBvKPA/L7FFHQlMgpRUSCIEF5xTIXYd/b5m9+HNXx09RqiQVFIkuBCCA1AuheSCEt7OQGWCEqwgiSgXbfv 21T3Wah/wdfWt+PsPiIR2TAgiVOFa4IDi88M7QUILKOLOWetP7Jn+E6tWJ FHl/w8ogARWGVEJUkkb4m1ESMnbj/3jyJNLTxVfdbaox2n7wKNNBdHT+6hgUU7bKYliFWGMiSBYEgQE AcJCRVRBTFE5IkihKiVIqNuUk2Nw1KC0Zahnp2H2SRsmRCEyGh VRihCLEqyq9J9PZC5SBPTHrTivVAX6k2b+MxRAgqicRQVCoo0D tJMPJjy2N7XnB2PGC1WFTgrhC1hDBEgCEgBq7546V6fPHzpKnG kFAMZjCUI/RQGtEuIBSkYFP49f9dnUlz6JAnCpsRX/hgL/GdLBJqLVHxQUKOccBJwUYtPX+2s+O/D3/YcJAJOSCS18SAkwIjljnBCOKWAiGcYIqVSwE+9vPlQ8qrWw/7GXlgihIEIJ5kThXKUUcYwEwUAxUAIEA0HQ4eJKrIrO1TvN9dX CYBcNdz+1YVWQC2YTGAmMJP6J8VAFqBK7AkKgYqligZDAKicKR 6qMqpwoBCtY5ZyCcuLDp79fOaF9cT9U2P3IksuPv+Sj505gAIQ lVhhGRCFUIVwlAlOJsMBEc2cYwlxRMFU5Q4Ti16Nnx5BzRnQ2V 2m1c3IAk3aMqeb8Y4WpWEFUQYgSVWCls/nyl4z8v9ROpEPnY5+SoJ8ioERqTDESROEkKgkFGVW3T5y1O7P3 Z3eMEW2nIRYbOF+pFqSUIKgUAPBy+cp58Slzcnrt3boNABiHHz EMdJBUSgZCgtxP2OXBvfGrP3ns5Y/aAIRkTBLxG+/gf4h0cgoJIYQUDJhGEfyPs231e/bX7T303pEfMBdUSCK4toiAgRPBOSYUUYyAqUIqKkZUAhzc4mq1 9DtaetXpD58XQiLMEeKKKjHiKuYqkuf9VXzhyB+bDqBYDz4/NfjFHo87ejnuPL7IBn48+qmgdpgKVYBFgSpAVECKlrlEEWIKwL ljX5182nOs7HdqUe8zRf0OND586uvtAkAQwpB6jpE2QuU5JhAj hGJECOYYc6RtOo6tblBMESfvqKfuJK2JbedSW9tmULaXYo4Vhq IYKRQhpipMVRhCHKuxmAJSO7XTRP9r7TwZqRJreVAqVxFXEY9x CqocqUx7vzMaipHQ8ibbMVNVys8JpFIuxJGnXvys16C38wYdfP YZgB9xDAOA1MjIAODYp1/MTe45W5fwVOkSACAC+E9qi8TYxAQHKfYTNiK4R7fus0mvfNyqL Tp2FDj7DQX+96Xj1xJCMpAgJGcSISF2HjlT+8Xhhj3fHFRUCSC FZEJIIaHDlxOMqgS3Y4ERpZhyxqMHPzi47J5We96Butny7FGGB FUoVZmKJFYFVTlWGFK4lr1/QaeMKVK5ioSqpfFp/VjlKLYMFjsfdajWv2N64UV+dIXOK6vaQiAnKqdRRtsoiTKsUEU huJ1QAapEJz9//tjKcWetg9ptww9V/Pnw3zyi7TAAUCkYJYJQzAkSCiNYYMoJZgRzShmllFJCKMGUYsm YUOn2trbbSWs8PZmhnFokydeUYoqBEUkwpYRSyijhBEtKgGJBM aeYUyIIEYRwoh1gQcl/Q+l5ZVRQyjUllBPtmHCKGSGMENb5V8Y4pZwQhihDhHJVaPsKTm 7f+VG/Ie9177+/PgAAF2UAaPsBJGOcA8DB9z+amdxjkc70sncNAEj+4zhfJ0uNxi SyX8qRTV/q1nz0yPMftANwxsn/EQpcuNvtP0F+VSjAQTDgggHnQgBuY/zFPd/Xfn7kue8OneUchIDY8i4AANPGCG0vOqeUC8wBQD3+gvN7+/AjZVef+WyLBIGIlJQCZ0QCFSCpFDRGTyP4T5RJziTnknUo15QK ToVgsZdMSC4k16phURm72gXKmWRcMiY05VwKAZwJRjmjgjFBOa ecEU4oVylVOEcCoPXk/u9eqDhcOopaerRbBx9cO+Xs1zskZ4wKJhQukRQShJRaRp12FMu mIzEVVArgcKRdqcJnf0/PxredNbe3zeJ0jxAqZTFXK/bMz8+gJYAEwTuSczpVO0fIDoWL9PyZ8sJzLi4fKDtn3ecpAWXn mB6LBnEtWyxmiyfe2PZRv8G7eg844A8DAAgZ21R0QWehjAHAvp 3vT0/ImaszvV69AQCIIFzwH/Ureb5aEWz/4cyghk/M6z4u27mXAwhGiCT/KhP5f5T9a/KrQgEBgkmGGeeMgxSnhXzq66O1n+3/+8EjFKCDIbJzhiillBSoChgoF0SqEhg9crx+4ilr/6OB6VI9KIBhIakQAhgHyoFwSYXknfMPeYHELOv8YcxOpOAXl8P qPOVCUwG4mDRZSI0iRwAXIITkWoID40wITohkWHDMokRiCkDh9 A+vrTm+5M6z9gHI0uO475ojr3go2s9BG8OokFgIARygI6dWSk4 l41xKRiTHXHAsqJCEkXeVs3OU0z34WR06lRZtm0fgy3ZAqlA4Y 0JgKamWqN1R3Y9LyaXUCLuYEEwj+LmoKeeHvp/XHz+Y8+93fou46EFBx4JQJyWg4FqxCQA4+fq2z3sP2dk779tAE wBoeKtdVcQ2mUkqBUh5/MtvCvtePktnCs2zcEqZED/PLyClkIIBuHfsSVrxXte6PdvOqhK45CrlmMHPVC7/z7Ly/0p+bSggtHxRyQHgq9a2xi/2Ne7Zt/v0Od6xrHP+I1IjjyBUKEAYp1QCO/PRk987rznlGHF613oAwgSjUlAJXAiQFCQRQKVkHV3/PKzEDjTL5dqg29m7+UXmfWFSu/wxCnRcSnDJRce5UkjOtdGOUkk55ZxyzLkA4Iyc/vLl4+EZrUXDwNK9zdH7QM397ft3caAKCCowUCyBCcEkF5Jr47E AwSRQJrEQihSUC044E0AY/vvZU2OU04n0bHz72eEErZLsKOOCCIEp45wIQS5ofudD0GxRgwB +YZH4H2PfT6sA/fIJ//zjANpOEaFt9JGCa1ygAHDyje27ew3d2XNgBwowKWMuBtPyf4Tk UlDBAaBleuE8XeKcXkPOHj50/nf8Ue+SEqQkAM53vzat+LBb7d6tp9sBuOAq45TJ85XOfuFGf67 H/rfO+h+SXxkKdJifYBLg09PnNu4+EPhi32EVxQKH4vyQooUJgDP BMREcSwHQdqTFfsoy8kjlHejw+1oCudZvNMYpkBxAI7O8YKyL7 V3WimGDEEC54EJIgM7KuBf+5P9Fz+5oEJcsNskQnGnE95Ixjjn DKucYQAJEW7849HL54aLLxeKuOL/b8WW3nv1sC6MnJADmnBHKKKGCcsk4cCFEzOmWHCSTgoLgjFEiG BMgxOFotKK9bRQ6p0dnEttOjsHoBSaiDKQQHDhnDFOBhOzMxr3 I2jub9SP7/3Gr/htm8kvo8M9QQDIpOZfAQQLAide37e41ZGfP/t8EIgAaaaCI0Qdq9yekFFIFDgDBaYsX6kyFPYa1HTyk/eVnbwkkEIDyXV8nr/yk28Y92061a0TkTHCtcvlPO+R/U+SFo8j/kvxKUOB8hEaCEBIEVQV/9cDRDXuPNH958LSqAJwvVXq+SwkJQjBOsOAcAB358LsVd54o6v 9tw2TAJ0BqnyEgGWhdTADXeGehc8qqrU/G7oAzbcualACx0zSH4QJmOtnxwdjL8+gAF74pBONaEiRnHIADU E4IRZiDABk988XJt544vPyudscQ1T7gO8+1h593nTv6CQBgACq wEFEQVDDGOOGSau4ASA4ilurGJVBBsWRccoY/xmft6vd9SJuu/Wxye9vjjL4rhUo5EKBMIi4ol4SDKs+jQAcASrjgoHOyrvVpAXB x3t6F9tw5JZI//qP2mOBi2/iZ44tQgF2AAm/t7jX4nd4Dvgk1xXpHbDIALIYCwLlAggFAaOriOTpjQb+R0UOHA ED8hGsIOlAAAbg/+Cpl5QfdNny+7VQbgOACE8GoOI8CnU34ES78EyP/ZzD3PyW/LhSQICVgyRmIs5Q9s3vfuj0HXznyAwWp5Qx3BMQunPsJyTUeKn Hqw8BB5/AT9gFn3tsAwECClFyjvY0RWcecDu3rfiIShJAIZPvZ1jOHj1KK eezefnZkkD95+0KDABAcONV2tkd/ONZ65CDjXAAQUM59+eyhJ24/a+sLtu7IOvDIiolnD+7CwDkAJyA4YOAEONMcFk4BCIAASQGoAC FA20sBDAThrRQ9Fz01Bp9KY+d06NylFK3k8hCL2agWEBEaDMmL m/KvdFjZ+TPJC17K2OO8eDn/RzHAn7nMj76cC2Aa3bwmJ95467NeA3f17r8vGIl9bawGcewuBA gWwwQITJ4/R5cwv//wtmPHAOCXwnwSJAWo+uibxFW70us/f+10OwAGqXAhf6Fs+T99UBe81Rm20EIfP/vt/7fl14YCnEssKQZ+hsrn9xyu+WL/a0e/JwCaD3ARCkgtOM2FlAgAZPuB0NzTxUOOVt2GDr4Hsaiy5MAEUK k5A53D4M/88BpmCADYWR+sHHMvPXxYI6ynsd4f+z55QY8/bx0gJXABvDOqSIREnHJgAPhlR/HGSdNp67GzX79+vGnmyeJRYB8gSwegJ/7c9kJ19Mg3AMA5ZxKYtvbQUWpDK0zWEZxnDAgFzkBwQTA6QfFH 6jm3cmIYb9MxnIzIRERflpJKqc2sACQG2a5BBgCAZmwdz+48JH Y0pcMh0FwNLoFrCKJ9XEjJOyYSAB0wo/ljUgvja3gQi2FCh0l2GqYW3hRwYRhfxj4kQQt6AEDrMy/u7Z23q3f/A/5OFOBUy/8TUgDnwIFzkAQAgnOL5ujMhb0vw8dPwc9Zoey41aNcTnj+c+Pq 92589tN9hDFgGBjV1p1/gl/a/xwE01ajOt7tXCnhAEzbCA+MCxYrnvO/NCf4laBALC4ggQvJOWPaAsHeQ7W797/x3VECUnKmrZABwN69exsbGiOhcHOkORIOhFqa/eHmncGlZypuIcVDv37ikRcDG5qbWgJN4eYtm5u2bA5GmiLNzaF IsKklGArXhpsbQ82BYMQfag4GYv82hluCoaZQU0vzi6HIFkdZz fSZT9auDm9qaGwKBCPNTeGnwuGWUCTkD9cHWxoDzQ2h5kAgEgy 2hIKbQv6IP9IciYSDkXCwJRzaHA5vDm1qDrW0bAqEAnVPNYUaC/Ofm/XQ0Q0zT5Zfxiw54Mw7W371zpI7XlxftuWplrqWSHBTMBAJhJqa miOhTZFQUygcjrSEmzcHwuGmlmZ/KBRubgqEm0MtLeHmLY11TVualn79j4XnTv6JticB0fGzI3btGB tsrm5seTa4eUukKbQpGNkcaN4cCjVHGsPhcKhpSzASiTT5w03+ cFMg0hQIhvxNzeFwJBhpCofCwXDLpmDTpmBTU2RTU6g5EGz2B5 v9oZZAsDkYiISamiPhcDDcFAo2h4LNkXBTUzjc3BRpjkQiTc3N wXBTqGlzINwSaGoKNQcCTfXhTf5AJBBp2ewPtQSbNvvD4WBTMN QS9EcC4eaWQLglHNkcCjeHQpFIpCUS2vRkcPPm4KZQ5MlApPm5 pqZPCkr29xjyWb/Bbyy0PtvypH9Tc7Al0tgcCEYC4aZIXbgl0LQlEoqENm8ObX6+x bHcmtC7JGXAkyXeLZsjoaZgOBxsago3NYfDkVA4Eg5FwpGmSHM 44t3yRp+a900bv74n+GHj5pc2h0PBJn+gqSEUiYQikWAoHG6Kh CORYCgUbgqHm8KR5mCwKehvCoVbmsORpk1NmyLBSDjcFGqKBJo jweZN/khLfTD46RefaRNVweG3GcG/JTKWLyCZBMGpkPJAu9q894B/9/6PT57lkktBtQUtANj21tYF8xY4bEUOW5HdUWQpsrsK5z9ZMPaM 5xrFN/rV4r+6Fs8rthTbrUUel8dZWmazFDrsVrvN6rA5bBa73Wa322w2 i9XuKLbaHFab3WK1WO1Wq73Ibil25tur7CVL3V5LsXVBkXWBzW pzlDgsLrulzG4vsdntVoel0LbYalvssOUX2PILiqxWh9Vht9lt 1iKbtchS4LAsKrIV2ix2q9XqKHSsyJ/1mnfcocrruGMwlA5sdV/9vntMsPjhKke+vaQov3ih1TEv325bbC+12YvsloISa2GJtdhS6 LTayq2OIqvdYrfY7bbiQkuJ1VJeWDh71Yrb3t9xKT7bHZhOkm6 7P7uqoe7+0qLFDkeZ3VpcZHPYLVaHpcSRX+awlNhsRRZrmc3us 9lK7PYCqy3fbi90OKxWa6HDYbcUFtjtdpvNbreXWm0lFpvD7ig utFptDofNXlxoKS60OGw2R5Hd7rAWOOwFFusim32x3ba4yGYtt pfYLBZHUUG+bX5hcX6BvdBabLU68gtsBYV2W6HDXljkWGy3LnZ YCosti4sWWYqtFmuppbDMZit1FNls9vlFRYscdoeloNhuKSpZZ C+3u+1WR4mtcMtDk77tN/yrASOfGf+Qz1K4oMie7yixWC02y3xr0aKFRYWLi+2LiyyFVnux tXz5lPmWlFybLs1x5S3OIofFbrHZLHa71W632m1Wm91WaCksKn I4Cm0Pu1f1rn0nOXB49PKtU1wVdvu8Mku+3ar1B7vVZrHaLDaH xWortNoLLdYCh91ms9sLrDa7vdhucZRZi4ryC0vs1uIia6G10F 5cYrEXz1+U/9qbb0BHoPM3FPi3pHONgMV2FsOHx0/WffZteM+B7xCVUgqOJXApGADs2L7TZrE7S12usnJXiavM6fGW5 v/deW+779ojvj9GSh/2FJf4SnweR/HyyqpVT6xY4vFUut1VlT6v11NR4a3yOn2esspKT4XXWeVzeT1u r89bWeH2eUvc3qKKCmd5RZmzsry8yule4ixbWlK+vKxiqcNXaa +oKvNVurwVzooKZ6WvtMpX5vWWVPqKvRUl5RXuiooyb4XFu9Ra vqTU4fMWl5eucc1/sfzhY2W3QnE/KM8WFZd+XXXrZteD1e58l7ukyle2xOvx+twVVcUV3lJvpdtVVV xRbV2ytLCiwuH2ulyVZc6lRaVLSjxLKtyuUpejcHnlpHe236W0 DQCpA2FQTvbf/srdPvf0Uo/TVeXzVTmqqvKrq4o8Poe7qtjjK/ZVFHsrS9yVznJfeYW3dElFkddX5Kssq1rq8lWWeivLKqpcHp+z otLtq3B6vM7KSndFZVllpdPrcXrcTmdpWWmZs9zjcpXaqzylVZ XOorICh9Pi8ZRXed1lRXavr7S8yuFa5iipspRWWdxLS1y+opLS 4nKnp9zlcrns5eWWisqiUmdBSZnVXe52lbnKSovKyuzeSptnyX zfsvyK6jJ3lddRUez0WH1Oh8drsVctbJg9+bMhl3yRN/DVRx6s8RaVlltKihzVHu8Sj6OywupeYnMtKfQsKaj2WtZ73A1z FlmSc2269PKbx1cvX+GucvkqSr2+0ooqp6ei1F1R6q1yequclR WlM1f5+zR8ll6/7+bVLy9eudxVWVzt9fi8bk+Fs3Kpp7La6/KVlFeUeKpK3ZWlviUuV1Wpu8rlqfR6fL7KSp/XW1JZWVzhLfO6XW53WVlJmavMa7U6tm7bCgBMCva/V9zk/00U+JnAEcgYSyQILjnAhydaN3xxKLRn31FFlQKEYEISLflk1zv vFzlKXE5XuavcXVzicbmXFi/a7R5DPJfu9f5lg2VWZZHP7awo9xSXLS+ZVWSZOqtqzlz/lFlrZuQvnbagfO58z6yF3ikL3HMWex6f65y52PdYvndaYfn0hS WPL/ZOK/BNWuieWrhk8sKKGflVjy1yT8kvn2Epf2xB2fRFlVPnV81cuHTK XPfsRVUz51dMXVgxe0H1zFkVUy0VDy8snr7INWlB1cMzPGVzra 84pxzz/VE6+0H5IFJ1427nPf55E60zFkwvWPLIQt/jhdVT5vtmLFoyfWHllPnuGQW+6QvLZueXTV3gmJZfPLWgeMoi7/TF7mnzLTMLKu+eWjavYPZzmyec2Hc1oAzgyaT9qh3bbnH6Hps0 pXTW3KWPLyydtqB0RmHpIwvzp1o8k/LdUyyeqYs9Mxf7ZuS7Jy92Ti/0TF/gnb1gycx5FTPn+WbM906b55q12Dd9vntWfuXUuZ7pi7zTFnmmL nDOKvRNmVsxY4G3oMy1NlBXXdOwsLhy6RN1FsfSmQs8lTXh5Q1 Pzpjns1qrajY8M312+fT86kmLqqYUVE1Z5Jq6oHRR8bI1G5pra jZb7BXlS1bk26umPe56YnVzTd2zdseKFStr6v0NJaXLZ81e8vh 8z7T5JdMWeB+dXW71rVhZG1i5cn1piadqTd2GR6btzRvxRf/hWyZOdixweJesWrmmbvrjJXPnLV0wr3r6bPfsfN+UBa5Zhe5Fi yqK71uwOLmvPb7L4mvunrPIOz2/atp874xFFdMXeact8s5YXPnovPKZBUtmzffcbq3vvvEf6f6jV1 e/fe+iNY8XVE+d55lRUDl1Yfm0xd7p+VWPLXDPsPgmL3DOKKiYus AzrcA3bWHl9DmVsxYvnTTPOdVa+ciisumWkqmL5haWFngqvc6y crut6O1t2wGASfYzZZH+p+TXhwJCCsEBGhL7VAAAIABJREFUPv jhTM3uQ8Ev9h1BqgSQkseSAAF27tzlcBS7XOWucpervMzlctSV Tj7ovJ56Rr9bPv4Jh6W8tNLlqijyugvXlvx5zsKswZ7M7L/l9Hq5x9AtOQMi3fKe6z7kmdy8SI+8p3L6bOo+qClrYG324KacA Zt7DtrUNS+UMzDQa/Cmrn2ae/d7snvfSK9B4Z6XRLIHBLoNasnt39Rz8Kbcfv5eA4M9+vuz8/w5eVt69WvqNbg+baA/o8+m/l19j1w9eXv+WHCPgrLesOTKTxbfs/CWx0cOX9Ijr65r/4Zeg5/O6RvpNTiSO3BDt0EbcgfXdslryB3UnDvA33tQMLdfQ87AcPbgp zIGbc4d9HR614bs7iU33jZ+y8u3SOgPQgcw6IPPpt49obB7r8q cvFBmvye75j3ZLS/YbWC495DNOf0D3fI2Zw9uyRnWkjVwU86Azd0GRbLzNnYd2piVF 84Z9GTWgKacwc25Q5szBwRyhkYy8/y5l0QyBjbm5G3qOiiYPWh1tyHhLr2eyepZe/vDW3x1n9uXfj5mwjMW51c33rYpp1/l+KmvV607dv0t6x+bHnntTXbdzbVde6/O7R/uMXBzz/6h7J7L/3hb07LV+31L9tw3afNc27t33r89p+e6v96/vXrNsSkzX3BX7FxX//mMWW9379bQq0+o75CaXoPrUnOfGPvYVl/VwbLSDydPf6249OviyxZ90+f33w64es3Nc64aafUt+br5uVN9R pZn9Vnfe/CW7D6hHgOacvIi2UOau+XVX9l70azkkY6EXmNzJ/Ttu7zboEjX/qGegyLdBgS6Dwz0HtyU06ehd15zdp/6jL881bX2cE7wdNeJO5IG1HYfVJ/br67nkJbuA4I985p6D96c2z/Uc0i4a/+GnoNC3fsF+wxo6dlvU7d+kZ7D/Bl567oO35w+eEOfmwuvfuT+BwqmlFS7S1zOIodj+9vbQEtdkb/FBf4l+WcowKUQEuCjH1o3fn4kvOfAYaRIACk0SlIBAG/veMdqtZe5nKWuUme501O8+LnSccj7+/by0U85JpYXe5wlPl9JaUmp27b2iT/OWB6fvSVe94NedzYu4bs4w2Gd4QddwhGdaZ8u+Qtd+nu6tDd05 ld0CVt1CTt0KW/q0l7SpT6vy3hDl7RNZ9yqS35Dl/2GLvMVXcpLurTXdZl/12W+ouvyki7jb7r0l3XpL+ky3tJlvavLeiPZFPhz3zXN9+e3l/0RygdC+bBD3lsapswYnOPSGZ7Tpe3Q9fhAl/WGLu31uPQ3dCkv6VJf0KW/pEt7VZf+pi5tqy51u868TZ+0TZ+8U2d+V2d+VacPXHr5ynXL89 u/vxIgDkSX/d/8rtT5ULcBK3WGF3QZO3Rpf9elvaFL+Uhn3qdLOqZLOBqfuF9v+ FavO6Q3HNIlfqlLfV+X9ndd2su6tJd16W/oMrfqUt+KS99u6PKOLnWrLu0tXfpWXfqburQ3dBlv6tJe1WW9q Et7WZfyts6w+co7d7lq+TX3bMvOi8y0tF110y5dwuobbnt/nvV0j6H1C9z/qHnqxENz9+jMjbqUV3SpW3UpW3XGyMBr/ubagG8avy13UN20RSf+dMc+XdzGq/64a3HRmSGjQwvLjyzy7bvv8QO65C26pGfjc56P7/qCLilyxd0f+arpH29+Zeg1z+cXHbMOLviy3+8+HTjqyTktDz22 y+49taJGuWbM27qkoC7tNV3K9riUrbq013WZ2+NS3xxsrJ5vvM mTMOQvpqnmpOd0GVt16a/r0l/TZbyqS3tFl/6qLuN1XdrrurTnuk36R/dwa/b6HwzDX9SlvKFL3WrI+Lsu4zVd6t/1WW8buryjS31Tl/H3uKw3dGmv69Le0qVs1aW9q0v+TJf4pc74tS7hsC71E93g6mEP zxhrn2mt8rhc7iKrbeu2tyCWwPYbCvxL8osoIKQUUggA+OiH1p rPD4e/2H9YVQSA4FxyLakEdu7cZbXZneVOp8dV7nKvKi54zztWLR9x3H ONv2Sys8xbXuyrKi1yltut61b+/tE1cV2fNyWfM+iRKZnEJyhJZpJsUvRJe0yXv5Rxb0POg6u63rG 8110b+94byr1rVdexVbljPb3ue6LLnSty7tmQM35t9v3Ls8ctz xq7POfBNRkTqrMnrsy6b2nuxOqs+5dlT1jd9a71A26uvnecMzD 7kTbvFbB0IFQOOuYdvslxywNTHsu4tSBzbHXOhNVZD6xLG7cs8 97qjPuqTHe6c+5bmT1uRfb4VVn3rs64d1X2xI3pE9ZnP+hPGx9 On1CfOab0+scWrW2ZdPrcUIB4gIxzaPiru2/747zJiTetTLkr0vXBcOq4FWkPrUi9v6zHhLUZo19ISP9HkkkYD DQpmRoTzhjT/mEa8WqXe5qyJqxKH1uVe9+yrAmezAedaePdXR5YknV/ddq9VVn3L0sdX5n14LK0eyuyJlR2Gb+iy/hV2ROWZ/y1oss415X2DePWPZ181+yMexY/sv7Nh5a/MWrSqrm1O8dVPTV4RtW9tZuuLyt/pOHlHpOXmcc5Mx6ozJhQnTrOc8nilfdsfCrtgYVJd82d8MSLU1 Ztv/zRZXMa33p49ZP9JlofrHlmYv3mP1f6s8YXZ41zdplQmXPf0tS7 i68qahxX+VTqbYv7PFCyZGXzM7eN3dM375Ub/+RbVXdnbeTGpStvci4bu7Ile/yirLFl2eOWdhu/ssvYVWn3Le0+rvqGqxctTLrMbuh226i7ut1bmfHgitR7KzPur0 6/f0naA0vSH6w2j6vIeHB54viqrOIXM5oOZzYeME0JpY5dmfHAiq T7KtIeqk6dUJF+35KM+5el3FuR/mBlyoTyrImVqRM8mfd7ciasSL/uKVOvvYaE79PNUm86HjeoZcjDheOK5pUsrXKX+krtJdvefgu0f Y/iNxT4t0XGNp1IEEIAvHvqzPovvntq76HTCAup5eHHHvHOnTvtd rvT6XS6XM5S1xrb43t9f2mrvOLj8rtX2ab4yuzlxS5neWmxt9S 6dsMfJtfqcp/Xm47p9Yo+AeIMRK9H+sRjugGhLgvnZ228IXnD0AG1V0/5oGzqO77bn5ky9s1Jv990Q5dlfS5tuWXK7mUjV00eXnWfdXfkd +sW5Lgf7lrxcLfKyV28U7MqpmWWz+hePG7ckjFbll1LfEPBNxg qrjzuvnlz8bUzq+/6/ZrZvcof6Lv0kV5VU7q6ZvZdOmPA6oe6Lf/r4I0PD2+c2XXpI5m+R7OrHstaMrHLkodyqh5P8y5ML8+Pnz0xr +iG8Kd/bo32A0gCSGPnhr300i0PVY8Z4b5mSPUfLll5d7bjvsSChzLXPJ zZcFtW3ajs9b/rWva4cXTYkPxZvOG00aAYzHsNI4Nd5i/IWX9LWu2gtJpe2XWDUusHJfn7J9cNyPQPzQoMS60bnF4/JLU2L6N+cFrtwIz6gRn1eem1QzLqhqRt7J/R0De9vmdyTdeUhl7m+t6ptf27R0bmhIal1g/KaLwkq+7KjJU35VTc2m3lH9LrLzX4LzX7L02szzP5h6TXjs5Yd mPWstvTV9+YsX50bv1l3YOXZTT0z/T3yfbnpW8Y2KVhcNKGvmkNA1Pr8zL8wzL9I1I3XpJaMzShpmti YFBC/ZBrPUMabh/27cCBT/25z83ePskbs1M3ZKes65lZ26tLXa/0mry0jcOSG/KS6vun1A/Nahh+leuSR/snLTKaxozt26P2ErO/X3J935TG/smNA5IbB6QEBiY19EvzD0io+b3R7zFv/tzU8oahfry5dkB64+DE+gFJjcNS6oekNQ7L8F+atHFwauPgpIY Bqf5B5roB6f6B3TaO6lfxsPn25bqcd80GxWg4bsgLDXxw/njHXGelz1XssVgcb779OmipBb9FB/990VCAgWbx8P7J1rWf7t969AwD4JQxITrzVXbs3OlwOJxOp9Pp LHW51zhmHnBfz92jPiq7b4ltcZnLW1bqLSkvLXaXWtesv+axjX G5zycYjyfqsTEBDHpqMB3XdX06+1F7zrprDP4kfa3+kpa8ku/yCz57fMLrt0//etrlf/u9Ybl5UPAq+95ne9y74IqJS194jzxifdM48AnzoOaES57WDX9O N7C+1/DikkcfO111O5RdIjzDjvr+FHl46vXDCrKuXnb/is8eXfP2TQsa/2p/5bIHXoobvKz/uHpL5OsRY5fOqnytKPDpdTOf1Q9aYxzelDi83jiiLm5YQJe3ss tVlscWTnn/kzsAegDWA+l6+MM/F4+b0T9+5thrZlofGW1/dNjECeO7DL3XOHRO9q1VmVPsmc6xqRuGptQPzbZPT7h0dbzxfb Px+/h+r2XNcHdbe11iINEQNugb441+vd5viA8Z44LxhojB2JQY54/XhwzxQb0+pI8PxulDen3QEB8wxjUa4/xGfdAQH9DH+43x/kRDo9FQr9fXGxNC5riGuJQNmd0rbjOMnRl/tTXl3gf7LL/RvDE3sSHR1GhI3pjTddlfTONm6q60Ge6Z3bXq1qSaTGNDgmGjL qFOl9hoNNTEGRv08bU6UyAh0a9PCiYkBRJMDQZTQ0JcoyEhmJh Sm3FV4eC6G677ru8VW24cepWzt6k+1VhnMNSZDHWmhHpjoj/Z0Gg2hIymBn1SnVkX1uf40+6+M2tRQsb9o3MuWZKV6Dfq/UZDIEHfofH+BEPQEFfX3RS2mZv2mCM7DfW3GwK6hJAuzm+KD5o NgQRjwJQYTolvNOqDCfqgXh8yxPsNcSGDwW/KqO3RvXJCwk0b4jL26BP3JvSrG/ag9V7rgrIKr6vYbbXa33r7TYihQGzG+j8vvzYU4FouGcAHJ86s ++TA1iOnBABwKaRkMrY3fseOHXabzeV0usvdviLbC6WTT7uvbS//wzNFkx1l5SXlVb6iCm+pu8Rdal1Tc/Wk+ricV81JZ8wJ0eRkakw8pe++NXVsRc8VdyT7c/SNCYl1SQNCeaXH7Xc8NaZ39eAp++feuOO2rqv7D3TdNbPuwwFX Nk+e/82C6q/zVx7PGhnQ5QTiuz3dp3v94hvcn+Y/AOVXgGM49l32QfnYu6+2G7q06NLD3UdFLGuOz3B9cMuDTTMce6 +7+11d6qqsYTWLKg9fO2azveIbz7oD9898Ly5jvaH383G9/qbLCqX1WzlpcuFHu/4KpD9AKtAstK/Xp8sHrr/6uon6wpt07pLec54aOvSFESPm5vz15kHeP/15Z5zp6YScVwy/W9LT8Vhuw4jM9VflzLEZBjQl9Hoh7UFfztrbkgOZ8eH4+FBGXE OaMZCi9ycmhMzxDcbEUJIxaNY3JCSGkuIbjcagOb7RaAgZDOEE QyAxIWCOq9ebwknx9QmmUGpCQ4q5ITWlISVhoykxnGxsMPVcc2 XWg9Pjez9hzt4c38edM/OxzLXDkwJmc70pd/XV6Y/N1vVanpL9N32P9SkTZ2WsH53gN5sbTIl+U2LIZPQbE4MmfaPeG ExIaIxPDpmS/YkJtfHGphSjPymrISm3+qqef5k8s/fkV4dNKBh17cB5N2TWX5pQYzIGkxOC6Xp/kiGYrA+YDOEEgz9OHzTowrqeG5PH3paVH599X9+M3xXlpjYkxz cajSGzPphgCBkTwqa4hgRj0Bxf+7ukcMAc/soU8sfX/c7QEJ8QTNQ1moxhQ2K9wdRgNgfSDA1JicEkfb0hKWgy1OkTAkk J/jRjg6mL/5Is+5yEayK67JcNQ/3DJ7ofKLS4Kio8ZW5HcclbO7YDaBuc6G8o8O+K7KgwrXFJf3ji zLpP9m87cloAxPb1cAKCAsDOHdtt1sKy0uIyZ1lV8dxXS8e0e0 efdV/3tG2Ks8haXmZxFZfYy712d7Fl1YarHg7ost6M05+Kjz8Rn3BQn/Se8YbVWZUPmYP9DOGU+HpzfL0hLZz6u9dGZC1LT1uSc9XLN9zz zqTfrXg05S8L+//lla63NN2+vHlQ6awbVleOLFx86aP3WOfe+Zn9FvCMBs8AVjHs4 6orC91/GrB4XNKsKVlz81NnL+hXvNCx86lbXPN7Tx43+5VN94ca+s5YOH D24hkvPHvD8or8F7fY/9Y0ObAxa9rjhhlTu82fOHXV+Pe+uB5oDxBpIHO/OzBgc+3vqyb2rrw2w/vH6+7sv2BIYvmMEYU1140K3nLZ46MfGDZ0Xv+rnsgY1pjS73Vd lybzNZU9yx821Q3PXjEu6XZP/HBvbtE008aeBr8pzm/U1SfE1cXraw0JG42JtYmGjQmmBlNSICm+Nl5fp4/fGK+vNRhqjfr6+Pj6uPh6g6HeYKjX62t1xrp4Y61Bv9Fg2JiUs D7VWGvWN+jNdTm5vjFx18zoOTI04cF96b1rDX+Zm7HyD4Z6o6k ms2vlPcbrrUk56yeM/W7QsOd1owsyqsYkbkxNXG801iXGB/Tx9ca4jXp9nUFfZzBsNKQ0Jqc1pCatTzRtTIxvNCTUZ3YrvVef Z8sb/vT99+1J6es0Pjg5c8XVpg1mQ31cfJ1B36DXN8TH18Xr6xLiag1 xDXpdQ3zv9V3vui2nwJD0cN/kKyy9UmqS4mvjDHXx+jp9XK0+vtYQv9Ggr02I33BdUvjNpNA+c 6hMt75HwgaTYUOKocZkqtMbN8ab6o3mRlNcbby+Pt7QoEuo1xn rDIagOc5v1vkNcfXmrDWXdZ+zQD9kdVze2iHjXffl21w+r7u0z GKzvfn2NgAtZ5r8hgL/rnTEBQC4kAAfnGhd/8mBbUdOSwDgFEBKoCApALzzzrtWR4mz3F3qcq8tXfBV+e3MM/zrypsbSma4Sssc3pIyb77HVeJ2+opWBG56uDmx66sJqSfMSW2G 9HdNf9jQo3xe7ppbUyuvS6+6KmvD4ER/SlzQbKhP7lKTlLMxzbShZ27lmOwJHl2vWt0l1d0Xzclac01WTf 8RldmlywZ8tGyEqLgcXCNpxbDPqgfaVvYfvDbXXJuVEOpmDHVN CvZOaeiTG8q77Jkre6/t23V1j1HP/+Hmrbdf1nTFwNrRo569rUdoxOV/u/6Wl/6aVzOq17qek14Z+t7RSwHngjQDTTh4ulvVC9ePmHlztzl39Ksa NnBN7uXVt3a/oyAuz3HJ9HlXVF9x+dq+I5ffkjZtXOL94weVzO5bWGy4tkLXa1 3KHaUZq/7Stebm9PsXx40uy3Q+khzJNQeNiY1JiQGzMWAyBVLMjebkhqTk xqRUf0pGOD2pwWRuMJkbTaYGU5I/ydyQmORPTPKbTI2JyUGzudGYEjAlNyam1ZlS6k2GoDGhOTkxkp hWn9mz+k/6m2b0vKz59ju/TOtTb7ynqEvNTcn+xNTG3NwVY823FKd3rb/l5s/7DP1b/O8dudW3JzdmZWxMTmswG0JJif60pPokc4M5IZhsbEzNCuR08We b61KT61JTa83mYHbW0rsNl9vyBj99043fGvttTH5oUbe1fzLXZ Zn8iWa/wRRMNAaN5kBCSmNyUmOKOZCiDyb2q+/51zG5lvi0SX3Srinul1nfxdhgSmwwJwUyzPWpKX6T2W9IaDTE1 91kDr1tDh5JCVQl1g40N5pT6jLT6lJTGhKTGlOSQt1SmjNNjUm mxhSj35Ra1z+96urkiuszai4zBbqYG5PT6tJ7r77bfNvSuEtWj HzQObGwoLyq3FtearMXbd2+A6Bzy+tvcYF/T2RseSDGPP3BidZ1H+/fdlTzBbgEjWJLAsC2XTvtxcVut9vnKgsUzThSdjN1X/6h5+7VRXO9Lm+Jx+f0OL1OT4XzieKV4ZsmB1N7Pp+Zdjwt62ji 6M25xfZeGx7LnL1AN8KjG+XLXTw3q+aKpMactECXjIb09Mac7M brcgqshoEbEoc0Z8wp77L2qlGrkzzreny4YmC0YhCUDwLvyN0V I0uW9b90TWZKjdlcm5RWl9qlPq1LXWKXeoM5bIyPpJjrUjMaU9 KakpNr4zM3pGfVDsjdcHlWzaW69d10K7pkr0yb/UKvT452FywZWCIQ85H2vk+8P+xqf7/c5cNyVo7Kre2f6U/PbMrqsfHWLo+64q6q7G8r7rbh2oxwl6yWnmn1QzPqR6Y2Dkz3X 5tdZE0YEYofWNtjkWX4iqk59y3SXTc/x/dAZrB3uj85rTE9OZBsCptNTcmmsDEpaEoJmDPCqVlN6amB5NRg SkogOTmQnBJMSfYnpQSS/z/23jM6ruPK9z2pTuwINIDOCTnnnEkQBMEcQRCMYs4JGeiIxEwEI nX3Cd0NJokSlWVFZgVbtmWlsXRtyZIseySNJVtZJLrP+wBKlq/v9dz34c3orXVr1erVdVYBXV/qd3bt2vu/mQBDBxgmKJl5IgtIpQEZE5BSfob2K2h/FBVQx3hLZev2S+LvU6ivgoQzyn27I7k8aUApDaojPVURWw+j5n tR2UuI5nHZyn7V2CxJQKFgCUWAoKdoaUCm4CkJj1NTFBVgIoMR kVNKQqDIICELUuR5qWKiXNJgxywXMMVzaJIQuXe/arKYCURSQZoJElSQxM/i9BSQBhhJUMZMybApMk7QLauPaoWla02yEodRJSiZgIL2y6VnK dkUKgsSjJ+mggTKzSbPXSPPvy055wKciZoipUEZE8SZICL1U5J z0ZJ7I8iAXMJrIidyo5t3IkUOKLctaveumIlSeSBCEpTEeOqo5 f1I1kDamo51ba19R3v6Xfauzu5rV/8vBf5ftn+Rhv09BabFUEgUxZc//nTilT88/vs/fzE9HRKn74i3xdvhO9+JIVG88vwz7a0tToejz9byUPeav/YWfdlb+DPHuoGuVqfD6XD0Oxz9TkeP2+G2jU6UbPRAyocx7N9g 63npgZ2yiWJ571y0cnuEbiTKdAqbtVp1pIKaiMY8AHgxkouSDi 5DZ5+EqEtYHqtxbqo7EXfpSOLXRwpD7lTxWMZvT+a1HytIPV1E D6ZDQyZ8JCZ6Uh8xHIkPUdg4IMdgZBSCPYDwyjFOiXMExUYrTl RiDfdA2W3ogh2143NtT8f//F3T9DcqMSwTRdkfvzTxv1i04OQ9Gc6NWeyK1AsV2eczii/mVD9cmXmuqIg/nLn9fvPcCxX946nsYqkngg4QgENRHwazgPRG606sks8egfQjsm 3thuPrqRW7oOKDClsDPaGmx3FqnMA9CMbDiB+D/CjCYZgXpgSc8pOoF8FZgHlRzIuiPgzz4YAlEC9AfTjsBYgPBz4 CeADqxWGOxHwE4QXoJArzGPApNb1LlXNPQQZBMr9He6qOmpACD 44LJOGJjjw6R7LCBlkniKIT0fbVFBsNBBR4EODDUR8gPID2ILg XQnkUYVEJT0kFCmURwAPSJ0G9lNQbHXG0nF63A0sbQ5KGotp3U 2NWyIcjHIF4MZhFIQGGOQj4AOJDYRaFeFg3GbFwXmQzIlljluR 0RDM+gHAwzEKID8K8GD4hRyekCA/DXB5+4WHi4uuk3wWPW2EWRTkUZjGUZYCHwngGD0rhSQkxoY0+M Q+UNytU98Zoz+I5+6J76mifAmEx2UgFWNQBpToTV7U3Hj7k6ne 67R3tbR1Xr81QIPx/KfB/2v6FJMOPKDAtiuLLH3/qfe39C7/53UdffnVHDH8jfh2+PR36ThRF8YXnn3K0tjudvW5ny2OOZZ/3pPxHf+FU1z1Ot93R0+129PbYBxxuu8Pd1T3EFW8IQoZzUOwly UabcnKWYjzR1L4CztxWPPeppQ0/xzM36ZyLCV80FkQBr1KOl8rXbMdVQSX99Ozcnstty//jSLrYbxZ7Yj93zeZ3biqbt0deayPnd4IF9yS37tnx3IkDr7t3v 7F/+fXF5snYbDZr80trYwUT4cWRAIELSsVIAb3hMKQ8kpvr4tklf/nULIoRokiJovRPHyQf45ZU7dmfc88gk9xGpe2OP7DL2jt39tn6 jddXb7iyJnuw3rh9pzz9NKkdTt9iLxGWRXkiZX6C5CBaQAkfRv nkquF82aoWKLlPsadFN7IRrNkLVbTInY0SQUf5MClHUQKOsBDq J1A/BfwMygGMB0SARDkMD+CYgGJ+FPNjOI/jAolxOO6nEBYQfgqwOCmQJAcwjgBTMiwIEwEYY3HSp4gay1ft3 wHltkg2H4gay2Y8KOGhAAswD4jwWaO6GqG8Vmn9Qd3oLJSncD8 D/BKYJ0CAxDmS4QjAokiAQDicYhmao2EWYAEa89GUX0b6KJrXq8c Wypd3IIXtEbYmRjBDPIH6ZTgnwQQKDgBEwAiBATzA/DgUQLQe5cL6iMMI3WSR5HbHSAUaFjDETyA8jvsxegpgPAN7rST fQp99jTx/FfUuBZwM8CjgSCAQ+JQE40kkgBBnUYyVSXyxyv56qGhPQdETG5 veotMOKduWKdh4wqeMGplFLjgAp9jT1zgaW5tdR1wuZ3dHV/eVG7dEURR/2nkE4e+FZUI/HL1/rLf393l/H/59svgPmdf/oof+N/1/LdIS+kcxz7//ajg8LYZmEgd//dFn3lc/OPvaux9+/VVYDE2Hvw2H7taiePHGNVubvcN93O5ofsq+8LO+3D8PlF6yNzo ctg73UYe73+l0ulzdDrereyhYtCEIGcfw6qPRx1YxPgszodO75 +CV6yJTRrTpXqJ6rfb4HNJnQgIU5YvSupfiWVvzEg4/cHDfn9yzRXem2Bv7VV/l1KY9Ven9pGoCUgbRmAdhla945eWjF/+w69TPGo+zGy4cbX7FaX/HZnvFJnwWXPXMUvI0hLGElNdHH62KmDd3cGjN538uFEWtKCLiN PSn90oc9l5r3CUIeYZUvGLJfMWc+2R03phq1T3rnrYPvDOw/6m17tftrS/zlsZDmpTBtLJHI+oOZIyuiOa0Up6hWJziARAIxC9TTGQxa3dAq d0Ruw4bB+8hGvdAlQek7pU4r0IFGPMDzI9hHAY4GmNJwDOoD8d 5kgoyKAeAH6B+FA2gmIAAHsc4gLGA8BMoiwIBRzkA/CRgCcxHYlMM4kcJP4n5GNwr1XnzE13d8nlxJUYQAAAgAElEQVT HjW1t1vMlMVMGI2cxcFrNlN40lZVybL+i7pRp41HzRA3CIoAnc U6KChTqp1CewgUC41DMjyM8QQg0LTDAC7CZewqBxAQcE6iIM/nSFfvg/FZ5dxPts6Achgo4xjOAB7gAUI4APIWxOMYTkB/VeiMX1EceRiVNFianM0bC0QgPUD+J+HGYpXCBxniAepNofy9z9 m1q6ll0ohrzwcAPEwJNsDQuULBPivESOkDiLEL6lfRIGbJ4XUR 8vyXrNF2+NaanjubUKCdRDVcz9Qfh5O6kNZ0NLQfdR9xOl6O10 3b12i1RFEPhO9P/pIP+X9b+c1vgHyS6/vHJD3PC/9R+/PyHWd8LSczc3E9/r1R5V8f2x99nhv/iv4W/1w77n9YQuqsWK/7q4888r/7x7Ot/+OPXX30/Xfx2Jpvo5lVba4vDYR/s3vqWa+5tZ/b7PTXB9g1um9tt7++3Ox12l93Za3e4HENc6XoWUh+n5thUp6qB hwaTeOQZi+JQPVSxDyppjWhulI0ZUR8BOIL0xkT0NOCJu1akbJ o+s1o8pvnrsbRLtuXVtQcJs5Oc3aPY3knv2YJv3JrXcnLspTdr OlhI3wOpTpBF283dNdUPL9j/SsvuW7uSPHHkBInzgGBVkiNFGbtzbt/eIIq0+FXq0w9sXjq/Ly7uGgS9CUGfQuin0ohPElM/0BlvKlPPRm3YlcPO2/j8xr03tu96Yd/sC/dot66X5ndrykZVTbuTfbVyTsL4GZxlMB8KcyjCRSmHK+lVB6GE HuXWFv3xDdSqnVDxLol9GeGLRHkY4hCYhzEegT0o5IMRDsA+DB dIMkDBPhRlAcoCjAcIi2IchrIo5kMAj8IeGPEggCMwL456cITH IQ6FPAg6CeBJEozL0gJL87o8xnmBjJbjaf4lSWeLqu+vqr5UlH W+KNPbkNU+pKkI5G71l57bRvsUwAOwCYCxAOYwiAUohyE+COVQ 2IcBgWT8NPDAKIsCHkVYBOUxlAURo7mS5Xuh7MPy7nWM14r5UM gLIT6A+RDgg1EPirEE4sERloB4RDupWjQvshmWrDNJ89tjGJaE WBLiaMQPIxyKsATMIZBXRwXbiAtvkOeuIOOzEQ8DcQD2wwiLwi wO84AQSBkvBxM4yhI0GyvtXARXbYfK1yoOrpSfycR4GczhEUMl ZF07lOyKbWxZ2bzPNeC2u+zNbV3XrtwURTEUvvN3kfz/8vafUODu1gqF7ty5Mz09/a8n//Mf/uPo+7f1P77wf6w2HZ6R7v67+PSM4Mzfd/7M5/T09PT034V9/2GpM5EBovjrT/46+eqH5954/0/ffCOKojh9W7wduh0Ki6J444Wb7Z0d3S7XhGP3n3rmiK6sVxzzh zr29riPDDjsR512u6uvs/dYd0+vfVAoXctBmlPUPLd8pAY/K0d5lGalEZ5E6fEy5WCtzJtIB0mMAxIukvJGKUcrZA0terX9aM PwZPOBLbva4iuPQ+aT+LJT2hMNUf40qc+knyzY/ppzxdP3mLtWUmV9upyL6qoOyY5Ssj9+4XObtrywIeIELvHLMY4 BUzIwnqraU9nn3ffYw4MrF4wx2DMQ9BkEiRJGpPCvGeorZfSfM gs/i9ReoVIHUhy7Y46kFFwsXX29aeFTq0zDWYaBQt3BioiNedlDS7 LOlyu9ERJeDnwoE4QJHqUC0aozFZKGQ1BSj2rHYevwRknDbqik RWlfKxP0OIfiARIP4BgHE34SC2JoEAA/QfgpQqAxH0UKUpyjyACD8iThJ0k/gQsA9wOERaggjXMEwzM0S+NeoBAUuqBazUUqJpV6b2LmsS10bg 8aNSCbs9/sXpzhrdp2ff2WK2tL2Xr9gTVIphOovJKsztyR3QpPIuWTSXiaF Agg4AhPkAES5zHSTwKBIPwMxRO4Fyb9BCkA0k9iPIb7KdVEgWT 1Aai4Q9bVFMEn4D4UFwDOUwQPKAEAHyD9DOAI3E9DfkznVS2pV 7WjsvUmSUGHWslLMI7BORkZALQfowUc51DgTaD9bvLsm/T5p4CnnGZJQiCpAEUKJBGkMD9OCQjDo8CH4X4S+CSRvlT5yRLJ yQKlNxGwDBEgKQ5oRsrouTYo5VhSU1dj+6Geo71Ot7O9y3H9e1 sg/FP2C4RC4Tt37oRC019//c1nn3326aef/uUvn37yyX98+ulnf/3r5198+fXnX3z5xRdfff31t7dvT9+5E7p9+/bMFv3/dN23b9/+Zz3v75F1WxTFX3706eRrH0699t6fvv42HBZD4dvh6dBMyYkbN 2+1dXR0u11jtm3vu2d/25P7knvJya69NpfL6eh2Ou3dTpfDbbf1OuyDbEWjD4o+Tc7toU/PgnkGZwHloUgfoHiK4OWIByN4DPgInJWgAiHjYrQD1UzjenrOj pjGY5GLL0GGcaZyQHNsI+OxkgFaOiKrmCo/+G927UBtzO6tmkXHFGVuybw1srZC2YjZJKRt/u3uWM5MjeC0lyZZkvKa9H2NRHYXSjyDQJ+hkEgBEQO3AfktDr6 jkS+k4KO0jOnkyo/j11wqGNmfe39pyv0pWfdnZ92fk3Z/Qur98bmXsoovZpfeX2LlzZJxKc1HoSyNcijqA4BVRg2XSFYdgJ Jcip17DUOrycbtUGmr3L6B8ekBCxAWRzkU4zCCJzAehXmA8AQu MAQvBZM04ZUCL4XzFOJFMRYHLI5wABFwxA+wIIEIKPAjhIBj41 T2k0WLX14y67nyuS/WZkwVZ7bt0WacSym8hhdum3P2QNsf7S2vbD9wa0/vO5MVR3oh87H43GfkuQcTjmyI4LNRL4WxGMrhKIdjPCAEgLMo4 HGUw0mBpnmC8MIYhwIfTAg4ysEYT0SM5UpW7oMLWqSdTRKPBfO iQAAoS6AsAmaMCJ4kWEAIBBRAdF7lonplG5A0Wenc7mgpJ0UFA AQAOApMSnEfhrIQ7imV+x/Ep97CLhxFfXGUlwY+AHgS89GIgMEsSnMRTCACDiLoFIJ5ScIjx YM0HqRRH4lwEMpDwEdGDVWSdc1Qcn/C6u5VLQfcA26bw9baYbt29ZYoitPhO/99icX/kgLfb6rpcFgMTYcv3fvAls3bN27YvGHdpo3rN92zaevWLTu2b9 u1bevOXbv27d9/qLm5taWlraO9u6vL4XT29vQMDAwcO3r0+MmTp4eGRkZGxkbPTE 5Osizr57mA3z8VDJ4/f+7eey/ef+/F+++794EHHnj4oQcffeihRx555LHHHnviiSeefOrJZ5995urVK 9evXbt+48bNGzduPv/8C7/4xcsffvihKP7dIvjRasVQOBwOfSuK4Zf//dOJ1z8IvvHOB19+HRLFO3dFB8OiKD5/80Zbe4fb1n6vo+nTnpIv3flP96wdsB12OLt7HF0up9Pmcrh6Oh 093e5Bb/VaFoo5StR0R56aQ3rluIfEvAQqoBiPAB8NJiWEF8cFFPUDRCBI lpZ6FfLJWMNwg3ZbH5Q4hBaeUPdui+SSFGOZCvt82cblc0+eWu u5rJxlQ1Ja5XM7VTv2kW11kWdSJeMSyaBk5ctNmZcL0FGcZAHm wyXjVqNzB5l3L8R8TNEiCb6h0G9R9BsE/xbCv8XAdzj6LUX/hVa/xeReTLB1xHjSZH6pbCIickIdLUQqWGm0R6c7o47yRih4RslLaU 4CcwQWIICXJMcjYgYrqFUdUOpRxe5D6qEVZNMWqOiQomsD7dVj PArzKMICzANIFkd5COYx2EcAQUIE5AhLIyyNcAQqEDCLkhxJ+H CMw9AADgcwxA+ATyWZSKWPZ2snyhe+vCluKik2oFvyQv2s4Ors 3ccV8Q9IDefoeZuSxmprHp27/cV7tt3Yt/iBezKcW9HcNkJ/RFG+J2tyB8MlQT4UESBEwBA/jvhRjEcAi+EcQHwYGaAkQQp4YZxFcD+KBQDGwRgLZKM5ksYDcG 6zvGs9M2nFOYBwCMaRGIdhLApzGM4RhA9H/TjOoppJ2ZxVyt1Sck2sNNupxwMyyA+jAoIKOOwlgI9EfAD1zaG nbuLn3wAX9sO8BuNkMEcifhTlCcATuI9ifBFUIAI6i0JTCMGSt FeJ8FIQIFAfhvkJzE+hHnnU0FyqvhlKc8Sv6Vh5eJ+912Z3dre 1d127ekMUxZA4/d8UMSSK/zsK/OjtGpo5CPz7nz/ZsW13eVl1aXFFUUFpTlZeXm5RXm5RUmJ6Wmp2RnpuRnpOSkpac nJKTnZBfl5xVmZeelp2WlpmWlpGWlpGenpmRnp2elpOZkZeRnp OWmpWZkZuelpORnpuTnZBVlZuZmZObk5Bfn5RQX5xQUFJQUFxY WFJaUlVZfnsivJZFRWzamrq5sypmzu3vrZ23sGDhz766N/vIur7c8oMBabDohj+ThTDv/roM8/rf/C/+c7vv/h6WgzfDofuhG9Ph2+LovjCzStdHV3HO1uuOld/15P3V3f+ue4ml7PT3ePodXS53W5bT4+zr8fZ0+887StbNwYZjp Pz+lWn5kuESJhF0CCBBQAeQOkAhXspJijBBBRMUWCKBEEE95MK X5KufRuafgjJcagOuQwjqy1H50dtagYpE5BsbMm+383a+DIRfS J7Fhs1b49pYFsEVyrlNLIxhXI4suH1lZVXK8kxmuZxpV+nPbo4 cvFpSHWVkP2FkH2HEl8yktsY8TdC8jcU/xtN3aGJ2zj4Cy35EIp6OrJhRH1iSaTPqBo1lDxUv+jF9fkP1dZ ebUw5VzLr1uKCn82OnoyTsno4wIBzFMlRcq86ZriMXHMYyuiL3 t1hHNpErt4DF7WobJtlXBzKIViAxP0S4MMlAkUJGMFSBEvPhBK hAgBTOOLHsCkC9gPST5A8gQsk5qdRPyXlo6NPFkftuQcqWSddt nfD5XMND9tq/A1rH7BVd4+Yah605L2hSn3cetARy8+K45PnPTV37tML04J5ycN z05pdEUUD8ev68s9vwQQVGsRAAMP8OBbEkSAG/ATGYpRAAB4QAZL04ziLMH4C86P4ORJwCMmTyskCuvEgUtgm71q v4JIAi+J+gPMMxgEyQGECTgRojAOkH5dwRIRHUtVpaDJKdiukt U0qJR8B+wmKZzCOBjxNcTLEwyDcfPLcdfLcq8TZgzCnAQIFeIq conAOSHia9jE0L6F5Gh/FJJM0fgalORqbJKhJkvGgOIcRAYrgpOrhuVR9G5TuTmzqamw76 D7idLq7O7tsN6/fEH+atsCPbewZZY7XX/+3uXUL8vNL8nOLMtKyE+NTYq2JcbFJJmO8QW816K1GQ6zBYNZo dDqtSac1qWP06hi9TmfU6fQ6nUGnM+h0Rp3WqNebjEaL0WAx6M 06ndGgNxsNZq1Wr1ZrdTq9Xm806K0GvUWrNmo1RpMxzmyKM5vi 42KTM9JyCgvKysuqKytm19TUPvnkz8R/9BH+/UQQvhMKh/90O3T2rfe9r/3+hff+HBLD0+FQaHr6Tmgmj+B6a3vn0a7Dz9mXf92X/1FfKd+9rtvZ3e209zocDnuPzdlvd/V3u47bBj2lG89AxpNgzhH5yTqcZVAeRXmA+ymYQyEOxngUYwHp o8lxErA0xkkjxxPU9nWgsBNJcMi2tsccP8is3Y1nn0B1DyOyJ2 gTV7f7qbkHn8BTbFF5/ao6V8yWg8rW+YrBEtmZnKiTmQ239uTeu4wazCTH01VDy2TreqD onyHQJwwZIplvYewrFHyH4t+g4K8A+yuFfM3A39HIbYB+BREfQ MYnVMuGtLsOZDodGy/cn93amtfdsoKbqD1+dAPnW895klr2RHaso4/MZSbjKQ5nPCrVUAnVuBNK6Yze3mo6uZ1c1QwVtsodq6hANCZgC EdCLILwCMYB4CMJj5SckMhYmYSliEmUYjHch+E+AnhIwGGAB6i PQjgGYWnZmEHdVgdyt8cWCNEJflPO01VrXk+ad8la9YDM+rRU/W9JmV+YCl+Ibz+acH6B5VxGQiDeFLCYLhhSzxcVnGzVLToRv2U gSahH/RjKY8BD4iyO+CCUxwEHUA+MsRjCYmSQov0k7kNxFkN5BBYwlIU BC2SjOVTDPjivWdqxlp60Yl4E5RCUJVEWYByGcAAWcJhDSAFB/IiUk5TZTA0W+WGMqatjor0KwNOkhwAsBQQcCAjCo4ivij5/nTn7FhVshj0azEdhLI1zJJgkKC9F+AjglWn85gXP1m/+5fraZ2vkw/LsR9KW/Wq+3hdBjiE4iwGWiBisJOoOQynOuNXtq1v3OwccNkdnW3vn9av XxZ+8LXCXAi/+4lcV1XNy84pzswvTkjMtxlirJSEuNjnWmhRrTbJaEi3mhKTEN JPJGqXSxETrYqJ1GrVBq9Gr1Vqt9gcQ3B0aDEadzqDRaLVanVq tjYnRqNVatVobFRWjjtFbzPFWS4LZFG8yxpuMCXGxKWmp2SnJG QX5pVUVNRXls4sKS86ePSv+4Pr/Yc3hUHj6zu1w+E5Y/Gw6dO9b7068+u6N9z+eFsNiaFqcDs/Usbvx/K3Wzq6jXYeuuZZ90V/4QX/NZPeWdper3eF0251uZ5/d2e90DXQ5BjpPnilZfwYynsFq+5QnK6S8jPTFKMbz5COF5EQCE VBBAQibggFPkF6cYCmZz2TsbyAq3HDsaeVKR+zgTlVrI5nXpkl 8ClVflNWNmloPz5o8cM/jJwxtTcodO1Ur++X5NnleB1V/Epl/LLreuWv0+di1o2j9MbDgFD3nEmK+KZH8mUL/RlJfkfR3BHJbCsIA+RanbqP4dzg5jYNpDL5DoGEU+pbAPialv4 FVTyvTry3b/kn1gpvJhRerl72cX3artu7F7Qf+3ZDzOGK8hGaPRe3fEeNNo9l o1Ugp1XAISnaqtx22nt5INuyFijplzkZpUC9jNQqfScrKAYdhA QkkkGiARnmc9DMUL8UnKIlXSk1SUh9NT+C4QOACTnIY6SchHyF hrRG2udSsexpaXixdchWKESDDOSiOh3RBWHVFEfO7lNRPEoufT W61JU/VxvnT4th4Cx9vntInB3Lyju+PqTuavOlY0mQtNolTEww9RhAjC JjAIS9GB2iCxXEBx3iMDBBMgCJ8GC0QmB/DggTGwiRPyCdyqdX74IIWeed6uS8RsCgQUCAwgCdwAYdZFPOTK IcRUwAKQHKOntNp3qCTHsYkcxbINKwCeCmaxYggiQRx/BwB8wossJk6+7Lk3BsEvw9h1cBPoAIO+1HMj+NBCuYBMc6knEt v/n37igdXdbzWteyR5Vt+uXXDz9cvfK6WHiIYjgQsFj1aSc07hKS 4ktfaGlr2u484na7uto67FPip2wIzi7v+/IsFJRXZuUV5+SVJCWk6tcFoiE1NyUxLzU5NyUpJzkxJzsxIzzH oLapItTpGHxOti47SqWO0M9tbo7m722Ni1DPDmScajVaj0arVG rVao1ZrVapojVqfmpIZH5eSmJCWmJCeEJ+RlpqXnVUUH5uak11 UWVFTXlZdWlL+4IMPijNhl6G7xRxmLgimw3emQ6FwWPzLdOi+t 9/xvPbetfc/mRbFkDh9R7xzW5wWRfHG87faOzpGu3e+3bfwu77819y1Qx3bbT 39A0dPOm1Ot7PP4XS7e3rt7l7XGV9Z0zikPUnM6Yw+URrttUQf r6MatkPlh+U7W9VnllNcInnWSAZ0dNAoE+LVp+fIVx2CDAOyhQ NRJ5bFsPmqvXXRhV2Nu97WL3ZF99RLJ8wG1rL+tabkcxnK4Txy zRrjrFPmoikkhoPoYF7pL7bs+pCK5DHpo5j0KVx5E5U+z0hfB+ AdUvIXUvoVBr5g6C8B+iVBfYlK/4CqXgPqF2jLs0zqI1jiJSr5USLpATQtAGUNJy4/v+jgVdOcUcMcIaqUzd3weOY9j+HZfsL0JKx8Fk1jow4fiPGWyY YqyFU2yHpUu/Vg7GAj2bADKu6Ism9Xj8yTH1yBLFugalusHS9V+ONIv5o5q8fP RcHBCPSsEhEIIkACjqD9DMECTKAQjgQ8TEwhkICQgciI4cTolt rYHTvSDnYYm3crD69VdWxRHtivvudY7OLHMireTMi9nH2gLWVy Voo/Z8mz8xc/vSgrUJox0pCyuz+i8HTS+uMVUztkZ4yJl9KLnyzOfCAr5cF0mp VQLAl8KOHHcQGQfkLqp0gPSnEEyt+lAMEB5WQutXovXNSs6F6n 4BKBDwUCinEUxmO4gCMcwAQK86GUHyACKmXpyk7dOj3TjDAL6q QGjxT1EjQvwXw4LuB4gIImk+jAUeb87+izzyPji1FWggVQ2A+h UwgSJMBZCnAIMyFPCGS1f+Dqer3L8XLbAn7e1hf3NV69Z+ebO5 QjMoYlEB+iGq0k6w+hqe6Upu5VrfvcR11Ot629o+vGtZkTwe2f HAV+aOHw3fIbT125XlhamZtfkpWdnxCXrInRx8clV1XOqayoqS ifXVJcWVE+u7SkMi01KzpKq9eZjQarRm3QaPQz1r5Go9No9Bq1 XqPRa7UGjUb/Q9dqDVqtXqvVazS6qKiYKJUmOSk9P684L7coJ7uwIL8sP7c8P7 fCak7LSCsoL5tVUlJeVVV9/fp1URR/qDsYvlteOnT7bsEJ8eNQ6MJv3/G9+ocbH3xyRxRDoenb4vSMX+DGrZ+3tLVNdm14v6f6296cW47a EefByw8++sClyz6v4A9ODY2cbO1sOeP1Xbr28sItXtrasSd4s4 zfFO2okC7bA2uPE4r7gOG8aum4clcrs3uzbO8Gev8G+d7DsiUn oYQjRHWHpn8ZzkcCQRLZU6BasTFp/Qld81rFmBHnIHQYK32qcNUrC6MHDcz+Kqh2HV59WFnTal0+sI3/ZW7rIFi8Q7rUrlzoVix1ypZ3RSwawxOfJpTvyaRfY8iXCPY5wL/AZK9L8u+LWHlKuu5A1OH1kb3zZUcrmYFZdN9c6cBCxZGFkp45p LOS7q2m3eVSdwnRUwM5qiNOLDHa95KzhyHteSL7hK59a9Tp5fj KTsjaF7V9j/70SmL1Lih/j75zp6FrM5x3AKhPSNMnjE2nInbtkO5rku1tYg4uUp6olnKxCI +hAQjhUJQDMAcQHwkmJcQEifkQJIBhQQQ/AxlPJlSyq3M8dZJTRtprJLyxpNcaM1aU3NEnSbnPkHaZqV6TNF hX8/iinS817bl5z6qHdyQ174OtPRGJ58mCQxkDWzLO1tTfWjz7sdnL ri9d+qtFxosGdBQBLIb6MdRPkAGaFAjChwIvCvtgmMdQHww8QD 6WSzfsh3MOy7vWUuMmzDeTSogjLIJxKMITEAtQH4p5IIiDZRxT 1qVbbWIOAmntPHnMuAL2UNgZGTmsoIdxYgyCxmKZQD958Q3iwm PIWD4+BrBRCTpBEj4aCBTqRwGL4yMRyedLd75+aN1zq5tf3Z50 wjL/4YWtv7dvfW2rfJAB4zDK4dKhCqyuGUruiWtoX9W61zngtDu7W9 s6r1/9/w8FHn3i6bzCspy84uzsgsT4FL3WlJaaNa9uUXVV3ayq+oryObO q59bMrquoqNJqjEaD1WyKM5vizOZYo9FsMJhMJovZFGs2xhkNs Qa9xaC3moyxRoPVoLcYjVaj0Ww0WgwGs1ZjVMfoU1Myqypr5tT Mm1VdN7d28ZzZCxfObygtnpOZXlBSXFVWWlVbW/fLX/5S/LHNcrceQWhanJ5JKfoyFHry3Q89r//hsXf+9Pmd6RkBkjviHVEUrz//UltX+2TXuvfd5d/0ZN90Lpjs67x65cajDz187vy5Rx572Ocd7exocQ0cv/fZX6w/LGTP7b3vrY/3Xxkz7tkIJdgtSQ8urP9thOxxQvEsqnsA1T6CRT0DdM8A7RUo8 jG88ExU1yYZF48IBBOQKIajrafLCyc2ms+U0BMRuI+hJpQRQ9G rf96w4ze7cr3l5qMVlt5Fdexe+yv8kqdbqKFUhk1RerOiJ/NU3iL5eK7mzPzoQy444zIue59CvpSRt1Hqd0zefZr25mjPbAkX xwSjwDkKPQvIsxKKtahGZyuPzYocL6RYKyGo6aAUCCgRkBG8RB GQR/Hxke51WNVpKGpcXu+29LdKGt1Qslu1+4BhZD21dh9UulfbvS+q dSNRtGvR+jct8Vdg5UXUdB9kOAtrg4jpTMSidsvRVYzHRAQpwK OkgMICAQdxkiOUHqncy+AcCfyMfDJ61sU5Pb89uvpnaxNYi2yc ZngpykGqQHRi3w5J3lhSyeN40dqaqT3Nvx9o/nXr/udbXG9PVvcdQw0n0kpekBd1ptgaKy4vnn91ceJIfPX9FYuen6c VophJgvABIkBiAkEGJCRPEz7A8DguoHiQIFiM5mjVeBG96hCc3 xXRvV7is2A+hAgQgGeAAIgAjgkEIpAIj+F+APmBjJNWdBvWmqW tmGz+XIVmNCb+kcSFL9ZXPzY3lUsreSSZGTYyvJu+8A4VeEYxN nvOc6WLXlqoF8yycQXjw6kpBAkCckyacja94eUm1Sndol+snnd 16bIrDR1/7Kh4sEA6iDIcDgRSNVZLzG+D03qTmrob2w66j7jsru72Lvv1az fFmRPBfxsE/g8oMOOEf+zxp7LzitMycjMycpMT03QaY0J8yuxZ9aXFNWUlc8t La6sqa2fPmltaWm7Qm3Va04w5YDZbZyhgNlut1jiLJd5kijUYL Caj1WKOMxqtJqPVaLAaDVaD3mrQWXRa04wpkZWZX1ZaXVRYWZh flZ9bWVFWXzNrcVZGcXFRVXFRxcIFi99++y3xR7FJ39cjmKlOF ApPh0RRfOXTzyffeC/w+u/e/+KrsCjeEcU74rQoitdvvtTS0erpXvNhT9E3/TlXelaM9nRffeaWZ2zCZu986qkn7uPZgc6uU8Nnzj11dbvt3Pr mJ5sDz/W9+VCWsxWK643WP5CX/Sta9hgR+xiRdT9heQFD/0xDX6HQbyH9VPSuvQpPNjQlgwKIhCMjR2JKH6jreq+35GKpaiS aGlNSnAw7wyhHDAuurWr9/UHbu82t/+NQ8zuHKx+voJKVB+oAACAASURBVEcogiUIgcB5HPcDPIAjPMA 5WdR4ZcTOfjT+Cop/SFCfQfIXIhYNa0/PI/xSLIjgfhSfwlEOZzyq6GOzmSW7oIzN1OqlkaeqqVG1lMVxAQdB jOQQ+Rip9EoUk0lRbe1wwgSWfdLccUTZeBpKPBqxs9k4tJ5q2g tVtkXZd0b2zJevWZG//UT8spP0bBc57ySYPSKvuZfIuBexDqob7NrTi8hAJOaHSB5gPA0 HUcwPkxxF+hjcgyk8kUue3+D4w4mOX3XZ37S3/P5Qst8qGSUBjwOfIsnboFy+G83YoNvcYDhWHD9Zsv7W/qYbOzLZsoTudcqiIVh5Sl69r8Sz3uRJnHNt7pIbK3b+bt/sK9VRkzLJOCA8MMHjmJ8g/YzEz5AeQPoIjENBkCQ4jOLIiIl8avV+uKhd0b1GxpoBiwCeAJw EFwjcjyEchvAEzALAYZCAMZykrNvQZJK2otIFcxW6U6pFP69vf Xffrjf2LnpmwbY31iiOpks8pxnh/cjx6wuedW779frZT1YlPBAr8RK0F6P9GCJgpJdQTMo0go44o2Q 8uhg+wSKkZd2XrTiFU+MwJQBcoCNH5pD1rUiKM2V155qWAz0DL ofb3trluHb9eVEUp8U74k/NO/hDC4fC03emRVF88OHHM3MKMzLzMtJysjNy9Wp9QkLqrKp5RQXV RQWzC/Or8vPKKspnlZSU6rRGvc48YwuYjBaTyWIyWSyWWKs1zmqNs1hi TSaL2WyxWme+WI1Gs9FgMRoser1ZqzFER+kMemt2Vn5ebnFuTn FebmlebkVJUU3NrEUZ6YUlRZUF+SWNjU3/8ckn4o+8g3dtgXB4OhyaDk/PVH78zcefTrz2Lv/mH97/6lsxJIZDM6XHxVu3Xups2f+Aa92nPcWf9eZd7F5+xGUbneA7u+ ytXZ0Tk6MXBW64/+ixoSHPg48s3ulLq70QWddZPXUoY2ITvawZihmEKA5OHY7ZbVP 37Ijec0SR/4xS/T9iEq9bN/dEncoGvAzhJagPRHgVG3+9pfvtnq5XbX3v9jRcb5SMyBAegqdg dALHT2HJvsQ5D8ypuL9I49VBowBlAe4DuAfDWAQJQAgHoRM4No rRw3Jr/1pFpQDhv4agP0PUNaa2P/J4NWAJ4IdwAcE4AvOREo9Z2dyAxDqTsp9QlHdJmpdIxlKYcZz2 oDAvhzgpLUilQRL3yKP7GrEiG5rdY+k8LVt+Eoo/Grmt2XhqDbV6B1R0KNK2Jup0RlxfbeGpzWkjDYrT+eREOuXLkI yURtl2Y2UuKLFPtvWgzFuOcgrCSxIcTrIYzgPUT6MsRU7C0ZMR G17bVXL/XPlAVOxk6vrXtuQ+mAOGAcJRiE8adzG/dGpF7sii7GC59aI1/v6kwsvlpfeXF50rLB/an7j6YnQll91uL7u0WDrBKFiZLqDX83p9UC3xkPgkivhgiEdgH iUEigzQMzFLCAsQP4mwGOBAxFgWs2YHXHRI3tlEj5sAi8EsirA k6gOoD4F9CMLhiBfFeAwWMAkvKbMZ1hgkrahsfq1CfVy+/OU1be/Zss7nFz5atu1/7I04uVjKP0gIv855/Ildbw6vubEuJZhtumzEeAgVYIQFmJdkJmWGKZNe0MUHzRbWZGb NZt4S64uLZc2RvkjCSyE+RjE4B5/biiY5k1e1NRze5x5wOdz25o7uq1dvijMlGH+yFAiFQzN+9Xvvu 5yZWZCdVZiVmVdWUqHXGpKT0qur5uTmFGek5SclZqWm5GRm5Ka lZum0JoPeYtBbTEar8S4FzEaj2WSyWK1xcXEJZrN1Zv8bDKYZS 0GvN+r1Rp3OoNXqo1QajdqQlpqVlpqVnZWflZmfk11UVFg5e1Z 9elpuWWl1QUHxhvUbPv/b5+L/lFkghqdF8XY4HA59N+PSfOvTv/Gvv+t7/f1/+/RzMSyGQ7dn1MhuvvBCX/O2m/aG79ylH/WWBewbnU5nu93uch/pdR+xd7fautoGHH3djt7245NFqz2Q6gRRY5Mfq5Z7kpUnqyL3N so2NapalxhGqqTDCbn87uJ9/uSyhwoa7q/3HdX5c2AfSk4RwCOJCyZvfWVtoZCp7VfVnK3c+5ut+skI2o+hf pyeklJ+Ep/EwRkEG4VoHqIEiAwQJC+jfTEywUKyepXfYPSYEzhTnGDKGVyV1 sDHxP7aaPmj1vp0YtNQ0timGD5XKZgJPoIMygGLK4Lx0q4loKh 57saXkjecljnmULyJDspxLwUFIqGADA9iYAoBQlTM0QasrA0U9 ce2j8tXnoKS3KodLdaR7dTK/XBRa4xtteKULmM8r+11Z56QS55EJQElIUgoXh7hy4ju3IUVuOE sd1Rbq3wkVylEABaQPEVN0RJ/tJpLk58xagRD/UtzYs/p0DMAH5HPvTk/9b4sfEKK+QlSAHKOMZ03JF+IjQ7q1ffGxgSjtYLUyluzB9eblp 4ic8bMO4+kTqzQBOMQHwb5IUSAAAfhLIRxMBnAYT8KnyMQHpNw NMUzEE9gUyQsEFiQgTmCFCJ0J+vohYegYltk8261Jwf3YugUig QwjCdxnsQ4mPSTGAvAFI5xmJRlyuzGtQZZKyybX6fQjUYVPVNX 9VQdchQyTMWveuOezIfbJMFb2NSvEh4eypyqX/5CQ8NrK+MuGmkWBzxGClIwTqZOpa7/5cb1P1+78/m1O69u3HZr68ab6zc/v2H3b7ZXPV4jGZNhLBXpmUss6kCze5PWdTS07es57na47O3ddy OIp8Xpn64GcehuuJ0YnLovM6MwJ7skO6ugtmaeQW9JS8murqrN zipISsxISszIyy1OSc5KTcmcQcDMicBkijWZrCajxWiymM3W2N h4qzXuB0+B0WieIcIMCGYchNFRWo3akJ6WnZKckZGek5qSmZVZ mJdbVl1Vl5VZUF5anZ9ftGnjpi+/+EL8p+TCaTF8JxwKTd8OTYfCYfHjUOji2x94Xnvv+rsfhkUxFL 4dEme8gzd7D2650b3ytqv4495Srnu93emwuVwuV6/L1etwdXa7bQ67y91jtw95S9YGIPUYMadPPlSL8nLAymmfhfIl0 JyJ9iml47qM4a2amm592rCiuCvlyGETVyGbsER40pkTuSnjS7f esi9+eFuJUF8XXLn+sd1Jp8pUp7OlgxnE6SR8NAk5k0COZ1Gju dKJdOlEvHwsNXKwOqJnGXVgKbNvcd741sO/7m15/XDb7+z2n18obfJkFT3V0XG7d+B2j/DRwYduxHe0UVtWybrnyEYyCE8EyckVw/mqLfsM8z2x20+rTi9AhEjET+JeiVSIlnPRSj6KFCSAU0e5V2JF NjS/19I2qlgxCMW7I7Y1609vxFfshXKb1a3rqh5eduDV9uGPPS2vH1 xyrU41EYmMwbgfxziJylsSte8AlDwA8k9o2reofBacwwHPSCeS Za1zsRX11IFlas+i2p9vSJjKIE/L6eGopS9uqHxipWTYKucNUj5GwhlkvFXJ62ifhfEl0RMmmUerG pxLrXRD6qNETWvMwEqZJxlwcSSXKBFMMk4jFdSkP4YSjNKADgg KOEgjApDylIxlCB8JAhQk0DAPgIBKPYnKfduh1B4owSnfsk19p pCeZFAeQziAsgTGAkxAMBYDLAbzKOJDpKykxG5aa5QfRiVz65Q xkzGET05PEBQLiEla6pUp/cup4E3ywpu07zAxqJaztEyQYaMSipfhPEaxFDEsq3pi9pwr9VE TGr1Pb5g0GCY1Fm+UdkhT/kj1rOvzyFEa81HyoVnE/E4krS9xTUdj2wHngNPhsrV22O5SIHwn/BOmQPjOdEgURSFwISUtLzOzKCenZN68JTqtOTkpo7qqNj0tJy4 2OTMjLye7MCkxvSC/1GKO1+ssRkPsXQehKc5ijo+1JsTHJ8bFJcxYATNHgx+4MGMX6A 1Gnc4wE26UmpI501OSM7OzioqLqirKa/NyS6oq5+TkFOzds+/bb74V/8kWCInhUGg6HLoTDoliSPxraPr+t96dePUPV977KCyKodCdmTu C6y/ccjZveca56vOBog96S3jbFqfD5XA6XA6Hw+HocrW19di7XAPtT nvnGSF/UwAynCFqeiJO1uM+BcoiuA8ieIDwNMyR1IQm/cRmdXFHWq6gKuiOt7UnjnUw9+xjarrJEqe1YdRx6e2NPQ/tOPK4k/vl1mNXdItP4pWOmCUDhbtGTStarNvc8oZ+UDNE1oyRNYNU9bCs epLKPyIv6KZzdlS3nhp44fzy88vnXFi49+nB7ccv7jj8i01b3i 0q+dW8pb+1DX5mKD0eXWiTla+Vb66LPJMNWCk1ZIzYsbJg40Xd wkFy9xIVm6DkVNEnKqjNi6imxbojtTI2Gvcx0T2L0WIbVuCydI zIlg5Cse6IHYe0Jxvpxn1Q9mFT59Ztb7U2vbQ93zdv8WNNze/bEgKZ6AiCChDMYRRrUI8ukK87DJl7ibJOVf8CkouQeKJUXYuIw t3GrAFJTkd0Q//8oQvVfT0VPZ3Fbe0Hzz9S3z9OLd8maTrArDlMr++gtzrozTZ5U 6u8qZne1Epv7FIu9KIJHrLEpXPsjzq6ljzUQNyzjW5qkzR0KBp bZY0tkvXt5MY9sj3Lo4+UyyaMwEdKeEzK4sQkCVgaYgHKoziHK kYL8ZU7NaVjOSvvw5Y1RZ4qpCakKAdgFkN8AONwhIMxFkO9KMy jiA+TstLiLkOTQdoKZHV1suhJGcQhEAfjAQxjEdiLQhP15NkXq fNvUEIzGFejLAR5IeBlMB+FBlCUw4gxScGDlVmXq+ERBeLFoUk I9sDkOAAnqZT7c4qvVRJncMKDRw7NIud1wsl9CQ0dq1sP9Bxx2 53dzW13I4inw9+JP7Wcwh9WE5oOTU+HRFFk+anElJzUzMLsnNL ly9cYDLFJSRnlZbMSE9LiYpPTUrNTkjMTE9IyM/LMpniD3moyxplN8RZzvNkUNxNlGB+XFBsbbzZZExOS09Mzk5JS LZZYiyXWYokzm61Go8VotOh1Ro3aoI7RpyRnpCRnJMSnJCWmp6 flFhVWVlbU5uQUzaquzcsr7O/rn6kv8k8UCM3IOYdDohgKfxWafvR37028+t6T7338VTj83V08i LdeeLHv8NYbXUu/6yn6c/8swb7D5XA7HbZ+l8Nlt7n7bO297i73cYfD3T3EFmyagMy9sgXO 6JMLGEGH8ATpJwlehvMqiV9OnyEK+XnxWzdB6SuYRTtmnRhN2u qBNDwReQ0C55MKn2gb+Civ9kJ0krdq8Y39jq+ikh8F0Zeqlrw9 b/lLDVteXXvw9+WLf4NKL5MRVyDJ05jyJUR6E5JcSC64rEs7VrnV s+/hwTwuQzNu0LnmbB5/bsn69yT0KxB0I8b47MGOD1MKRgtrLmkKbWDlUuVQJcOZNZ7U+W MHJy//cUf7q6blJ2L27zfbDiuWDaCxY5j1WOSGzerJXMqj1h5bhVS2gn KnuW1QtmwYSuyP2HHQfGYd1bgbKmpLdO1e/fMN2nEN6AWKY/S852ozzmVLhmi5n6EEmmFxaUCmHpqnXNIHxduk23fIJkoivFnK Q6sk+R3bdr6TnfcIox+vXfuLytXPVKx6Wps2vLP7t+WrHobUR6 CYsyD6USzqMqy9CGlYSDMBmS5Ahguo/jIUcQEvOmlwHDKe3C5b74TiT9EGHo06h+gegQyXIO0DiOYqFHk/ZLVJl68wDpVKWTkdxAg/wHiaEqQYizNTEtxLRI4XSjdtil9ydPbOC8ptW2LGyshJORGUoA KBcQQdpDEOpYIUymEgSGI8KfHKSm2mtXpJG8LMr5cZBDksAExQ EH45zjI4ZyGEdursbynhDclot3wih+Ij6bMRNC9lzkqxc6T8Qq LyaIXqwDK9fYt8qIbgtTCHEkGS4WTUuCz90eyS62UKLy3xAM1w DTmvE0kfSF7bvabtUP+xPofL3tntuH7thiiKofB3Ymj6f1Fs57 +k/afewdD0dFgUxQnWn5iam5aWn5db0rRuk8kSn5SYXlJcORPekxC fOtOTkzLMpniLOcFqSbRaEmeCC+Nik+Nik+PjUuJik2KtifFxy YkJqQnxKVZrwgwgZmBhNsXpdXcvC5MS0xLiU6yWxMSE1Iz07IK C0tmz6nNzSsvLZuXl5Q8Onr67vO8x8H1ll7B4JzQdvnM7HApP3 wmL4i8//crz6p/Pvfb7P3z1ZUgUxTuiKIpXXrpxtGX9W47Z0+6i192Lz3TvtjsdT qfD7XT22h39Nofd2W9z9Th7umynA6VrpiD9KFF1zHBkBTUZhQp SjCMAD1Aew3lATVLms7GxbIbh1Czr0W057RPK1LNQlF9ZwykX2 5P3nm557LWm05fLDwuLeh9ovfRi0maHZp17VeCZqLXbq23Du/zPbRx7KmZZt2JVl3RtB7OmM2J1n2y+G6/sBCX7Fw9ObLtmUw1GUR5F5FANPf8YRF1B6F/hmRcT1nHtgRfz1raTpZvJ5eul7gpmMoYeZRqe33Ts6uWDrU/32D9o7/mrJu1pRHUVkl5LLX61pPFhpnF5zGgO442K6V+ElHdhBX3mlhHJ kpNQnFO57YDu9Bq6aS+Uvcdi27DoZlPqhYysB1LjvYZ1v2rKOp 9DDUtwLwU4gj6LUH4yYiRPd/AwlNNGNRyIHCvHhQjmZLHsnr3mhlNJa3pMq1qWn34ydeeIdll7 wgpna/Dmot5RxdKdEWv6FasditUHVRubI9fuka3YJ13cIV3WLl/WKV+9X9m6OuJkE7F2H6S1geTTymUnJOucsvXtyqYO9aphJu9MZ IK/quElZs4uubuY4GOIoJHi0vDRJGbMTE+qEJYGHKDHozSuurimLk uDW9vTwIxbMA+DsiTGEgSLkSyBeDGYRyEfBFgU8RKUR17iiN2s kbUjzNx6aZRXgnII4SUQlsa8MeRAnXxkirn4R/mZN+k1bl3LDol7PjiyiOqZK+0rlfTXqtv3yqq6I+OHjQUesnGj bLQA98lIjiB4khjCMy6nll0rYcZwYoJQna4l6zuhVHtc46GGlr 3ugT6Xy97e3nbtyjVRFKfDt0Ph2z9FCoTD4fB0aMY9ODLhS0zO SUvNz8stWb9+c2xcUmJCWmFBWUJ8alJienxcygwOUlOyftj/cbHJM2iIj0uJi01OiE+Jj0uOj0uOi026262JM1yYYYHVkmAyxu q0Jq3GmJyUnpSYFh+XnJiQlpKckZGeW1I0Kze7rLiooqS4NBDw iz9KIvgHCkyHQuHvbofuqiG89h9/5X7z3tRr777z1ddhMSROT4uieP3FWydb177bP/ubnvyfO5ac7jrodPe7XC63y+129vY7epyOXqfD7XT1/D/MvWV0W+e2NSxpk1iyzAyymMGyLTNjYogxMYWc2I6ZWZIxZGahK Uxt0kDTUNsU0p72tD3tOe0ptynctqeQNmDB/n4499x73zHe8f36vt5n6NceW2M8f9bca80111z948eii9dxHqt Yrtm1usFtQQWY8LAFgk0EwAwiywBhEcc+FsCZ55fc7FdpDnkmW YgiI5zR4TVeRpuK5qxs6/pyqeB8bcUz7b33xrr+MiKdTvY5EpN0tTLvzoH8y/ur7rZlPldCnxRRTCHk5TCyUUXTK51mJW6zSvphadr10rx7hZRx PHGO6D2VRMkcxrgcJ6jnPFr2SRaKqv96SGzJpk6oKPNCktkVWk So0+7FLzVsn1uUxB2LS3yzrsEh4HwDYT4BgPss4XeK7Ze92oto en+iycVrMAdUd4ChI4Ed8+RtRzCcXpfqWt+JQmJxDVbZEtC9K/NWaca1/MJr25pe32N4cDjhnBqZIMAWMmQCwVUAXEOoU8F+dftxomEkbYQ xmQUfI0ELNL+x+NCpnbKjmdzDEdlXGvKud++63V97S9v79lTGM 7vpUwrCQgjdEO5sUrsbY3znollLmUrL3nD9fulCPmcpibeYxe6 p8089wo4bV7X1cudLXBaS3A0xzgtKr5l0j6Y97imjkSU3/Esb3Y/yETOVtiBh1JVjI5oIhbVuh+NIa1RoHQL0VNIIRz3SEDs8TOuOI M06I2YQZ8HiLACyDCAmBDYQoGUCzgQBZgQw4ul6WkS/304vcidAS0+i+y3ScasgbhUPWohOSxxqa7FTz1m3cz95jn4PBF 4A/S5CrEsA8wrsewUOegYXfBETdBnjPp+d91LejqtI5DavQyqqnoA 3I7CFRJ7EK89Kol+MJiwQQD2BMZ2CZHbjhH38HS3FrXW6wUGtp rejo/Wl27dRFH1ayf6vqgg2j8PhQB0Ou9WBoujUnJ7DkYmFKoUsrLx8 D4vFD2bywsOieVwxmyXYDHgBXyoSyjcnCzYjfxMdNrGAyxFu/tgsfjCTyw7msZhcNpPLZnKDmdxNdAgMYHl7+Xt6+PJ5Yg5bwAo WcNgiHlckFikj1YmhqjiFXJ2SnHbz5k30/zA42tQLbAqJHQ+t9idWqwO1O776/Y8TH3xmfu+rN7/914bDbrc/RlH0xRdfmWnZ8dVI9MMh5ava/LGulr7+gcEBzcDAoEY3otMOa/oHBzUajaa3d2ohumwWcDsLOv0NEJzwb+vynVc4WzyoK354iydt 3Yux4KlcD69+sXvsrZfKD73KzjjpsV3jqkujrPhhFonyUxEdb3 VtNWeGzYlKnktu+2AXy+JDmIM8jW6JFxNVptCwdRXTxGNMy2gD WfjmrR6z8VSTP2WJw5iMpQyGp76wN/eNctIkia6neI4lkrN6MZxDrnV9jAk528RpeEer0pdQR9XEeRF+ NQiyuHnpBTsvje05fFed8sr20m8amh3M4K8R5FcQ+ClY9KWoZN 1/ZBvR4klY8fQaLgQjekD1If/WGVr+OIbb51JdFzRdiuTtx4V2srpqcm9Wqk/FiRYE8atxo9+Nx51LIU8RKKswbEAAEwFcpjDm+KyWeiB4HOCZi RUdPnOpAQvC9DN5I/+cKzy/M2Q+ZNvVor2vtLW9ryl/oWT37d2pz6U7z3m5LkhcBrOJuyvwxRWqQ83dHy32fzU08PXwwP 2DqccLkyeaBs+/pjv9/twbH46/91qIrg+fU07bU0o/HAcbAmgzogBNjrCvRDieyDD4w2Y/l8kIfNIW35BJamQPpSmNtu4LGHHORu/sG00jL9+euPPa3huHRaeioBk8vELGWWDQgsMvw7AZgZdh2ISQD XiSnkBYJTPnfbPVrl0Ao9yPGN3pxjCSkWMUeJniNCf0OFCGKIY FOz5yj3kH43wN8bpDDL4KB52F/M7gmWfBoBNQ4DM4hrGi6u2y+jtITIXnkWS8iQIvI6QlJ6dJquq CLPrFaOISCTaSnKZS4PRunEgnLGkvaW8aGB7q13R39LS/eGcTBewO6/9KFEDRTdmQA0XRyZklDkcq4CoU0rCqqjoeTxzoz1bIw7gc0SYQ sIL5PK6YxxUHBrCZQVwuR8RhCzls4WaOsPkanyfh88R8rojHEf K5Ih6Lz2XyuMH8zQJhMx3w8w3y8vTjcgQctoAZtAkuEokoJEQR FaqMVcjV23Lz/y0c/D8qApsDtTscqP13m2PDZkdRu/03+8azH32uf/erW5/8xyMUfezYQFH07p3X5xuL7g+GPhyUv6IpONLRqO3r1/V39ms1XZqhXs1gn2ZA19+j1fV0Ti2EV8xhXC7ggPsY0vuQ4KRb/qBz+T5K+X7irmb87hZSeb2gQZPebQjJNYuSnuWWLnEP7qBPBeI MVMwcILaIDv9jdP8LuyvfKCx4Nqr6XnGAORCaZkjXMsWa3byma uVgc+hhrV9lN6Cox3CbyDmDLnUHqYVNQMhOnKo4aUJXdrcbf5R BWKC7T+SSt/ZhRB3ujRXkCW8/A7v2JUNAcQdGsg8fX+W2p8a1fl/wgerGuXvx2fcStn6qinyzufmPuKiPMJg3MJhbWws+rF+6GqCJI i85EwxUd20aFN4BKnUBrdPkrDFM8IDT3ibfsVJCYR1G1uTXVZp xp0iyplZY1DHLib2faKLOxBImEUCPA/UEgoHIsLhFXS/aurIoLbgeseUbmuAEI/VQpfn50Yuvdyy+qFl/S/vsy1XGUyktU3Gdc7K24aL5U4rWQXLRTtcdvbBsjBy0SmdORZbN 6q6fjp6N5s2wUs5lNd+a2DN/UrFrKGBvQdLC/obrzwRmj7qxRxn8Xjgv13kqBD/KiFyPqrhbGjjnRZgiOM+LmJp9REWLMuF59/BDhL1bSKZAcBYnP6/o/kSf2jehLD7Ycut44Su7CONE3BIea4IxJixgxOEMIMaAxZpwkAG Cl0DYgmMuuhWkeraDTqUe5MgGP+oSCVgG8CYCsuDD6EmHQ9owy CksfAkOXPYuWXJrayb37CT07qZ07XVurfOp0RHUrZ7Ko2zleWz wJK2qmzQfCq3iCSYAGQdF5wWRd9TEWQSZJziPpeFT+zBcbXBhc 0FLrWZooFfb3djZdPPFmyiKbtjs1o3/z715/m/n/8oOPtXk2R2b7ODh8SkWR8DnS+UyVU1NvVAkYwZxVSERfJ6EyxE FM3kctlAklItFys0P++Z8EZ8n5XLEPK6Uz5MK+HKRUCESKvg8K Z8nEfClfK6EyxFx2UI+T8zjitgsPoctCApk+3gHMIPYzCBOUCC HzeKLhDKxSCGVqFQh0XJZWGlJxWeffob+NxT4951tDofNjjrsT xyODbvDjjocj222ax9+vvDu/Wc++uaHJxtWB+pA0ZfvvrzYWPydNvLRsPIl3baJjhqNtqt7cLB PN6jRaLW6/n6tTtOv7RnsbpueCS9bw7rcRpAfIegnmPQ9QPgaIX8GUf6Jo34 GOt/HEP/CFr9Zvu+jupZ3dzbdzRhdDFqIxhqI2FUCsAAHGfntH2ia7tWVv VYcZVEW3ijwnON6zUZL+3qo4oNO7GME5ilOwptEn3WPgFMh6ns k93Ow+0WAdoYrfs0z+HjITuPem5OUWQZkIvlMZNPTuzHCNtfWM uq0O8csrT59zFsxqop8IZBzCed+EvQ5+8CI/wAAIABJREFUSfZbquv8qXjvr6n59zPy3jl61BYT/aabx9V9VV8vHvvy2Pu3Gt9tDTobBM9RvUezwdh2MFzHbpthZI9 juCP0/T2+RyuRoiaMutm7L2/LS/lbrxTuf/lA0ysHut6vTXw2lDAB4M0kyEwhLOJll0Tb7uwK03QK04+XVW5w ZK8BHqaqnu+lcWcxTjN0zmrr6JcH9b9EZ9yiOc+xxavdQz9KI5/F0CxYp8s44iUO74pQNhW17WDrJZNiWU3XU6mjgQX66bS2k3D2X pomzntGvv3yvE/yIWXkRUHoJUDc59fYkLrWpHvdbPr0eu3NkRhLeWDrft+cJZrXs gc0yVO2+fVsIZo98HNY5XlZwaUuSuIBjO+BsBFtzq3d1Ck6YgR BCwyYYMSCgEYIthBBI4yYQdCEw6wAHibXLVsYHTBluw9Z3eFJ1 hPBFQRag0ALRF8QMxoqkbBhWDbouqvJd2orxehJXKdC6wx4zYt k9HJbFAXqckJqtKLUsxjGCUyI3qmtxflIImWWT5v2Fl+QRb4YR VqgIEtEj/EMQooOK9KxSxrzO2sHRwaGunp72prvvnodRVGbzW773+ZB/F+hZX/KCwyOHg5i8fh8iUIeWlfbJFeEBjO5CnmYgC/dnCkU8KUhSrVSEcFm8VnBXB5XzOWIBHyZUKAQChR8nkzAl0tEI WJRCI8nEwhkAoGMxxPzeZJNgZCAL+FxRZtY4O/HDAxgBQawNqeVhQKxUCiVSUPDQmN4XEl1Ve2/fvoXiqIO1PE//AVQh92B2h2ow77hcGzYUbvNbreijrd+/Hnxg/tr737y+b9+3txNdPOVNyZb9n6ljd8Ykt/V5o511+kGenoGhvo0Azptn3awt0fbp9EMaAd1ndPT6lIj4PI8A f8DhPuFgH8C46wknJ0EbkDAEwKMAphfBOyHcVHfdbWiGblvqqr HuQtxWAMGWgfBeTjALK56r2vnCzszjyeUX9u+516l51xA4LyaW dXA4M3Iwl6Gvc3ByfecWJe93K8KA1529r4ABh/HsFZdlGfJgiPxncuVN47Qx53hBZLPkXRKSiuG3+XUUoM/yuSZIhounmUmHApUrbhLTsK8UwD7Aom/Un3o820dbwhzT1cd/HjqxIYqdU21bb3B8kaSpit+Inv3XytiXo9AZujew3lgdBeoHuC 0TLvmTGC4Q05VXQFjlUhBPSa81auvNO1OyZarRfVv1pc/V9Dwlz3xF8MIUzh4BcIuQ9ASJHmOW3BnZ/yQTpJ5PGvvZyE7brnmDe5YOhFUUUPKraLkVuWNz7SdPT3w3EsH n339yLWXuq+/EHCgnVzQ4JTX5bRlgJKgIUZVJR3q3/Nmm4vZCTHjXWdikeQGWKnz1u2lzXkG6r1qXh0N7xymh/WQ2etYyln/sOsdxp+LGt6Kyrixp/eLA5M/OIlPE2iXRKS1HR5ttVmpUYMsupEMzgOiC+JtzwyQY/owko7Io105t3ZRx2lEIwQZYcSEJ1oIkAFELCTIgBAsEGjGYVZB zxWP9Ax6B0Ao9qXIe/3IZjrejBCMOJIRRzYzkEUxcSqGfkTlPMvCm2nAMoCsYAALBl7H QUYcyUANOilNvVgedqSbGD6H9bgCBz1DEB2kZO33GUqWnY2LvJ FMXqAjRshzJpaQ1oEVaQXFLWWtBwZHB/r7+o52dZ4fGX7r4nN2q+2xw2p3/DlA8P+uIN68lW74YDCbz+dLpJKQffsOKBRhHJZALFJs9gVEQrl MqgpVRcqkYZuVP58n4XHFAr5cwJdvAoFIoBQJQ6TSMKE4hC8KE YpDBEKFUCgXCRWb7kMCvmQzKQgMYLGCeQK+JJjJ5XKFQqFYLJI JBTJVSJSAL21ubn308NEmBvx3G+KnKGBH7fYNu2Njs2toR9H3f/l16b3PjO9+8c/ffrOjjxwo+uJL9+aaK+4PxDwYCLnWVzTS26LR9ff2D2g1Oo22u 0fX2aPr1fQPajQjXVMLEWVGDOMyAHwH4h4CwGMA+wTEbAC4x1j wEQ73CIJ+Dgr6zdfv72npD325t/22jfEWM8ElEDYCpFnQZ8qj4Z2WwQ8GdX/TDd8/nP9GCXmO5joXIDmyFwjfjeXs8yqpUh3pVLd0hKl3hgTlRBTt8u sqpvfkE+pT4QOh6WcPlNzexzNLAtdkgskdIbUGDF8T0KgJv5DP 1gfWv9muGMkh7ImiNmVQ+7dRu4sCuooP3JhNXWgNaMuSDRX2vb qSdqQx9mjVlnPNHjq556B/1Dl1+NVQyrSXu6YAjOwFFL3s5gnnLWMYlo5e1RI4VkEsqMfIWo M69267XS42yXlLPLFZVvjGTsEJJX6KhCyBgB4g66kees+4CwU5 xlluoV68/1hgbydzonj7jS7Z/FanYZnzQfmOu02RKzmK+a26j/XZF0rdJoMYS0zaIou8JCLPR7pOxPsNqbZcKNr+TiVxjgLPklxH M8HIdii0220kH5mjei267n2rKmY1z1+b676rGeD2sOPPFjS9I0 s6zQ85KY0/Udb9rots1j3oSFlIz4QySpNOTdNQ6fNkcMZFcix9z4UTWa1XS0 bO7jjVufONvbQJKrIIQQYIMUCIAQcaAECPQEswYgRAEw67AnqY 3VPTaB04YokvWdHqQjbiARMAGGB4EYaWiICBAloQ2ITDmbCYFR hnokELNHgRBk0YUI/Dz8OBx314x3iC5biA5maEP05ymRdIDSRBFbEkN+J0SfQL0aR5A FyCXcaS8Wk9GGEPr6CuvLl28NBQt65/sq9ndFveRFUdanM8Qv/38gLo5lBhr26IyeKx2UKpJOTAgYaQEDWbxRfwpexg/iYvqFSEKxXhfJ6MwxZyOcKnOT9PxuNKN3MBkSBELAqTytQiWZh QFiqQqHhCBY8n21Qc8nniTSAQ8CWbrUSJWMEK5vF4QqlULhRKu RyRVBIiFMjq6xs3njxB/9Nc4H/qBTb9BTccqNXusKN2m8Nh//TXX1f/9vn8+/+6+sUPv6M2B4q+fePapY6sX0eUX48krPRVDuh6tcOjOt3BYe3Q 4GBf33CPbnhoWHdYozvYOTcfuccM+t7E0x+Q6CjJaYPs9IhM+5 1A+ZlE/51EeUQhPRDyNljMr7w8P6L63mDvnOYZskgWd9IKnWECvZeIgUe Dsk+XT32zHnc2zdXkQVomuR1zE5+KDTqYydYVsmZSRSdViTMBd VUenZkuuzoCeRYP+jEP75M8Fz0r+0bhrhd2bn12W+KVrIjFspr VlwBJV4nhfOdnR7gGv8r39yjOxLqZJK7HubRTbvRjLv7Lfg0f1 ux+aW/pS2W73ixp/Edd0pkU9TF1wav5Oa/np1xL2v5idvaL6a4LwR6jZWDKEBih43fMuOfNYARDzvUtwdNlt B3NGHmPtK+j44PhhPUYXy1FPB1c9bd68ekIooGOrAOENchp3dP JEuQxG+7dVImRV1ILq32OxvqZAjKv5+bcLo+5mci0BO3/a23G8Z2srtyQnv3KQ8XOS0LCMWfaCSp1zZNqCXGZTGGNpuRdqC x9a5/rkpfTUoD34WJCYg8S2+MxnkcyMryNzF3vN0esbvcazPc+ss9DW 6Ue0VadXN23vrJ/2TJ053rb9XPC3mplR0lLS+Z8Cn1iGyZ/EO9rIbgbWKFzDRn960Wd59vOH8s+Wbrr7Z0eS64UE4W4QiGtEM irMGmNTFyhkVeolGU8cQXGnyD5rflsyWR04IglvpToTh9nCx1e IyHrdOIykbxCIa8xSGtkygqBtAJB6yBhjUw20mkWGmEZJq9QyH oG+4RUdFLFPSUKPrIVjtvHjZ8ZGftnZM5B0paC+GOVyTfi6Ysk 8rKn10w+KWsUKx0RlPcUdbcMHRo9pBke6mp76fLpRz/+4NhAbX+6B7Hjaafyv0zBNx9t5gIOFG3v7GUGc1lsgUyqamnuC FdHc7h8Hl/M5YrZLAGHLdokAtgsAZ8vEgklQoFU9PQ7H6JUREpEYRJRmEIWK ZNHiuVqiVwtloWLJKFCoXKTLBAKNlkDuYAvFQpkT9lErojHFQr 4IhaLF8zk8nkSiUi2b++ehw9+RVGH3W51OP6HH7kdddg21xzYr XbHhsOxYbNbf7Ojl/751cx73zz78Y+/o6gDRd+8+dzNzsw/hhRfjSaYeis1gxrt4OCAbljXP6Tp1/XrdNrBAY1O1zuo6ZybjdqzhPO8hCN9C1IfAuQnMPF3PPI7DP8K E3+GCb/ikZ943CdBQZ+4e75B8jrF3DUUZEzGGaigGY83QSQjlTrG9u/LShjtEfWX+g6k+xzODBhP480mK5YyCq42uffHipa2Jw1k1WZFd UeGlu1JEgyluw5tIVSnEPdkZp/orr5aV3guI/XZpPDZkl0Lt1nppr5zLzXd1UjmQhr/Mqwc2kXalU5uz3Q6kko/muA/ktZ9d7b75kLPm5bC8+07rw7FL1SGL2Ruvb5NekriNe695dmte9 +u8JwK9hwoB+J0YJiG3TnjvG0Mw9fQaht9J7dTiuswipaA9pq6 t/snvhgderP14N+7er5sClzxhxcQaAUAVzGEVRLF7Oq7pBYP9Dul HOYfGJEb0j2NTlteTiu/tyf/zo6i58p6XprbOjTpru4MTV1W5i4y92u9uqo9uwoDWys8tjfAEf Vw6K6UkaF9dw86TfjS5l29DyYiSbVQfJfzoTx43s1jib//7oJwXz9GUY1LaGXs7FEdHC49uxCqO8CrL98yPdJx75rkULOgbU/u3qpdEdt2R2bH7SsN1Ba4HdjBLV2Iq7oir2mLNRZtu1Fc8fZOx qwLoidAZgQxw3gLDFtg0ARDJghaBiEziKwi/ha3zExaG45Q5kNSt3nQlqiQhYCsECATBJoJwDIJWkHIJgKih6B lHN4Ek5ZIBCMJMEGIhUCcpwStcbmnZT6nBfTZUMLOHPeo6ux9e r/UMuqutOhj5YnPp9NnqUQ9w20qi5ChwwoPcrf35rU394+MDGm0H Z0tt169iaKozWqz2Wz/Ns76c1AARVG7w+5w2DZDa7P7vpkIbGJEU1N7YBCbyeKJxYr2tu 6oqDi+QCwSy3l8CYctZLOEbJZAJJSLhDKJWC6VKCVihUyqkkpC ZNLQ8LDYEGWUXKaWScOl8giJIlIsU0vkaoksTCpWyaQquSxcJg 2XScM2/yKXhUrESh5XzOdI+FwxnyfmckR8nlguUynkivzcrP/49isURW22jf8DBRwo6nDYNl2FHOgTu+Ox1WZ94EBvfPqF/u9fnHjvy69++92Bom/cuXyjM/OPwZCvh6MMXbt6NYP9moG+Pk1/v7avX9PXr+vt0/VqtT0DXR0T05GlSxin8xjsF1jgAQDZcdiHCPAHCDzAgQ9wwEMQ/CUw6Fc/5uvisJcZnAWfso5gQxw4hyBGBKuHiHpfp65Yp5Qaeeaz3qEnCe JVWLxKCV0M3b28b+q5g8/8Rbl7yb/gjJtsTeK8GEqbCggykWXnQNa6K/MEwXcyqtG059mh3IuFmZe2x47v2zt1ZUvN5ZW7nyx8tJZp2VNz 5mRg9CEvtt4p2ILnrYHyRVLYREHrW9n1ryRXXw8vt1QMvhSYfF i8e3jv80s5L1Qkno858Jf9Za8Wek54uWtycNFdoEoX2DJFzzqC 4WmpNQ0eY4WEgipMWJNTV7HvojT5ZOrcd3PbLuQGLHpS9HhoEY YMJNBEREwAQ08NMRbxd0+4SlfY22biFhqExvAtt3Ok6+Gug0qv mqI9M/ck6c/BTpNlZV9ER96Dnc4BXpeBgHXIxwKQV/2Zl/xFk9LigZobBueJAMI83v1QPJTQAkb2umqzCNPOfnO8/ecXgmM7BaGzLMkZDGXaP+JUfM2rbilG/+RFTuxM48iHvmoTLmCB6nvBhfiMO+EC5H4aG3AS52z0Cj22f/WVfdcGd98uLr2dX/pmOXWCjizgN2cHIBOENeEAC4jT44AVCGcEABPO18hIzaC0QsQd PsTQdhfyPBEwQ6AJhzMCOBOM0QOwGUL0AM6Iw1qwOCMO0UOAAY NdxmANWGSOyDopEZ2MDlxXERbZzkeSifm5cGwmpTTRbVCpPBUX czOBOk9B5gmuk8lIahuWq+EXdBa2NPcPD2s1ve1drS/ceYoCVpvV8aejwNOAf7oayLGZbm/eyuFAG5vaAgJZQUyuUChtamxTKsPZHKFQJOPxJf/WAggFss0YVirC5DKVXBa6yRcqFRFSSahcGiqXhcnkapEsXCxTi 6RhUrlaIVfLpWEKuVqpiJBJw+SyUKkkRCZVyaQqoUDGCRazmJu JhlQklMtloUq5MjE+6r133ty8qs32dK/TfyKBA7XbUKvNYduwOZ7Y7I9t1o0nKPrBL7+a3v9Y/9dP3/v5AYqib7/4zM3OzIe6sPuDkcaein7dkEan02h7hkb6+/o7tQP9/VqNRqfV6Lq7xhfCimZht2Purp8TgG8phA08/IgAP4TABzDyiEiwwuCPEvEjtvBdV78r5KBjgtoZ7mIKZZZGs9B xBpzrSqDTgXhf9eDe3X/4+b8MOd3EOt0k+t5Spf4jrejv6UX3VCn3fEI/gJxf8yG87IW7TKK+iKW/CRJuh0k/DAg4p965tvPyuNgSUfvP3sNvX9lSc47KHsk5eqbv7sWoLt3uob sCyfHkyPc5wa9jqFdwLtcQ94tljY+Kqj/2Zi8mZF3UHP7Nl3OKFXZp78KbOaahHZd2D32qKXllh/Okt/fINjC2B1IfDG6Zc82bwwhGqdVNflNlpKIaXGQrTVtCmBaxJ5K2 rjcKxlNIYy6EFSJoJiAmGmSkEQwETwNLNLKbruqQR591VbUHN5 WFWNJyrmdknc3PXRrd0ny2dfTrmKJr+OBJOtdIlS1QwxeQ0HlK rJEYPktRzblFz7jFdsa39De+eCTxery3xSP6WIN49wlEPlp0Zi z+ahxzIrjh+VnVnh7fxKaA9DFENhicvZTRfSWp52xa3ylVyXjr 5Lus9CVKyFiQdErmMSplLrjIDtMiFgmiKUHFePebp9ve15XdLk g5E7P7nQr6JI2oJ+ItCGJBkBUCbhmE1wiQEYJX8YAJBC2gj9k1 dSu1FSbu8COre9wpeiK0isAWHLIME1ZJOCNEWiMSjAi8TMKtIV gLglgIoAUHrYGgkeS8yBZO7VAPDrDaG2jDsQyLkj6ncpmJdF4U O015K86FRN2Joepp+CW851w8MaMBFPZJirp2tLYNjhwe1PR3db fdvnMLRVHUhtrtf5rPyH9WBJuLghybSqFND79Npg1FUdRuRxsa W/0Dgv38g7k8UWd7T1JSulQWpgyJCAlRS8QKuUwVqooIUYaHqiJD VRFKRZgqJCIsNCpEqVbIw0JVkaGqqBBluFweKleqRVKVUBIqVU TIlZEyWbhCHiGVhCkVkQp5uEIeqlSEy2VhUolKIlbKxCoBX8bn ScQihUQcKpOGKeShMZERN69vGhDb7E/bK0+PHXXYHTbU5rDb7Fb7hs3+2G7dcKDoJ7/9tva3jxb+9vXNr79HUfTtm6dfaM98oo35diha31PS2dM9ODR45 szp06dPLS4umsym8cmpjq7O+ZmFEzfeSK6aic69UlNjS417QAC/AoCv8ZS/kpzeApCPIPBHEPOTO+OXkBCbQPyQFfqJstXoM6cAlwBYjwf0IL JEdtKGE5L3eSsnGOEjHju01N011N310YMnCw/fKh2+tG1gPbx9VlqkTVfV53ErE+LbuSWDtPwWOLkEF5OWPq0tv 9VHHQ6Qr22L6TWTAiyYIJ1H8xCrZtQtZLx64GNB7kFyTDl+615 iRR11TzWtZG/m1NH+yycXXv3L4Zdv7zu97lvQzc40JlXeUB2YjBmuaH6trvTNY vq0r4s2CxfVBYYMspvnXLKmMcGDlOoWz7ESYmENVlXn3LXXZTD DZWdhcEWrb/0u+lEpYCABJghZguFFBNGTnRa5vLEqemQ7V2Wgq2qD+0s4y1EF z++pXptumrqbVH5s79yFLWujtOYt2IoMUmuhy2ga/XAsbSyOOh5LP5RM7UuitkSnr1dVvtFa+naFUK8sPjGWdOBlomS y/7WrpXfLfQ7Sa95qCV/cBTeFkgfCqMOhIkP+tuc6xaOZzP4U9Xhp21/0/PntAYPJhfVJbTHSuvTQlJYY3+EEl4FklbFw58sHMi5mRJwPTbo cnftiptMMHV7E4/QgoAcgIwSYAKwRwOkBrBHAGnCwGfLRO6dn0tohUokPKaTNhbJI BowgZMACBhxoxmOMEGSB4EUAMoAYM4A14SEDHjTgQCOesOThcS iGEF/mIh53D1vBb+301lV5Due4jaTTjsQ6HZSGnYmLfCGMPI/DLwLOk7FIWguW38fLb9/e3DIwcnCgv7+9s/X2S3c2A9D253sN2Z6W1FaHze6wOexWu8NmdditdhvqQK02dH9N vV8gKyCILZEoOtp78/NKEuIzkpMzExKSpVIFhy3gc8UigUwmCdks7ENVkSFKtVik2GwW hCjVERExIpGcK5AJJaFiebgiNCo8MlYdESsSyPk8MZ8nEwoUUo kqRBmuVIaGhUaGKNQSkVIklAsF0hBlWHxcckJ8SlJialpS2jNn z6GbosunS1Oechn2p1vg7XaHzWa32m1PUJvVZnf8arNf+uj+7H tfnvvkvg1F37p95npH+iNd5LeDcebeis6ejoOHDr94+7XLl24f X3/24qUXZueXOto7R0fGT914o7Tn2N6ue2OzTxoaHlLJ72MwHwRy3 0vL/57g9BIMf4kA33p7fMOgfehE/4ri9oZLvC74SCTFRIZNeHgBIhpJ5DkW1JmM2ZlN0WYyjFKyycN V7xtxOmnvy61Dn48nnktSng1NPBTcle92JMKptpojmuVQTT7ke U/iiGfOlZJdd+u9R9XU/VUY9gLGZ8U9b5bdMo/lDzqzVvab3hYbKglHBdRpttNyAGWdRlmmUSfc+YfC+9+dSblYQ ZoMYBwRho40Z3feSG+6XH9qpeZmdf6rGbR5T+fBbCCyDReiC2i dYWRPYIK1Tvsa/cdKKfl1GFWzd3enW0MFMXJffscrQRV9hJ5wgsUTMEFEA4jXI3g TTDPQRavJvgd2YxRlLqUVosUUjjl2x4Xx5BZzUuOzMbqjO29qx cciqEYv8po30eJNsHjDFg9wjQqsEkirAXSDyGVOEH0xd/dbtRX3ygVTym3G8bQDdzDsjq1rI5l3it2nnMve26k6t40yK6Gs +OGXKAGrwfl3i3Keyyq+sX33KzsPfLLP56S35xKyo4d2JB5zZC smvw/yWICx85DoOWnarTQXDZ3YhY86Hb31dgZ1GsHrQdAIQQYIMYKwC QRNEGgBMctYjBmHs0BeJte0DHo7RC3zpqnbvKiLVIwJBE0IpMf jTUScCQRWIMiAQQwgZMbjzAC4DOIsAGQGKYvurj0ZAHtfwtbLq Xl/BT1OEVlXCZwTkHQKiDwIb2mMnetOf6GAMoOHF0iMqWQ4vR0r0n KLOwpbmnUjh3RabXtXx+07L6Ioanf811rOPw0F7HbU6nBYUbvN YXXYnqDWR/aNx1b7ht2+4bDbHz2xlu6s9GdyWCyeKkTd1tqTmpydGJMeERoV HhrOYrL8vAP8vAOD/NlctiCYyfPy9A8K5Aj4UmYgN8Cf5eMdwGELpRJZUBAzMIgrU0R I5GESmZLH58sk8uDA4AC/gKCA4MAAjlSi4vNETCaLGcjisYUclpAZxAnwZ0pE0riYmMT4hN SklOS4xJPrJ9D/dEOzWq12u3WTzrA7bHa73Y7abA6r3bbhsFodNrvNZn9oR5//5/3Z979c/fDbHzbs7750/lZn2uPB0K8HYkw9O3v7ew8fOXL35XtG/Vp/38jz1++YLWva/oEjR6bWr93cP3x6X+/ddu2nDa0PPD0/BXFfuHl8GsT9mEj7iEj6Qir/vqD4d3XUp8lp3/FF7wYp1sqX5zxnZHiTM2zAE1do4IoT0RJMNQsJFjfCMQA2A27r zszjAZL1uKxbtbTDfuxz7LjDjOE8eFaN2VNH81x0IVv8/BZlrsPy3Gv1la+MBtTVQMIFjOspzxSDuNHIiDdhnCzs+PWeFy7 LVipIU3G0RQl52R9ncgFXqKTZAPf6TGl9K3uonLzIws8SEk7s2 L14oVxzZ9/8as7yzqSr8eQ5F7eDBUBEDxR+JLBdz8ibxXB0TvsagycqKNvqM GFdrv1tbtoygrpCEGHxiD/k0l9CWAvGrGLhNQy4hoWWcVQLIfi4j8Aoij65lTUdErwoCFnaX n/uuqJ4xiu7MVHf3PLBsHx6i1PfVsrAdrq2wH1wB6M3z02X5abb6 tVXRj9QRNqdmGZubLoz3vbiaI6+qXhmPbr+HJi5O+5yY+Jrub6 zwfvu9UdPtyA706gd6a4jaUJ9XvnNzvqr2r5XZnNX9m6/uS94OdR/SlzcrhqNDz6YIdrWJfNdlBFmJPITWX2fjVTdriq5srv7c13hG9 tIU1iCEYDMeNiMxy/DgAlHWEHwRhx+FQTMAHYZ9FxxT9zq1ABSin2cIjt9KQYiZh0AV vB4M5lkwgMmLLgGg6s4yIKHTWRkGYBXYWAZT1iBqUY3N10ujn8 gb+eVsr2vA3Qz3u0GzvUqFHgRcL+Moa9Ld57MuKCjLQYiRmeP+ RRCegtOpOOXdhW0NA0ePKLRDbR3df+n7yDq+O+l7Z+CAg50M16 sdrv1ycbjxxsPH1n/sKIbDtSGoujvjzcKd1QEMbnsYF6MOra1oSM5LiNWnZCdkdVYWy sTiYP8ApkBLGYgOyI8uqCgWKsZqj3QKJWpWGwBM4jj7xsUolAl xsb4+3j5+fgpFWEyqZLP40oEvKy0VDGXy2YymYEsDlsoFMiiom LS0tOTkpKVilAeV8xhCYL8g6QiUUpcbGJUZHJMTFJ0zOWLF1EU 3Vygusms2u12u91qc1jtdpvdYbc57Da73WG1oTa73WqzOtD3f3 mw+MHnS+9+9cnv9vdevnS7PXVjUHV/OMrUV9nTOzAwOGQyGXt7u9o72vQqI/vxAAAgAElEQVQG0/ET5w6Ojo9NjJueu5JUOS1Pfjav+Dd1+K8I/CUe+gXAfYHB/h0E75Oo7xeV/MrjfeDn905i+pexcV+W7fm2avpVl4ZS+uEEpykFYUoOT0vpCwq GQUybkjIm5E5jEs/pSP7iftLOakZRnV9PrmAlLGbUr3mbS3+MU2E9M+hwAqVyJxLeg Autzzh8/ID5VRJnEeN0lhJ9UtZy1jlxCetsxopmZB3juheuCYq0OEk7kLq X3plFnRZRDP60/gRIWRW97SJzey+1J4Z41CPx3Lbe5y8n7TJntkw1vzSf+EIOfpb BGMwC1D2QYii4dZ6ePYHhDlCqm73HthPzqrAhTS49ZS7TEbT6P Ay/C+c+45o35Dadi18OJFo8KSZfmjHQ1cDnr4ZHnlA3f7gv9niKdL bYc1ddRsfZI8/8dfq1Z6beu9R9+VXPhEM4v3GYeRwOXIf9lvEBx5DAVYS5BvqvU JgLVHZP4u71vUfuRuwy9S5+tnv0JY89ddSRVOYlteRaaNCYpOm iQZihYQT3UiUjiEIjqzRUL7xY0Hgmdd/ZLW1ndk8/E1jY4ZymlcVPJAT2xAUN8mJGaJlaYqaOsa0rbmho9K8np745ln 2liLMcSJzDQUYAZ8ADBjxoBrAWDGDGgUsYZAWClmFgGfSxuKVm ObUhlBIfWliHJ3EJwSxjoBUQNMKgAcQYsTgzgDFhsRYIZ4RhI4 jXw/AiiDdAyJITdTwKzi1zC+8NTDpI29rgWltNrq+m1Xe5bJ/BeS34x5yKm1lmjCcg8+7O42p8WiOG38suas5vatQNH+rr17S0t 9956kT+Xzu6/3+GAPS/8wK2DbvVZnuC2n+3P/7d9tCKPv7lh68f/vwTiqK/PXhctL0iiMnlsPlpyRnN9e1xUckF2YXDusFBbV+kOowVFMwK5n LZwtjY+H37qtbXTpw792zGltxAJpvD4QcGBKYlJQ5r+3aXbmf6 +UuFMrlMrpSJa/fv0XS0RauU3OBgHpvPYQkSE9NPnTr/xhtvTYzPFBeVScRKEU/CDWImRUVY5qeXJsYqCvITIyJevnULRVG73b7ZW7HbUZvNZrM9s dkfO+w2u91u27RIsm82D+0o6viPx4/W//Hp4rv33/rp8RuvXH2hK+3JgOrboVhT716tblir1fX2dukG+jTa3t6+vt5e nVY71Kfr65ycD9s+j2Eco5C/ATE/k4iPEdBKgmwE+BEEPiJRv8nI+TVz668S8deK0E8TU3/aXvJHTdcvdOU6KcZAjDlKTJ4CEsaIiTOklMNw/DSSsAhFjXukmwRZz9NYa9TgAZe8vAhzftRARmxCnoqTkVRTIWy pxokavMSnGOxjKfmvl+76DAMt4aRG39p1eu5xDGMVw5wh7d3Nn 9lTfeJakGxaKb3izp8gZOV7TEhdTUxKSw7CG8re8QE3/yC5JZ00yVacTut++UrXwpsj5+4MfLymuJIAz9M9D+ZAEV1g+GB g+zQ9bwrDH2HUtvuPleGz92PCm9z6i+mGYJpJ4drVBEpnwMAlR qYBX6wjl/VR8/tpRb3Uok5Z00Lt2j3Ns+/UrdyLbn4GCBnFhFanHtGOv3Ol5MgxT+Uc1mORIj2GD1mAldN4l QFULEOhFkRpAZmrfpIrLPGJyLTnylrvY3wnCdwhWtZe75FEJ70 vYiAjs+TgOUXds0u8xG5l7HFB+BUMZcpXeax38rt2zfvlNXc7J 75rGP2SzpqEvS0ExroLtOpNOkNiHEf8jgM+xzDeqxi/o/GdJ8suzrmPSmiTLmQDHloGAQsMmRH8MgQs4+A1PGAC4WMItIrA q7CP2TkljdQOErcHUJV9PngDEVoFCcsIZhGCzASsCQQWQXAegi 0QaMFBFoRgJhL0IMkMgnoCwehHPxjm0Vjo119KGQujrfogy06E NV/GgppRsi84e1lefZG2+4D70WSPyVz8lh6cqJ+/o6WwpUU3fKhfq2vv6tr0F7A+HYb7c85TFLBt2DesDqsN3bA5Ht oeoegj67sfnCjd9+nzt1AU/fHX37YVbmcGcTksfkpCel11U1xsSnZmTnJCws6KEq2m19/fn8MRsFh8iVQmkciEQrFSpVaFR8tDwgVCMYvJVMnELXXVM2OHh RyOVCiRiCXRkeq9FWVbk5KKc3LEfD6PxQsO4oYoI3bsqNiydVt q2taw8JigIG5QIIvPYseGKhsrd68vzQ10tqXGRL5179Wna0hsm 9/+zQ7nhtX+xGHf2Hxkt29Sng7UbkMd1g0Uvfzp/fn37l/7/KeXXr52pTvj4ZDym6E4U3elTjuk1Q1otRqdTtPX36sd0PZrtFq trk+r6ZrWR5QtYV3OIPAPMNaGIDYAsCHQYwh6CII2EHrg5nU/I9vO4X3j6vqlh+f3VNo/Waz/wBO+gcAfQOy3MPQjFvgZxj6kAA8h4F8A/icM5hu603cC1vfsgPfksXdICRUxC83suiZy8BDJa9A1pzaotxq XneeytdlJXZt+4FTlyFs+KdrY9vnYhjP+0c94q1e5zVrpQn7ie nHPrbNBGfXMtE7XzHJKfSJ9VkQyejgfjaakdSPeY9TUJtfxVEj v7qrnedZsK9Ys6y6dF03FUvQuBAPDayQXimwH1QPMjjlGzgyGP cSobfMZLyFvr8eIekg13dSFGNISwXmBzWirxCiGcK5rAP0c6HU W8DqB8zqBcV8JUj0fueV1SewVeeILzMgLlNhxz6ruwPbekLZT7 MwzmIBuSk6H52AVYzydNhlBnY0kT8XSJ+Ndj6Qw2guIhaW09PI M3dy+9dtO5a3g3kLaSCRN74k3QoiFCCwCHgbfqnuamMED5K0Z9 O2Vbnu6nffWSDr3NJw8ZHzvatacVtDbzNiz36u8Xb1Vl8tvzZd 0huVq3PZ2kyt7aXkLENPsKzeJ9g569qc6zTNhEwG3ggOXYdgEw MsAzgJCFjxihCEzDJgAeAVyNzJyDgQfcKFWuBJj93t6690IZiJ ZT3VZ9vRY9SbP0QPWmR5md7IBj5hhnAmGzAhsxBKWAcAEwysEo h4OWPcLOs1CFmmIHg/rsYQVLNlMdh4WRQ4cDqt4Hivq9mzb6zu2F87swol7eNtbClubt SMH+7Xa9q7OO3c2dxNteuP8qShgtVufbNhtT1Cr1WZ99NPPd67 cjks97h/8/blnUBT99peftubmcYMFPJYgIyG9saYxPjYpSh0TplKVluyoram ViBUScYhcHh6iipDLVHJFGJcvUYXHRMUkKZVhQr4wRC5XisUiL ofFDJJJZQp5SIQ6Si5RRIZGVGwvk4nlIr5EyJMIBXKRUCkUKkL DomVKtUASyuVLRAJhrDosJSpqS0JCTmpyXlbqp5/9w446HHaH3eqw2hxWm8PqQK1Wu23DhjqsDtvGv3UPDtumKanVh qKv3P+Phffvn/ro22cvnn++L/uPEek3Q1Hmrj3aPq1WM6jRDPX1D/X1D2m0A1qdVqvp7dP2dE0tRpWZMYwLIPA9DNiwwEMs8AALPMQC GzjcBgb7Bw54gMX+hMX+CGJ/xWB+xeJ+wWB+BHB/gLjHIPg7DvsYh7HjYSuZ+BiL+x2He4IFHuDpX4mFv7jR3iH5nf AoaQtfbaBXlzFEwyEJ53FpJeSxBMqMhNjNpzaKE1Z29v5jpfPV Y7rzd5p179X0v9d04nrLG/ONf+1ve7+t6a8tokNJcH0IMqyEjGyskQIaQOqSwK2uDRMwiGQ3 U2bC8Hon+gybUpnvmToU2T7lfyQRWSLijS4MbQE2ogVU9PCb51 0zpzD+h6jb+z0PVzBa9mCFfVjxYdeWffQZDrBEpC4wnTsyGdur XYsanUpqybsaXHd1eW5vVVR3V0ybtZfv7ls5F96nDeys9Wuvo2 Z0B0Ze8ZddJcZ2eg1tpen9iHongokIHQOgZTJez0AMVNhEJxm8 nKf806/klb9b4zwbQNa74w007BKMM8PACowsIR5LjNL3doSdjqeM+xCN/ngLBzEGIkdcw8xpO17o8F+Ihsbd6YvewXOskn6JNsGzP907S8N ymQvCG3ie49vxib38mBPx+0+RdmXRJoU4MxGzDIEGGDEAoAmHN QKACQQNIGCAMEYsbAY99O51x4v3cbzaMEhNJqvm1SLyOIVzTHL gswPKZWnKueT69+t2/LXAa4mBn4LxegQ0AoAZB5hAwIwARgiewYkuyUVnldAwhIxBuAk YO43HTkGw1il+sTHmwAVMYKdL/S7fg6VIZgOG38rLa85vaeodGenv72vvaL39dLLYYf3zugRPUWD D4XhsdWzYUDvq+OPjjy+V7/mktuFGeuLXp4+jKPrV999lbsnlsATBbG5aWkZ9bUtMTHJ8bFKk OionK7e4sDRMFRcfuyUpITsqIiUsNDpEGRGijA4LT4iKTo2OSo qPScpI3SKVyP39A4OC2AKBXCoNi4hMCAuLVshDxUJZdERcQmxK YlxqWmr21i35ubklW7YUZmQUpG8pTkzKSkxITU9J35KyJT4iNi Y8Ynd5ya+/fG9DN6wb9o0nDrtjs8WJOlDUYXXYrTaHzW6z2qxWu83msNlsDt umMbnj89//MP3tq+UPfzj+7Pkb2m0PBxXf6dQrXbt02iGdRqfTaQYGtFptv3 ZQ26/VanW6/gFd17ReXWrEuV0gkn6EgEdEig0AH8D4hzDhEYQ8JpBsOPARHv8 Ygh/gCb/D8CMCfoOAfwQCj8hkOwD+SiBtANBjPOkhifQQRB4QSTYc8JDq9 LNKthGl+pWXcCXi4GDYhSKXvhwkZIgQqGeUdrvMJtCW2R5mofc sj7+eGHWhLGVxQFZskaSejWo4mrq8K/Z8uvpUZNTZcOEpgcfJQHjVA1x2IZgZ8BKRuOqE6HkurY04no6Y 0+I8F0kw0lyXlNTKA4yIJU6+0b2jmGYKggwM95EdOLUWrxphtU zT82cwnidwzBXXAxr/o3vc97dhgnsIUf2ug5VEkwg2Ual6L1eDjLIoJpsERKOEaghzXQ oVrMaEH0+peq8n5HgmazWCu55Kq8slhVVvr/ybJPWC6/59DIMAv4bAKwC8CsPHcFgLCK+Q8CaSk8nLfZHtNhaYdDm95G/lbgYPwgKeZCLgjQhhGY9fhsmzdOZiUOW7u2JPpTodZNH1bJKJS dbzPUbTAkqaOYWjQa27nOe44DLRxQzndcNHY7EHtwIZPURPPQV vBN0XeJSSnd4xZvXOa8TyUtc5NWigQssI0UIgmEH8CgwYYLwFD xpx+BUCzgLCJtDL4KW9dKCWHdiKIbUXKAf+3uxyxDX8ZGTHh03 bL2Xtfq5k7NPRzn/Uy1dZ9Ak8cQkhrhBxJoiwQoGMBIqZRpkgR5+La3inefvV4uLrx QXXywqvVpRcKyu+vKvj5npKzTUMR+Paut9/vBLJ7IYEQ9L83uLmFs3oIa1W09Xd8eKLd1AUddhQ+5/uPmrbcNge2+wbqH0DffzDHz99fh/99ItjxSUfnz+NouinX3+TnpbLZPK8WAFpOVubW7qjI1OjIxNTk jOKCkv3V9bnb9uZmb49NCQhLiZ9dOSo0bAyNbmUm71DHZYQG5M aGRGfmZ6lVIYFMTmBgVwORyqXR6tUcUpVlFwRxudLkuLTtqTnp CRnZqRn52QXNjZ01dV2Fhbujondmpi8LTk1OyunqLh4Z0x0UqQ 6qqm+zvr4gdX6+MnGhsNmf/L5xx8eN71pmP7hvbdsG4+tT6x2m30TBKybcgK7Y1MX+fPGxrkP vzV9+MOZG5df0OQ8GIz4aijJ1F2p1YxoNf1abZtG26QdaB0Y6u vr1/VrRnu1o+2TZnXZMs79WRj5AcJtwHgbAG7AsB2EnkDwQwLhCQ73 CEFQELTC8BMIssKgHYIegzgrgtgA8HcCyYYDnsD4R2SyDYD+gP FPAMCGEB5TCT95uHxOE6z7tFcy9AL6RDp+y1GM+zIj+bRX9RF6 bRu1qsVlf4vrfo1X+TgpZAbjNg3H6Hy0RfQJD/I8njRNoM8y8HM0wETGrsCAEUMzAEQDgLMQiAaeW1M1LlBLS+7y nIlBjCT6Qhg2s0qYfC51z3XKjlLXeSXeSHUfzcRH6UDVYEDbGK 1wBuP2PI70Fk5i9mhuY43XUfM1mKBxfMag19HteKMXzoihmEFI D0ErINEI4Y0IxegUtKrizuZGrzQHjqUEmqWeKyJnbSqSuN03ot N9a5WzLhpvYeCXEXgRJBoBggkAzXjE4kqflNIPbCWkVBBjd6cc Orr/xUXPCQUyR0dW8JAFBI0AYRnBL3r7z6XW3ToW2TAEhZQT0io9q+ vYmi7X4j6fkOWt5e+65DZRhsORNQ+XFUJhB346AjeWAm/tJjnPIbAeoutd3HWZuIgmLKfDpXYPfUEO6omwCSYaibAZBFYgn AEkmvCICUIseGAZAs04D4Nn/6XqWo5/CwbfWqA49HlnsCko5Hho1V/21v2lctfz5T3v9tR+UCs+LSBOg4gRgFdgrBGGTCRAj8AmBJkiK I+FHfz64Mw3R49+fXDsm6mJz2dnP52Y+WLy1NdvZlU/jwnod22s8R+vQTJ7AcGQKL+nuLmlf+SgRtfb3t18+85NFEVRG2 r/t3fWn9UjsG3YbI+ePLHZHtocTzZnCD75/FhR8UfPnEJR9LPPvs5IzBYL5GKFpGh70ajmcEZi3pbMgm2524s Ky3eW12RvLUlPyU9NzsnNLhw7OnXqxPnXX3nbpD8WF52ekrg1I z0nOytPFaJms4XBwQI2WxoWmhAdnSaThQtFMpFYHhYaGRebFBk RlxCXYlha/uKz7/727qfXrrycnlEkU8QkpmRlZOXvqjyQkJQeGRnd3dXusG5sWK02 +5OHn/z9bFnh3ZL8t/bvNKbE3799y2FHbVa71W7f2GQIHHa73YHaHTa7Y8Nhv/7ZD0t/+/bK67feGC//aTDuHe2W6Z59vf09mn6Ntm9A0zuo6RvSaod6NZo+raZbM9AxZQ 4vN2Fcz+DAL3HYhwD0GIfbALEOCGsDcX9A0AMAeACAj3DAExCy AqANBzwBwEc43AYI2kDoCQBsYLEbeMRKJtmwwG846Fcc8BCAH4 K4X3HgZxifVee6SvpCEG2By6j+f5h7y+c4zizsu+G+m4Y1YmZm ZmY0W7JkxtiOWbIsGhDLtmyRBTPTPTOS7cRJHCcxJHESU+LQhj awG052Q5sN2paGp58P3uetev+BN29VV1d13dXfuq46p891ftc+ xH8Wk94gXV6F8heh9wu4zyXc+zlCfBshroPYaa+eXRJ9BOBIoC GJORrOEoSGBFoC1wHAklBLULOYQEswujDhka1I1JCgesjtdCmp YSSzsYJtTaKEw17Zh9x2NbhqkhlNuKfyEZh6Ak0aCDp8Rr5yFp G+TOA/A+YDmDzp2bHPd3gXU3kM8e8VNHSIT9eiWimtJak5GuVInIU0S7 ud8c+c3OK7ohULe5Qu3xg3tc7dGE1PhIo6qoj1NZKjheKpcEwn IDiCmiMFM0A4+zDU3Fc6UI6m7/DwP+/nczW7+uWmodvMtuXMaCwyJ0Q0GDINwaRc0J9BNa9vGfggOuuSf 8RVj7CXgc9jkpincU/ONcCQU39R3LBNPJAHtTIvLdHcITidh42UU1UKQqTBUJ0QsDLpm Rx6zR4kfr9L2wbBTDCuxTENBudojCVQFse0GNTiQANwLUT1ABh Juc5t1cnsLUGSdpxaV+mx/Gpp6otpvqx/ySuFiediorUxFdcbEq9lU6wY02HYPIoaEESHozoSZQHC4sgUnX mloOZKVdBJL/8JD48pN99ZT79JD78TAXX69vydzyBhva77H/Ua3AmrO5EoRfSq9rWHD/YM9ir6ug53HX75znX+4QIP/5dvE9ntFofd6nBaLU6r3eHgnfYvvzq/dt2XT17kef7TL75e0dBUUVSTl1tweN+REeWJxhWbSovr83IqKs tX7d7V2lDXVF25Yu2ajTu2P5qZURAWEh8RlrS+ede+vcca12xZ 17RlXdPGrMz8h3zB2JjkyoplDfWr09OyIyPioqPjs7PzKitry0 qrmps2TY7N7Ni6d9Xy5tUr1jev3dbcuG3F8sY1a5r37D5QXVWf nZU7NNTvdPBW3ua0/Xm3r+fC+k38Lw94u/OGqvNvp0d5q91p560Op9nhtDmcjv91BHaHw2HjLe/+94+Zj366/I9P3jt37PvewlcVK0a6D6pUSnVvv1o1qFYNKRWDKvVgt7pXqVY r1D3d45qM9Rrc82mG+QGDixRjA4SFomwUYSbgkkhkhcTvQvESI O7TAgckrCRpJSkrAGaBwAGhmabtAJppyiZkbCRhogVWHC4KxBY MWjCRCQt83vdAm+dcpEQjdhutIFYdJVKnBLELRNxZIuk8SJxns gwgaYbOPe7+6COemhRygcYMJGEUAJagjTShJ6CBBAaCNJC0nhL NAbmecdH6u3e2oAkjIGnap3OPSBdOGoNFp4pE+xrpreVe4xnMv J98vMJl5QjmoyUKxgI7T4lXn0LcbpLwnoi8hwtuURUTbgOPBPT tpvN6kbBB2daD8slSUhtKsC6UgYYGQGoYj5mYqL4NorSj0WmXX VL7Qo9tDD6fAnViZl4uPOdBcXIB5w7npOS8DOgZSkNKNCKoE2N GL8lEPrNyizRp0DV2tGrDC7v6vnYtG4hWPhKpzwk66xO+4Jekq fTduder5MT+/p/S6p+UJo+6ZnJMog6kGLDk8zBujihqE+9f4zKbAVip34xg0xHX0 TzBYI20XClw5wiCw7F5WqJLZdbtQdPapJ0bRFww1GNgHmJ6Bhp oap6GHAmMBM7iNEfiHIUuMGKjS8YRl03+ZBsqW1YUEjSaLj0TK pqTIrMYM0cJJmh6VoLMkaieAAsMZqTgAoHpEWIBAg4QBgbOypK fzky6lADGcNEcDadRnEUwDQFPi7ONe7P3XUailN5HdgWf2EXV9 KBx6uh1XY3tB1XDPQq1or27+9adl3met/G84y+fETgsziWbY8liX1q0WsxW3mm3f/TPiw2N35x/guf5f/zzi7KCmqzkvIL8ktZD7a1720vyawoLqvLzyivKG9qOKJoaN5cU 19TXrV67dkPzum1FBTVFBbXbtx7c0LKnae32tas3bVi/oyC/NCggNDAgLCkxfV3Tps2bdmRnFYSHxYSEhJeWly9bsaK+ftmKFa s3tGwuK6mKiUpMS8o+tPfYwd1ta1Y2L1+25sD+tuXL1mZl5c7N zfC8g3da+B9/uLK68Ufd44vvfPafV950fP2Daemew2G32e1mm93h4Hk7z1sdTr vDwTutTt7pcP5osug/+5f+0+9ee2nh8+PltxR1I51HVOo+lapPpexTKNQKhVqh7O1R9y l71Qp1R9fYbNbGeVR+FWK/YJiDwG0A2DBgwXEThFYAbDhmA7gDw0yQMOP4Eo5bMcyC49aHFw B2FLXQlFNIOwBuA4QZxRcBtGC4E4FWRP6uaNm4x2g1NcsQrJyZ i2VGE0UnCujREupkvmikTHCiXHi8UHwqRTQbTBil0CgktAKSJS ELgJ4AegJnAWAB5CBgAaHBGAOkWKHbcD5T1oO4GajsSU/lHsGpQtmpEteJGpexcvlkufdEi3STEgmeRSImBXvavE5uEq5qR 8Q3MbCIEXYc+wlxOy/cts19osyzezuerkLCBl13tMmmMjAtJPUk4AiKFbtpwqJH1wrzd sfmPS7P7IjqagqZT6BmRQRLgXmIGSDOEriWhCxNaAmoxXAO4Bw AWpzRuYgmUujOXLfDeQ3jnSMv/f3w3EetF+70vD9/9HNl+8d93a9eOqC7oTj/9sjt13KHdwl3p8g6stwGc6UjOYKTRcLjhfLxTNFMEK4V4hzuf4 bafMTleC5Q1eKlStJ1hmRmSajDXTTRgqYdaPJRcccWShOEsRiq x1COQlmAcQDjAKaHkKMIHYWxEJ8HUoMg85hXcwDdgfuuDKn3qW mVPLJRPh4PDALMICB1DGAluE5CaIVQKya0YqChCR1FaAlax9Ba V2Y80bO/Jnh8hWA8gtJIAEuhegAMODlJZC9szz7wJBLe7npos//wFrK6E4nuDms8turoQfWQQtmj6DjSefflGzzP2x28/S/PIzAtOu4tWh8sWsyLVpvJarfbbP/4/Nzypi8fe5Ln+Xff/6QwvyopLqO8vLrtSMe+nYfzsysKC8rzcktyc4oP7G/bvm1PUWHluqbNlRUN1VUrGuoalze01NU0VVWsrq1eW1RYVVRYk Z9XEhYSGRIckZqSVVVZV1e7IiM9Nyw0KjQkoqyivLC4qKKiqra 2vq5mWdPa9atWNG5s3rq1ZdequsaVDWsqy2p3bNu7ZnVLdlbu4 4+d/9+U8NtvrhQUfNm07q3Vy18sLHm5edeDf37lcDptdpvd7rA/ZLpaHE7Hw1mB02l12J38S998N/vxj8+/8/Zbk1tfUSw/0X5ApRpQqtRKpUKp7FEqFapedZdKqVCpFSp195g2a70OkZzHkK 8w9D6O3IO4iQROFDFhyB8I8guC/Iyh93D8Pgb+wPA/AbAAaEVRE4Q2DDNDaMMwC0XaxEIHjtkBYcbAIgBWgNkBcGDMD0 jQc7ItA66jxaROjhggfg4D5wCYJ0kjwbAEoRdAvYjSC3FWgM4L 4AJNazFag0MdAEYS0xOAhaQOAB3ADBDTUbheiM2TJOvnotyApZ 9C3C4KYi+Js1lRhhbmn4Klw4KKGUnek5jHRcRTL2zskYwul02U CVcfxcSv4tCEEk4cvYdJrkiaj0inc0Szqa4HD6FRI1i82rV9q1 QXxnAUnAO0lpBpXDLOLks51CmNPxqxtqOU2+bHxZDTcqgT4gYS 5TCoB5DDIYcDFuBGgJ0FgCWEWoqYBQQno3WernPyUDYqc3R7RO PJkFUn88aOZi7U5hvXxxw4Fljfl9/bl2xs8GRDpXMeojmhgKUIHcT1BL5AUhwBWIBwOKLHfDXMug5JX xGmqsPKFKT8DEHNQKAlJDOx1NodWMox0bHNjDYEYzFEjyJTlOo AACAASURBVKN6GuMgzgGUxVGOwDiIL6CYHmFYgcecR3qX34pIc JB2r5BsoshJNFDntV3pd7LRZbxYPpYjnkgTnEkVT6eLp7KFYzm SyULReKFkslQ4WSo/2SJa1wozeiTVQ6J9zbIzkVAHcSOFaSA1CfIWtmQ8eh6JPOZ6eE vA8e1UTRca0xO25uiqtgPqQYVa2dvRpnj1lds8z1scTovN/hCc/ZepwNKS/YHJZl602h/YrCa7xemwfPc9t2v3Z1eu8Tz/+rsf5uRWxMakFpVUdHYq9z3SlptVXlhYXpBfkpqSuWvnnqnJuY 5jit2PHFxW37isYXV93aq1qzc21DWtWNayetX66qqG7OyCjPTs kODwoMCwpMS0/LySgvzS1JTM4KDwoMDQ4pLS+obl2dm5OdkF+TlFhXml5cXV1RX LSvOrSguqyktq0pKzNrZs27xhR15WwfOXr/I8b3XabN/985m05L9V11g+eN/x2SeX1yx7q72Vv7fotNptNpvV4bTbnTaLnbc/XDyymBwWK89/8vOv2o++u/CPb29dmHhO2Xjy2CNq9YBKpVapFOreHpW6W92n6lYpFb19yt7+ jrHJnC3DoflP5uT/x83rq0D/P0TMLwzx3wCfez4+X8Um/JCY+oub58+A+IWkzCRpISkLI7DjYFEotAO4RDM2gjSTlFkgsEH ooAQ2DN6jGTvAHzCMnWKWgPALEPaEx44j/nOFNOdHzHuSZ4W0kRHoJSSL0WcRQo+IOILSkZSeFuoZ0Rko5wR Qg8MFGjOQtJGhdSTQQnyeQeYpeE6E6yjKIJFp4zzaNmPJA4j30 8D7OiK9hLq/gLg9jbo+i7k+j3iwwrpj8lNFYjZMdqZA0NgJ5bcJeJ9meAz/L+p3XbC+y322COpc3Wfy3He0IpGDsHhEqm6RcsEEy1AGmtEzQY aMgjGV/6r+lPbB5IU1EqM70EPCSJBGQOgwAUcTOoIwktBAEkaCnCehhqH 1LjjHgLMSzCAgF2ha5+GlbIBZx5CEdvfuDczpINfRbKpxE5Kw1 b2tkZiTY2dxQgcFLGDmIeAgYaRwDjIGCuhwdB6iRuCnpde1C4+ XoMfr6fJu6K7DIQtQg1g4l0k27ccyO2VdG8VsCK5DwTyB6wWAo +h5BnAExQloLU3P4zgHACcE5xm5ziVjT2Z8QFOwqyEs8q7E8zk y9Al5nl5SMSwo7hLVjFCVvaKKXnH5kKhkSFp2Ulg0LKscE5Sck JXogM9ERv4z6fXnQGWT52gBqZHCBQHBQtE4WbqwK3ffRSSyx/PwztDR3VStAo9XxzR1rDu6Xz2s7FQp2xTqV1697eR5M++0Oh5W sH+dCphNDuuSddG0+Kd5aem+xbZot/x5/4+vP7f8+ovTzr/15t+XLWtJS88vLq1UqQd7OocqS1cU5Jfl5Ranp2UnJaXt33/o2tUXX3zhxnPPPn/p0jNPP/3M1SsvXnr6ypNPPPv886/cunW3tn5leHhkUFBISEhYZkbOqpWNVZV1qSlZgQGhQYEhkZGRa 9c2TU3Ojo2e6TqmVPUMdHeoFF19nW2qno6+gb6Tevbs1SvXt27 ZUZxf8vqt13met9ptzh++ulhR/sOZmYdhrx9r9foVTfwPv/B2h83uMNucdovTYbY7bQ47zzutTpvVbnbavrGauE++f/yjX2+88txjQ9tPdOzuVqqUKqVapVQquhWKbqVK0aNUKFW9CrXy yKmB6sOKg+MfHhuyFFS+17Rh0c3tXW+3uwMD5uWr7z564MfRST 494wcc+RnHLBhqxVArjlkw3ISDJRw8AHAJxe4TlIURWnF8CcOt CGbC8AcYfg/HFgFqBdgSSv4Txj8m2d1JKZZTPXV0Rx3VX0JNxUONHOVIzEjgH MA4DDsrxc+54zqK0EGgAbgO4CwAHMR0OKrFAUvgHIFyNKajcC3 BzEnkp9MER5qobUdFWwZEG5WCzZ2ijW2em5VumzqZ3ZskIyXiW T84I3OZyBGs7kBkL+HgFxx3YOAe4n5d0tjpNpoHZiVAJ3GbLKK b9iEh/USF0nV4lXDaV6CXEUYXeipSdmANkrpTsrZVPloJtGJgxIh5DHI orSOpWZrW0gQLIIsSWgg1QoITYXoCLFCYgcL0JLFAS7W+Lsfqk JTDSMxe1/blzClf+UgaWbsOiWqRHVpDTHuhBgg5ktBDhMWgnqJ0kNHglAai LIEYSZQjAqcl69vkg4WYqhKUdYul0wCyANHT0tk88dqjSGKHpH 2zcCaI1GJAh6M6BuUIjEMBi0EtgWtJVA8RHQENNHGeorXygP5V VIpa6MktW/VZUOBdBH8Fkd5ARK8gopuI/Doiv4bKriEuzyAuTyPSS4j0CiK5ikgvI4InGWZ6z6Pv7mx9k8z Y6d1dJ9K6QQ4SOoI4jefqd+XsvYoEqdz27fIf2kVWKZFoVfTq1 qYje7oH1F3qvoPHjrz2xvWH37PdYXP+Rcah/6nAotlmfmBefLD4YMlsvmex3bctLVptZrN1yczb+Tdff7+hvqm 6emV9/SqFor/zmLqsuK4wv6ogvzwzIy88PNrfP3D58hVKhWp6enZubm52VnPq1 PjxkdGTJ8ZHRycOHmpLS8+Ojo4NCwsPC43MzipYuaKxtmZZakp mYGBIUFCIn29AWGhkV6fylet3Xrv91jtvffj+O5+8+/ZH77z10cd//+KN19597fbbj+45lJ9TVFfV8PF7HzmdvMXm5P/49YWWje+q+h9ykt45cepi01b+v7/zdofVarfaeJvFaTfZ7Fabg+ctTn7RYTfZLYtO5ytf/8Z++MOzn7ylHWsfaT/Yo+5TKNVqlbpXpVYoFEqVululVqr6uhW9R06M17WeeGTwi9TcL wICPtizj09N+zQ14d3Jcb5x3dsHD39/aoIvKfkVIP+ioImAJpIwk4QJxx9QlBkHD2jGgmH3GYFVJLYA+I CgrChuohgrgA9IaokglwiwJCBNkPqe8PwI871FBt4CQZfQ+HFp yzHf4SrJnBeuxWiWpDlIGCGYp4COhByJsxBwBOAgYSABC3AtTr IkpSVIlsJZiOsh1ENSJxJxQUJdpEQXJdWEivQxQm2sqybeVRdB cd7kggzoaUInl00WCNYqEJfbBLFIEU6A/4KIr4jr1f6jdYJpMckCgd7dbbRCsOwoEtQvWNntOlYm0ElIHS0 dj/U7ug1NbQfFQ/KundKxfMFksmAyUTiZLBpLlY5nScbSxVNJ9FQsOZlIT2XTkxnC MwnCiWjJdIxwLkigkftqg/I0bYk7jBHNx3Mmt6ReKMw7uz7jsCKh5WTJdK+PPhHXiSDrxnC+ jN4b6KU4B0gtSnME0BP4PIQsHjQtaGmX9JWBngamUinwmAPkHC nShrirtoLcISSzTaxqEGm9KR0GWQA4BuMIoCdxHUlzNKkDpAEA FhAcoOYZSuvudqISVh3G3RaEsleg2xUm0yBtHJG2KCSNR2Utre Lmo5KWY+L1reL1h8Ub2kUtx2TruyXNx+SNfXRqb1S+IavgFRjU 77V3r8uZdErvCTgKTglyHtuXuf8KEj4k338wYPggWd2LxQ5ENR 9bfXSPeqivX9F74ljnxeMj71y+4rQ+NLr9TwX+P/5B8D8VuG9aWrq3tHjfvLhos963Whet9yy2P03WpUUbz/Mvv3Q7O6coLS0/ISHrwL72bZt35WYVFeRVF+ZXZaTnR4THBAWF+Pn5+fj4BAYG+v v7+/kFePv4+nj7e3v5e3r6hYVHpqVnxsTEhoQEh4aGZ2XmlxRXVlfV p6VlBQeH+Pr6BweH+vsHh4ZGxscm5mYVFuaVlZXUVpY11NasXL m8adXylvLiuuK8ysrS2jUr133z1bdOnl+0LPH2pa+N+oW8qn/Nzv9kPHehqOxbnZ632nib3WqyWs0Om8X50DPgdDptDqvNaXY67 LyT/9vnP2nf/5H79ucTFy4ebetRqvseWob71H0KhVKhUnep1Aq1WqHqPjY2XbR r1Cv5CRx8TuG/xMX+kZL0u4T5Msj3np/3z3Fxf6Rl3Hf3+hnA30naQlImmjIxjAXgD4SMjYRLAtpKgEWGs ggFNgCWaMYMiUVGYIOEiaAtkDJBykQwNgCWxIRVjCyJMTNF/IHAL3DfF+QbezynS1FORBqFlIYUcVDICYhpEW0UAQ4SBgrqCWq eJvQE1EGaoyiOIo0UymHASEGOofUMzUFKT1B6EmhxfIFGOZLRE yIjDvUIsUAAHUVz7tLJIqZRibjdocj7Avp3RviOZ8xFsmif52C tRONDs2LIuVCaQL/BTYICJRI24NLc6TNRSnMyqHH3GK9kmjqRMI4JPydOPUtlGGGGh srRgzROkHGOTDVQGVomWSdOmBencnTyrCRjgUrSkYUqyd4ml8G YvMdLej+82nzizgr1E49cG1p3a9um672Np4wNHY8pX7ve8nqbZ DSKUWdRu8tdO2vcZsKF5yjKIJQaZbRBBC9I8McEPnqXDZ3uo6X U0DLp8j6hl5FijMHuw+sEJf1I0AnhpkOS8QyhXg61OGEgoZ6Ce oIyioCWYvQCcoZm5kWApUmWoA1CoJVItZGSjjqm+CgePUiUtrp 3t8hn8mRctEQb5KKPFmuiZNoYmTZOPBct0caINZGubLx0NtZ7N jdAXR+xa294OYfIWZAy7X7wqOfpaslElHQyOH9hb9a+C0h0r9u +vSEn9tB1x0BsT3zT0Q1t+/pHBpXKXq6rry+rfKplF291Wvi/uhYwPVg0/bb44E/rfbPDbLaYzUuLNqvJ7LSZeJ7nn3vuSnpmdmpqblxs9sF9XRvWb S3ILs7Pq8jPK0tLzQ4KDPX3D/T3DwwKDvH3D/D3D3j46OcX5Osd6OPjHxMbn5SSEhkVERERHh4emZNTWF5WW1O9 PDk5w98/wM/Pz8fHNzAwKDg4OCggMMAv0NfLPzggPDw0NiIiISOtID+nPD+zv Cy/tji3YkPzlp9/+q/dbrE+uO9cNPFLv31iXHi+cde1pi0fnhl3/vofp93qtNocZpvN7LBanFabw263P/QLOOxWu8Vh5/mbf//Y8M5X+q9+G3/p1VZlv0KpVCoUSqVC2dOtUHQrVIoulVKhVimVyq4xTUbLDCJ7D AU/4pgZQf4LsJ9Q7FME+QRBf0SQ7xHk3wj6Hwz8iYM/cPxPHF3CMTPATBAzkZiZxE0ktiSinBSwI8gvCPItgnyDIN8hyC 8YeIDCRRxbwsAiCh8Q2BKDmnHMhJCLOFgCyLdY0Dnh4V2kPh7T i6k5QqxlBJwYmyOABuIaHNfiOAtwHUC1GM4CoIOYFqIsinAIwu GolsQ0OORQRIsDHQm1BKLFMQ0u5RiphiJmAaaDuA5CjUA2mU2v bkNcX8KxX1DkC7+gtzcf+cFvrVrQWUNpgjAtgHMk1BBuk0F+rV vwVCUSpXA7+IirNh+dljNz7vKTBeSqHXjkIAxhsRAWi9Cg4RoQ bgBB80SQgQjRgiAtCDHgISzwP0e5vECSNyj3efea9gR149Zrhx 59esaj6HDJXu2GswN1T69fc6krvKULC95S2z/c9uZY4sgm9+YdwpRtVNJ2jy0K0YEjwn27JQf2SA/ukR3YKd6zxX/f3rL1hxsTN6/K2JzVuMd95z7Z7j6mfBbxnZCUqj2GG8GZAFwjxDUUpiFxFgcch mlIXAsILQY1BMoChIWUnmSMYkRHA71AMhshHSyX9NRJhzPpmVB UJ0c5gLMQ01IoCzEWYjoK0ZIIiyMsgnMorgNwmo5aiK94bkvm8 X4y7STieR5E6JGMPYLmOnlvbqHuaO6jjyFhrW6HtvqONBMNe5H Y1rDGw42H9/X39vco+0daO5/qUP720ad2h9Nqt/3F3EHngyXHPYtl0fHAajfZlmyWBzaT2WrmzRYLz/OXL11Ly8hNycxNS8lv36dc37glN7eosKC8ML88MSEjKDDS3z/Ezy8oMCg4JDQ8OCQsJDTCxzvAxzvA3y/Yx9s/Oio6KTE+LCwoLDQkKiI2J7uovLy+uqYhMSnFy8fH19fP1883wN 8/KCjAx9vDx9vTx9s7PDg8ISYpNjIuOz2/JL+6vLChNL86L7No985HH/y5aLM5zGa7edFqsVnsTov9/n3Tb785HDab1W6z2hx2h9XssFkcFrPDarXb7XbeyfMOh8XBmxx OB88///qd05evnvvyx4WPvuoYOalSKRW9KkWvqrevV6lQqNRqhVLZp1ap FMrOU+eyW55APS8T4v9gwMaIrBj5uUfAm8nZnwnEH4ppE4VbxM wSA++JKSsBLZAy0YwJAhMttOOkmRQ6IPyVQL/28/oqP/fH0tKfSgq+qyz9McDrcwL9BccXKcpMU1aIW0SMA8L7tGiRFDyg oUVIOFHqSypzXqbYI9AnUTqBSEeRegrhMNJIQZagjDQwQGgkcA PAWUAaKZwj4DyFcjhuhLiRwPQANxK4gYJGEWBpah7QRkRgABQr AhoXxuhCsIDWC9wnM8WN3YjbHYL8k2F+cfX6OL/+04Dl0+4920RzUZCjKJ2AYIWUkRZro1zad2PJPXhKd0DbbndNJ PWYAM67uWoyXRT1Hj3rPZUb3bvXe/ZsduvY4K3Y5tG1yUu5yUPR7KZcK1c1e3bt99pwkgiYqG35R+bm mfz+fVNfPNMyfdqnrHP9wPMHL2saLmzccHk4a98cEngo/XDX2FfzO85Px1Sf3Ljrw9jUi4iHEQl9Fg1ZgKHnkQAjCDJCPxb 6GURu8/7Cc76yx0iZlgh8EvW7jPifJYuVXuqVLpwfbaBIPQV1BKVnCD0J OYIwkECPMWcJTA/AWRrqSYGOFBtEOEfCczRuIKkFKeBEhFFEzIuBXkgbhaSWEBkYm oWEHmAGCDiC1lOQg2CeABwu1dFhCwHBjyWGGCr9Ww8Jk7SU7Mm whIuimFaXTVuq9ZNZ+y8isb2yw9sDT20Q1B/FEhXhLZ1rj7QODPWr1N3d7Z1v33mD53mLw26x2f4q5tj/rQUsVovF7DBbnWa7bclhsjxMUbbyvJ3nee7cUykZudnpWYXZJe 2tvavXbswvKC7JL8tOz4sMjfXzCvLzDvL29Av0DwoNCfcPCJTL PTw9/Dw9/DzcfT3dvSPCw+JjIkKC/YMCgyJCY7IziysrGqprlsXGJvj6Bnh6evv4+Pj6+vr4eIlEjEj ISMWSIL+g6PCYhOi41LjU/PSiioLaioKq/Kz8rrZOu9XpsPBWE29adJiX7Barw2x1WK28ZdFpWXLYrA6bxWF 9WAhYnFarw2Z3OJ1Oh8Nqd1rsTjPP86/ceP6k/szZL/5t+PKXE2cvHO3sVqjVyl6lqlfd06NSK/sUPQqlUqlSjXScPpfVwmGejxPk9wTqhPhvCPJmTOLdNc0/SmVvA/RnDLFBaMawexBYILASxAOC/B1FzRhxDwE/ouAXivhwRcMPver7u/d827ju68bGn3bs+Jey997aNT9L6M9Q9HecsgJ8iYQWCCwkaceh FUArTlgw4ndM/Daee9q1v1mgCST1YmCkMR1GcASmA1BPYCyG6TGUw1AWI/QExkFMDxEWx/QQ+988DKAcjuvBw7cILUEbhKRRBFiKYEkwhxGsq3y8RLhWgXjc BGAJRxblkp8K8u/5RL9AF3a4D9VQBhdwlsBYChhIyDLSM4WSrZ1IxIggZyCwZ4tkJ gNokpiZfOlErcuZWulUpXy8ynWs0vVUmftEuctkkXS6QDSdL5o ukZwpdZ8p9xloQvM3hJSeSdhyMmd494FbQy360+7F7Ss7L+59a rzh3JrmC13pO04gPltyeoa6/z7ZMLc7dp0id81V/zyDIHtcWD4rLB4XF0/RReNU+QRZdtqlbCoyZTLH42Re4GhEulpSrKBK+6gVB12UdTLWH xhw3IgBA45oEUwPMQ5iLMQNBMICYCRQPYrPk4AlhVpGzAkxHQB nCdyAEAYU41BMD3EDjXE0ztKYBqf0JMUSgCNQA4lzJKGjMS2NG QSYjhBpBCHnAoOfDPU/F+k/WC4u2RGWqekc/D6+Sk1ULq/XTuU8+hQSPiLfdyRoZLuwqh2N6Y9oUjW3Hu0fUilVR7uOddy8c YfneZvVbLFZ/2K/gNnOL1ktZtuS3WqzPeCdP5u/feHmP1ndd1eu8X+Yxk9PJ6ek52ZkluSVtbX3LVvdUlBQUlZYvq FpY256XlhgRERwVHhIZGhwxLKGFX29g9u27grwD/H1DvD1DvDx8klJjE9LivNwcwnwDwwLic7LraipWlVeVhsTHe/l4R3gFxQQEODt5R0YEJCTlRURFhEVEZ2UkBoVERsZGhEbHlOYU VCcUVhVUF6SW9CrUDltTqvVbrHaTRabyWpdslpMVqvJarNaHWa zzWax261Ou5W3WZx2K2+zPiQN8HYn73RanE4Lz/Nvv/TCmeHOZz/6h/7rPydeuntYPaBUqNSq7i5lT7eyv7dnQKVQ9ag6u/uVx8YMueuNqMtTEHwNqS9p7zcIr5uU+BWx8G8E9pFI8C+p9AcI v4HEjwDcB5gJQ37H8V9x+JtY9oNQ/DkEbzav//1A6++pqZ8y1AcI9gGCv4uDD8IiP9+88962PffFrv9EsO8J+F8C +x0giwC3opgFw5ZwYMLBEoF/jzBXBaUnXIcbgdEdzAM4RwEtgekgrgOoDsP0OMqimA7HWYD9X0 sMygFUh6EsjrIAZQGmxzEOgToKzIgpTkYuMLgRwTkEsADTSVzG SgRrlIj7TYD9LiS+Skv5YGTYWVr0AXTTUsv2yyeLgd4NaElqGh POQsGc3OVUuWTFCO51jgl5DKbo0DQdSNSTsVoseRpJO4OnzOBJ 0zB5Bk+awlMm0bRxNGWSSNFjGZNk42HP4Y3C7lpkfYFbW3nA8a S6yy1d7xkLD4+V7Zter+0/8Gb3vtsD5Z2qxNruQ2cfP/hBt8+En0ydh26uY/bW+p+ocR/Nk53Klp3OFY5lCyezBBPp4afz1x8p7s6Pb6tIX364InigyHU0Q zIdSbHuuI5GOQHGUUCLAx34fxooTAtRDYlpANCimB5iOsDoGCE nQFmIGgBgUVKDwzmM4ADgAMphCIcgLIJxCGAxlMMQI47pccjiO AsQA0RZnJ4jA84HhD4eGrQQ6X0inW6o9Eo5tv6RmwG5+0TLa5b ppvL2PIcED7o/2h40tFNQ1YpEDYSv6Vt3pE090NOtbms/2nrr5m2e5x12q93+V+cUmqxO6327Zcluttqcf/zxlnrkidzqD3YdeqZq5d9a+57rH89MTItMSU7PKulpG1mzYn1u bt7G5g3aae3Rw8fiohPjohMT4pKTElJ2P7L38uUXbt+627xuo6 e7T3BQqL+3T1Fu1t5HtiXERXp5eMRGJ5aV1pUUVzc1rq+rrg8L DIkMjQgODPLz8R3qH/jwgw9Pj47V1zZkZeQmJaRmZ2VlpWX0tHfrp3XNK1YWZKbPTE04 HU6z2WI1W2xmm9lsXTRZzBab2Wo3W+xWi8O6ZHOYnA6T027mLS aHxWS32R4SVJ0Wnrc67TzvfP/6FZ1y77Ublx/79If5j747duqMqls5oOjs7lN2KgYGekaUHT3KgS5Fn6JjzJi3w YC5P4tLPyMir8U8es5r2wkscxANnKP9L6zZ+p/9rbbMrI/TM7+KSfgZQe4ExH68ZrvZK+j1tc33mzd8t3n7D+t2/Mh4XEeQD3Bwn6B5DLfRAguCfAZEt1fs/H7VzntQfAcBfwfMf1DBz8DlZ1z4EyB+FTFLJDALGSeJ/At4PkFvOSDRZhB6Ia4laCODs5BeYHA9gAsEbgDQQJBGCnCQmqc fjg8JA/nwDjlIGElMDykjA3Uk5Cg4T6IGDM6ThJGk9FL3sSxJYzfi9qJY 9vGu3Q9Gx3+fmPxlcsK6ddtvooAp1+b9XpMV1KyLSE+Sczg5j9 EGD4+BVVRdJxJ/Ck+cB5ELMMqIR04SMWN0/DSMnYUJRjzGSMSeI8INVKieCLgAXV4nhP9AfK5IN5/wmFjnqk+WGdyYWSz+ydT9b2s2Try2sf/NnhtXj/zjeMenuiPP3Nw48FLHS0+XPF8JtSjgpAKdn4j1JvUyuCCABkAa CVIPCSMA87iXjl7fLhrLR4bricpuqRfrSukgmCcwI0GylMBAAi 1DcS5QJ6AMNKGHOAdII4lzBK2nGJYAegrXUYxWJNDLML0AGBmK JYVahpkjaB2k9IAwANJI4jpA62maJaEeYPMQ6nGGxSkOkAaS5K Bwlgw/H5r0REzI2XDRZLB7bwUoXkWmrSfryoOOrqyZnc585DoS0+dyYF v4qe2CqsNorDJyXe/aI0fVI4rO/iMd3W03b9/ked7psP31DmLLktX5p9V632JzWv7ztzenKmr/e/Fp/t7vlht3niqt/3ROb5jVdnUPd3YMnjwxsW51Y35uQW11/ZpVayfGpgryimKi4hLjU5IT0pOT0pMTU/PzijMz8oIDw8NCo4ICguJiIzdvaEpNjvP3842NTSgtqSwrrW5u 3tiyrqUgN9vPyys0KCQqPGpdU/P69ZsrK+sKC8sKC8pSk7MyM7JLS0rbj7TNTZ7ZvXVrTnraExfO 8zzvMNvt9233LdbF/+u5dPA8b+dtVqfd4rSbnXazw2ZxWs1Oi8lht9h5h9PmcFrsdpt 9iecdb9+4duHY2rceH7768cfzX/w89Niltk5lr0KhUCm7utW9PQPKLoVK3aNSqXpOsbkbtYjH44jr HXH1VMCJVfKJFI/+ld7tB3z3te6/+sKBi5fjtqrWnbhT3/OWJH+48fQLJ9/6IvORqd3Hbw4Ybx9/5g1R2QGmekSe+wR0eRWQX2Dkh1D2BhNxRVx4hinp2XDytaxtj5 P5fYKa04KqaUHNDFMzJ8x+CrjcwYnvITRTyCJO36Gretwnq0md O65FCR0EczhkIarFMBZHdCjOAshCXIcDFmI6DGdxXIfhWhzXAU yLEyyJz1GojkG0KKlHGQOBsQDVE6iGYKbd/E/UiGuPI8zVyPC/K3v43OwPXGQv5OV/1NnG+3vdGanTWAAAIABJREFUxLymvXYcc50sojhPYl6MGYQ45y U2xLlMlUj7V3n2bvbq2eSr2OKl2OF7tN39QJd3V5en+rBMudNF vdela7df566AtgOeTacIv0sAvgkCnpatG/Bs3SprWy7sWi5vbfLaMEhEPo4FTnjv2Bk8kR92apl7YyuStt+j fRM96UtwDDnH0Boa6gCip1AjhRtwwAKohVAHMA546URNR8WjBc hQDVrRDUVaAuEAykLAEcQcRmkwRIvhRhJjUVyPInoENyBQj6Ac ghkQVI+gRgQzInAeIc5iiBFBzyKoAcE5BOMQlEUwI4IaEWweQQ wINo9gehQ1IOg8ghoRXI/gHAIMCM7hwmmPqDO1ubrDoaMbRaNZ0uk42Ugq3ZUpPVnm1tMU8 +jp5PXXkPzD8t4G39GVgoojaKQ6ZG3n6taDqqH+DlVHW1fbrdu 3eJ63O/+abcL/lwqYzDbrosW0ZDLbLQ8+/eZfl+9Yf7tvc/D8Z59eqK755vxjPM/z93nTn6YLly/Ur1heXFRVmF9amF9SX9uQnZmdlJCcnZmXkZoTH50cF5MQHRUXG 5MUF5scGhIZGBgcFBwQHx0RERYcFBwYHRNTVlpZVVlXXFyRnZ0 dGxMZEuAXEx4VHxkXExWbkZ6Tk1O0fGXj8uVNqam56Wk5pUWVK xtWlRaUlBeUleQVvfTCdZ7nbSa7xeRYdFj/+PFfv7/5+q937/zn9bu/vveh9fcHdrPTZnHaLHarxWkxOS1LD1XA7uBtTofZaV+08/zfbj/7Unvph+PNL7/54sJXP03deOOgckip7OtV9yp6VF0dil5Vn0rVo1D19IxrsjfpE K8nEI8XxQ19vqfKXSdTJN0N4r2bgwa2lr20I5BN8uzPqtZO1Ux cim5XF3HtDbcPxekqN73YPvjZbOm5dbLhdLfp0qCRvVSO0jXqU nD2TZB40vuIymOy3nU8KcVQs+bmQa+JFNlspMtsnHw2Wa7Ldj/RTNUMI253GeZ3AWlFJe8xywa8p/MlRinBEpSWolma0FEESxJ6ErAEwZGkniI5kmRJSk/RHEnqAMUSJEtCLUmzBM1iUC8AHCU20mK9AHIExkFS6+o6ke2+p xuEXwPgvZioL9c2W0Wu76HwQy/fLze22AN8PsXJD0D0Zfn20/KeR2SqNdKutZKutXLlGu++TZ7dO907d3kqd7l27nDvavN4ZAip 2cdsOOx7tNure6+rYrtEtVV8YrVsJt9vus5t01HM+0lM+Cnw+I x0f5PweI0MfZsJfxX3eh2RvoPG6Nw7WkRngl1O5TJr9yKxxyTb DntM59BzDKMRknMykhORLKCMODEPCCMBDCRuJFEj9OLEzR2Sk4 XoYBVe38NItTh+lgAsSemEtE5C6QQkJ2E03pK5MKEmltKlidlk 2UyCy3SyZC5JMpMsm0uVzSa5aZM99amy2TjZXLxkNkE6Ey+bSX KZSZXNpkjnEqSaeKkmTjwXJ5lLk8ymimfjJdoUiSZdMpMonU1y mcv2PrVWsnavtHhYXnlKvHmP1+gKt6kS99ONHoNtaNXR0ApDyb 5LbvtXS+Yi5OPlwloVEqWObGltatvfOzCsUve1trfdvn2T53mr 0/HXJ5RZTE7LosO6aH+waLct8byJt5mcvMn+98GBC5WV9k++tFt4 i9m6ZL1/7unzK+rXlOZWF+WX5eUUlpdWFReWpiSlZ2XkZmfkx0QlRIRFh4 dFZ2bm5eUWhYZGhISEhQQHpyYlRoQGh4YGR0VFl5VW1FQ3lJZU xMcnhIYEhQcFxUfGJMcmJsUmpialZ2Xm19evbFq3ubi0Jju7OD uzsKZyRVF+eWlBZU1Z3Zt33+J53mGym01O3uJ4f3DobETMCynZ 51Mynli3yfzFT7yNd1icDovDbnFaTU6ryWmzOpxOO++w8A672e mw8fz7ty/eaS/6uq/o7qXxJz/79/zH3ymm9F3KAXXfQF/fwFDfyICqr6+3t7f/RPdpbe6mGRD2DOJ13b9Rkz7R5XVkL5o1iARMCcoUPr0t3nMVEc d3Cop6kJBxIv2EzyOH5KczZBqPmIXoVW8u8+Q8BSwlPSvy45Ld Nm8UJvS6F456737UU1dAXBAz53G5ASl7Mz3yUhilp6lzjOAxij yPS875+5zcICzWMrLPXMRm1PsdZs1A4HSJ17y70CASLohFC2Lx glhkFImMQuG8ULggEpwVCudFknmJwCBkDLRoQSScF4rPSoQGkW RBJF5gBGddhEZX1wV3+Tk3ep4UzUu9tCm+nXvxtHOE9Gsx801o 2D/qGv9saPl99bp7lZXftrZaYqLeoslPKZd/I7538JgnQZSBir6EhT1Fx10SJF6BkZdB1DN49Dk0yohFPQEDzg emXvBMNMIgjgo3khFGGKuHFf1yxU5ftjp4YrWsuR/1f4OmrXKaF5NODxfey4UXCiyk2y8w4wm/oW2uC8Hu2mjvoxtB+kks/VRA534fTZTISNBnRYJ5F7FRJJin6bMCiVEkZ8VyViTWi0INHhs U3icrBCfq5CsUMg8DQZwlBUapZF4uNspERpncGOE5sla2+Zio/qS4QSutn5DXn3Spm5LUz8jqpl3qpmXVk+710z4rNC7Vp11qxlx qx1xqJ13qpl3qZl3qZiR1E7LlE5Ll46L6cWn9tKxuUlJ7Wlo3K aubltVNyerG5bWz8tInYbChauXLTS1vCoJniBwjVqCjch8Tpjy PeFyMrby0ZnY2YCqJnhd7sBX0smNoYlfshtZN7a1Dg8f7e/s7Oo/duf2QOPY/tsBfqQLOe7zlgc1x32J6YPnTbLNZ7fy9Pz6fmmSzcr+/8LRzyb5ksprNJtOS6alnnq+rWVmSU1KQX5aTXVhVWVdYUBofl5 yYkJoYn1pVWb9+3ebmdRuLi8rDQqNCQ8NCQsNCgkOT4hJioiJC QgLi4+PKyiorK2qLCsuSElMiQkPDgoKiw6PiImPDg8KSYpMLck qKCsoryuszMgoyMwoy0goa6horypYX5VXW16z89KPPeJ63mSwW k5P/+d7LG7d8quqzffL5H198eu/bzy1/mmwmp93scFocTovTbuatJqfd5nDyDrvDwdvtD1uv9165fONow2 +q7M+0Oy7//V3jV3+eeebG/qM96oHhZ569+sKzz58aHuF0bP/gifbBAQV3M67mFSb40pbTf9/AXRJmDFPiJ9zktzHp01TyvLzWwCRfwMVPucqvMjKOzD7iMlxIT kkSnkoseD4fniLFs/KcawVV19asXuhJOdJJNVV6DCUxOiFyFgUsZMaIrIu5+c8WE5M0 rmVIrRDqMKgnRDMRrq1bsFgtRn6ICO9StcMek7UCzhtoSZzFAY tTLKQ1OD2LkbMY1AJcB3Atgc8CXAswFqA6DOcA0AF8DgNzENcK kDkBnGUkGrFQRwMNLjoT6KVqEuWdRDzOw8irMEUTsFJbrXwpas Mp7/p2j4r9rQs34tb3w7ReKn8KzzuN5Y3CvJMgcwJkskTeHJE3DXKn YfY0zBij0qaZpLOYhz6z5J2YtKswfJLIHaMypyRx56D3HJky5r mzy6d/lY9qL5k3g1JvQXAPxf8Q0b9L6EUc/IYSvyLBL7gePCw6E0ZNCzxPJbhvPYxEniRyhrx6WsQ6X1xPYFo MaCCiJRE9hFpSOEMJzwByjvDRyFZ3uPYXE/3lovoOieQMxHQCYo5mtCitRRnW1fV4DVXWi7k8AchbGP0WytxF BS9hzC1U+Bomuo2L7uCCW1D0Kil9HaNvYqLbuPg2LrqJi25jwl dx4R1McBMX38JEtzDhHUzwKia6jYlvoMJbmPAuJryFiV7BmLso 9TbOXNi85e7ure8z5DmMuQJkV6H0GpA+h/rOpB6aqLu2TzQlBXO0dKyQrDuERPWErWlfd+RwX/+Iskd9tL39zq1bPM87+P+lAf2VKuC4Z19cNJkWH1gWTUtWC3///oejp4y5mT89eZE32xdND5aW/nT+ucj/6rj8xMuV9asyC4qKCquzs4oqKupKSiqTElOTEtPq65arlH3XLr/w2p3X77721vJlqwP8g0NDIwIDghNiE2KjooKDAuLj4svKqqoqa/NyixITkiPDwkMCg6MiokMCQ3du2Xnz+q23X/vb5Weu1detSk3JSU7OSE/LXbFsXU3V6vzcspXL1/77m3/zPG8zWZ0WJ//N95drGn6dmV96+9MH3/7k5B12O28zOe0mu8Nsd5iddhNvXXLabA4nb7c77Q6Hxea0OXn+/VcuX29rWOpL+2y46Pobz+u/+EPz2seH+4eHRo6/+cY7Tz5+cbiv78UrVybHp7uOD1795Jd1B/+ZUvBG59z3a3qfEwezkeE31675QSi5hcG/IcTfEPApLXpr9YrvYqOuYLGdUnUdfcYr40p63vMZYBQmPJux8k ZzgaHuyDs9+9/bH6ILpGZoXEcSRprSEfC0OONiafnVMtk0TWgB1FHASKLnEEwPp DOx0kcPIIELCH2ZKFNLJ0swgysyB9A5BGgQqMUxHcANBK7HCAM KDAjOIqQeQ3UIZkQwA4IZEGhEgB7B9QhiQIAegRxCGhDBPCOal fsOrySrBhGvx0HChPfRox7HKyI15Q0vtEVPtIRMNMTPrdz795E ktkEymCGdzJZMZUvHCiXjedLxHPFommwqUzaTKR5LloyliMcyZ acrPYZb3Jdvd/feEJK5KVzRKJjMFE8V+au3ua/oRzynEM8RctlO/95j7o1TqOx5CH+jgE0EzRL6AQ7uAWoRkbzOVA97na4mWBGhlXm dKpGuPYSEDtDVva5Da0ltIMpSgIOkgcI1BK4nUQOF6iHKQY8ZW eMx7/5KSrmCLOsgZFohyjKUjqQ1qFAjdR+rEC7vQ7weh2FPyUrnhDUn 6bpTovqTwvJBSfUgU9MnqB0U1oyI6k5KG04x1cOCuhGmboipG2 ZqhwV1J0S1J0U1x4U1I4LqEXHtKF01wtQPC+pH6NrjTP1JqnaI qRuia47L6icEmR1emT3BpePScoXvtk63rQfdt7TJt+8VH2jMMG 4ovFnFaAAxS3qM1tOV/Ujs8bCmjjWH9qsHhpSq3rZjHbdv3/n/iwqYH9gX79seLFosS/f5P//76fjM+fI1/7328sNT++KS7d6i9Z7F9oC/dOFKVdWK3MLqnLzqtMySisplNbXLk5PS0tMyqitrigoKc7Jy0l LS9+09uHnT9ojwmNDgyKDA0MS4xNjIqNDAwKT4lNLi6ory2qys vLjY+IiwqMCA0Jjo2OjImLFTk6PDp7dv2rF/78HSwvLigtL8vKKM9Nz6ujUNdY052cVbNm//49ffeZvTtuRw2JxLb7/1VFL83aK8N1aseS678vNplv9z0Wl22kxW25LNYXbal3jrEm+zO p283el02HjbEm9z8M4Pbly8caz8z774j9Q5j13QzH91n/vi147puYE+tUHL9SjUiu6us6zewJ7tHpvdffql+LIbrn7PrFe9 33LmOh13Sup1MSDsDuX6rDT1skv5RVH6deh6LcDvtsTlMZjX6z rUIBj3yH4uq+R6EXGajruWUn2jOs9QePi9A4+81xRy1gPXMBgn JI2ANEB0lkl5Prvk+RL5pAs5R5B6GhpcmQVfudHfZSYk6PSqkC 3DnkkzQU2dwRP5Hgs+co00yOAWonML5HykXCBzNl7AJUi18RIu XqCJkrLxgrkooTZaxEaL2WgpFyPRRQm5CJILk3GxYm24yBAn5z ICR1a6r+pHfBfQBIPboQ5XbZZgThhicKu/UdNwo6n2Zl36+YxHPjkYfzaFmZLSC66YVijSu1BaEXPOFecEmJ GhzrkIdR4yLoDQeAn0ofLZhPyu6uaiqtUr8xJPxzAaL2YhTKTN dDv8CBE9klL8smtJv8fuPs81ekT+CkH9zmBLQtIkEdtQaCYEVo z8Cg+4KN91RK5NwQwCUuPvf3yluKYViRwWrFS4n15B6LxxDtI6 ktRQcJ7AOBFpcCH0/4e594qL6uzif3d5dpvG0LvSe++9915EBBG7wYaK0mFgKKKiCEi dPgO2JJqeWGKMPYmJ6b3nffOmGgWm75nZ58Lkf87FuT45n8+6n svvrL3W7/ku3GPWsbwlbV1M/PrKsPTDXrZyHqxESAVJie3tJ7PtGw7DLmeh8LPsve0u4nx7WSB f6sOXhVjNhdhKA7lSbyuJr5XY30ocaCMN4UsC+PIAntSPqwhgS X1ZUj+uwp8r92dL/Sixr5UygCXx5cj8ubIgjjSQK/PnSH2s5QEcsZ+dLNbmSJ5Nc51b9yab8STuaR9c5clbDOAoXcl5 h+jnYtOvJ7OkBC4hnSdKqcIhKOS4X13XutZ9Q0eP9A8I27q6bt 68zTCM8e9zwf/qPQKDVmtcMRlWLLTR+Pj6tbPuvu+X1v50cuaTk2PvTU/9+c7HphVGrTHpaPOZ888W5lelphQnZRTHJeVk5hRXVNTERMcnJ aXExSUkJCRFhEWGBIWFBIdHhMeEBEX4egeEBoZHhUaG+gf5enh Fh8fm55YW5JfFRMcHBAYFBYX6eAcEBIaEhkakJmeEBoUH+wUH+ QSlJaYVZBckxidFRyWUFK+pqqhPTEg/sO+gQau3GMy0zmzRW5bvf3Szo/WXy0/T3370xbEj8tSUx3fvMCaG1tG01mjSmU26/0OBJ3fLjBaLgWEsH7x+8Wpn4cpw9HdD6dKZI6ov/pJ993j8tdc7env7ugTCHuGAQDggEA4K+3vH52LWTUBW8xD3DL9 QEDS8y2HbbihYADlPEcmj9oI9VjMltn0b8IxeyGUUChrk7NrNn w6lJvHkF9LSX80FEwQlZ6e/lV59p6b6jS25l7e6iOPIWTtEiqALAFaS0BQZfjE+67V81iQLl0 KUmG09EcE5WMzeUOa0p3Drq8KJ+68KpLdHXr3X9KYgUhSz427T iR+mj3586tQ3i/XP9nG3VbLW77Lf1G+1sdtqay9nk4C/Vcjf2s9t7OFvFvAau7kNndabe6y29Nht7Oc3CB22j6zaftQhXw K7nke9Fbwdh/gzyUDGwuYRn8VVBdezvKVe1mPWAaKAA18fCF8Mwk8CIMMJBc4S o6QIBlIEFWN8ibvTeJJtd6lNRw2/q8S2u8zhUF3a9m2b0hvWZ9dH7ax36KjkDKWwREms3goybX/mxpf8Nwysau5wqpqGbF5F8F8AoqVIA5unQ8FjAOsApIfxr6FgJ b9lD2cuBJaQHLGry+AaMrUH8hy2bmyxP5VAiHmoiEIkOJCipIQ ipSQhI92m4t2Kt9qzW51DnvLqybWa52NSBBGz2HNhvN3bIa8Zy H2BW9/hMJVKSHmoAoJPQ9AiiigQsAAhCxCigmA5BFQwcQaDVRC6CMFKC FJBkAqClBCkhCAFBCshSAEhKgiS/91hPVkxPGm4IBmEKAAutvFQxgadTqam2agcRpUEoqAgBYRPwfE XAjKvx+DzCBBhjifzWQU9UEC/37rW2tb9wuHDgn5Ba2fHk7wAbbGYLf92XsCgXaHVRqPGYtGbfr lw+XZJw4OyutulNVdKa85V13//4qvmFZ1eTdMa8xnZM/k5VWmZxckZufGJqZkZORVlldERMVERMYkJqQkJqXGxiYnxKYnx KbFRiZFhsYG+wZEhUdGh0cE+AX4evnFRSQV55YUFFdFRcYGBQQ EBwatX+YQER0RHxSfFJ+dm5CTHJSXFJRXlFSXGJcTFxMVExuVm Fa1dsyExIa2/b8BsMpmMJlpnUC9rDToLQzMmmjHRDPPzb88WF38yP8cwf1OA1p r+6QXMFsZsNlvMJgNjphmGuf/GpVe6qzQjcb8Lk2fbt4muvaP8/q/FT7/tH5/p7RkeGRgZEggGhQM9fcKe8fmUhnnU9nnM9jZVJHQ9lWt/Ksa+t8yupc5uqMhaFkMp/Jwlqa4DG50OdTgKWlwmqxzmQ+wnvPNfXJ/3Yp3DZLD1TKDjXIjPXJZLfy2xrhGtrHAbzSVEfHgBp5Rs6hSW9 kpszqVU7iwbl1D2s8G2zdVY1C6X0MNWodu7X7iy96w8blt39K7 2ljvzrffHO64oUveNRZSOtRx9sGPgdauwvU7hk4SjAnd+DrZ7E XV8HbV7DbO/BOxeQ21ewh1eRWxewuxexvjPk3Yvo3avYC6vY3avIKyXEPdn+b VCj8lClsiKUAG2mPRUeJbeKk9/Kb/k9er1dxr3ftocqghkz7AwFYHKUa6cJMWApSJsJW6ewjpOdh8SK EGDz4FAJRVyGvVbsPU852fzbADvgoPH84iPFElp43avtRWl23R lBLdujhre4Ht4o2P9AOTyHLD6DScMJEUTrBWAPWJTRhwY2ZQJs L8EMTLnnl1siT+u5FrP+K7q3A2iRuHQw/Z7t1rPRuIKByBjcWQEIUIpFcFRuNoMVKOxh4LjrjjEK7CmSjul JyFCcRnf9lQ2WdYOecxzK0bcT5ayRS6Y1JqQkZgSxk4TiAzB5S iQ4LicxGUEJadYKg6QAEJBYjIcV1JAQaIyHJOTmJzA5RQmxUkl G5UCIMeAnAQyAlcSQAGIBQpTsnAFG5ujwl+KDHs+AjmJgFkCO0 WxptnENMo6jiWdDcq/Hs+WAFxMuIwXU/ndcFB3QEPL2vZm4chw/0Bfp6D75j/TQYv531GMMP9P15Bx2ahT64wajXF5Rb+sph9rTI919F86y4rRt KShlzTGZZNZxyzIn81Iz8/IzEpNTUmMj09PSRLPzq6tWpOSlJqRnpuVVZCZkZuWmpEQlxITl RATlRAdHrembE1hZkGQd2CAZ0BKfGZx4ZqCvPLIyDg//8CAgODMjJyIsOgg/5Dk+OSslIy0xLSUxNT4mPiQoJCIsIiYqLiK0rV7dh1MiEsdO3G SYRjaSFt0RrPe+MUbt9+cmGd+V9MWhvnq+xdzi79dPMdYGFpnM ulMRq2J1loMGovR+M9lEsZoMpvNDHPz9m1pW83vQ/GPB2Iv9NaflCnPffPH2W9+P7x44VDP8KBwaKi/d2hg6JDwSNu0OGnjNGzzHGr1Pl46wRenoUq2lcLdQRFpM53MFd RgG/aw1/Vyanv4G4Y4jQJ8w16icQ9R1Ry0+0SN6KJVw0Gqps2qttd+3Qgr 8Sjb/ZRjyBHbDTWuikSbi564COfOEnm3MsKfCcFmOZhktfv0el51p13 QYlHRt3aeI7ukN9eKzjmuGYJyN4bP7dx1R+rbcAxyOAoRx7Or3 l27812X8NGUsjcINwkr6iyerECTJSBZgiVL0AQRnizGUiVoigi kSbBkKZYkx1IlVIacSpSiCZNkfZftyRKexAWXACAD5AzlrfBcc 2tdw/Wmjg96is4XFl8t9pKuxmcIoCQRKU4p2JiMYMlc7UcqWfmjkN1N mPgFJSwwxGCAhrBfUOwhihoomCEgM4IsoTbX7dYP8idiHObsG2 +uS1cWuPZU2FVNQPZ3AWsFR3QcwsBiawH2iGDpEExNEmoSPIK4 b1Fpk3bDDax5b2qe4zSbYLdLAAWcILM77EbzMaUtIoPZCzAQAV Rqg0vc7UfzsLyddkEyfuw490AVV+pKSXFcZGc3WkHkDsLhx2y6 WjiycFhOIkoUkyO4FMMUFFACTEUgUoBJUUwKCDnOVpG4DMUVAJ OhlArHZAiQwoQCYFKYkKO4FCblKCqBgAwFMoBKECBHECmEywEq BaSMRY6zki+lNHzRkHI9Lft2Xv61/KJruXlvpOZfym16b3vxtRL2NIeQ4PaTGURBGxwwGFDfWdvWPHj 0cG9/T2tX240b/+QF/nUK6NVm0yMjvaRb0aiXDFqtTqvT6pb1+iUDrdaZNCsG3YpepzY YjRal4kxmWm5mWnZmVlZMdHRwUND0+OT9e28tKBfFYplILJdI5 VNTMxPj00ePjAl6B4SCoaG+4fTENL/VfgFeQenJ2cWFVSXF1ZERcd5efn5+fo0bNrQ0H9ixefvBvS0dB 9vbW9pb97ft2bFn64at69asa1jX+MrzVwcFxxJiUiTzMoZhDHq D0WChDaaHV16XRSf/ODbPvP/p251d58oqjZ99yxgZWmehdWaj3mzQmQ06i9FoeqJ4pS0G2kIzD HPjzr3xQ+t/HkjTD0VfH6wcOty7+N6Pp79eEd/7uPXwaL9QIBB2DwuHuweHO05JEzaKIIdzkM2beMmY9XgFbzqaP JTG3rjDvmYcC1ZBvLcg8CWCf4MQ30LENzDxDcL6CkE/Z1EP1m4yecW8BeFnMdvrwOEuRD4TFH09sfI0WpRRdGlbw5dbsJ OYs9y58K1i2ylXq4lgVm+RVWOXbeoZzO4qYX3ZMX68++qdvOMT cPhuvLzd43CL89b9kNcAFSx1qBwrmDhTP3eJl3yIk9LGXrfdeq SQMxtJzYRQ06Gc2XDWVBg5HYbPhGNzEfh8JDETg0/HEbMhPImPlcSPmArARR6YwgZWsjA5whKhnJNYgNJ7+8fbN99o2 vjqpvWX6p/6eOsqqSM6A+MSHBfjsBJGlBz+iSxO9TDkchuwHqL4MsCNANHgq BZBNQDR4agWBRoE06CEFuJ+YpMjjj2+r/q55vkfXxHcPJfSewr2W0CJ71BYi8A0GzNxSAMKHgGgQ1Etij7E UC2CPIJ517mlR2yP5xMyHpDybY/WIkl9WHqnzdF8ILOF5ABdgDAZgolYiJhvI0222dsOeY/hiULX/jpy1h6T4MS8A/9oIZ7fj0QK2d0NuNQNkaGIFKBSDBUjQAojUhiVYagYwSUIEMGk FHCVBCGGcQmMSWBEisISBJYgqBzAYhiVIk8KFsGoFKASBBHDqB SF5iFUjMBiGBUB1hTHTx5UfKWk8FJe0SvZ1a+VlL1UUHA5P/9SZf7l6lUyP3yKwGUE52QGWtgLBRz2qzm07uCeoZHhXkH3oY7W G2/eYBjGZDb9/4ACKxbDktmwZNSuGLVqo1ZNa9UmrcaiWWF0yxbDslG/tKJdWTKbzSrVmdSU3Mz0oszMotiY5ADfYM9Vnt3tHTeuv3Hlyq XLVy5de/31y5evXr36xutXb9yc46sCAAAgAElEQVS6+db5cxcz03LCgyMD fIMCfIIyUrKLC8pLCisiQqO9PLy9PD0C/Hy6Wts+uP/g/r2337n71ifvf/TZh5989OCjD959/7233v3o/seyOWVhdmlKQtqz555hLAyto3Vqo05LM2r9d6rTl4sr75VXvbp +/f/evMtoGFrLmHRmk85M68x/5wUMJovFzFjMJrPeZDIyDHP77lszbRt/HUjTDUTfEVYMdjUfu3hF8e3S4pd/Hpk7P9jTJxzsFA71CQeFfROKxPUKyOk5yPk6u2jMZ7jLevMhJO A4xDuLW73D5fxGQFo+zlCwgUUY2LjOCmitcR2O6CHqp+DUT7b0 fmubepjMO2ZVIuWmKFgh80R0i/2B0tgXM/JvZfBHeEXXKlJfybY/FuWytw0OEMMOr8M2dzDuZxDv5urKOcH7LyUe64Gi9vLKRrybT2 GxvWhol+fultWjhQU3t6y/1+51JNt2LI4nDbCS2nMlLJ6Sy5KQbDnFUbApBYta5KEqNnHGCp XjxDkcVSFAysZEPDCH4xIYlUDkIptQoFYygn+K6znneuDrfb1f DHbc7T723UjLl1vc5jncORsbiTdbZIufBiyxi0vnduArJamfuL gRJx+z+Toc+9OapSbRZYow4oQeI7QkpcNxPYvzCHF4YfPI553y nxra7nWO/yA4qfbw+pCEfufjFgLXk5SOxaJRfIXimhGgZrG1LJxmkTTB/QHyPMPd2mo9mUrJV/HGSuG8DiT/gN2JXErujEq51AIg5RBLCaNKiCvzce9vhyNPEDl9jofr2HJ3VA HYCo7TZCpR0I5EHrPt2GEj88NEOKXgEHKKlBOUEiASmFBRQAJY KgqXYoQMZ6lYqBiQKjYqIwgVC8hxTEFgCoJQkqSSAlJAqihcRp ByCpMRmIzA5BSQEoSShUgJfJEkVICapNhH2fgRhDMBWCcQfBSG jkPUDB8+xkIn2GwFD5NR9nNFREknCB8MqGutbd03dPRon7Cvs+ fv6aCZsTAW+l+mgEFt1KoNmmWd8bHavKTRq3VqtUGnNulWTIYV k2FJb1hSa5fVNG1WLZxLTs7LTC9JTc2Ni03x9wn0clvt6eoaFR ackhSXkZ6UkZIcFx0dFREZFRETFRkfFRkXF5sUHhoV6B/i7xuUnZ5XnFdaVlAeHRbl6ebu6e6y2tUpIiBg5+atzU079+/e07Kn+cDe5vaW1q62jmNDI4IOQVZqTmZqbnpa1tXLVxiGMWpo4 4qeVhu0aobWMroff/3jw/c0jx4aLIxeQ5vUjElrMenMZt3fTw9pg4mxmCxmk8miN1tohmFu 3bk3dajhl8E043DsXWH1SOvugTn5wle/y79dPvX87e7unn5hm1A40CcY7p8QpW6YhhzPQ/Y3bQoXfJsn4eAR21UXwqI+YrE/JPFHAFUTpAEGGkBqMEJDgRUWWEERDWT9GRE/ufvlC3UvD7kNlTmMlriO1DrsXmO9J5d/KgyX8DljvNxX8jZ93Ox5Ktthz1NYxAzkdJ4d8ZxD2iVu8BuQ/blV1Sc731UljnVDEd38LAU//zQUPMTf3Ow4l4qf4ma9kdV4s9nzcLbVRAIh9efKbNhijJTihAS QMgyXokCK4nICV5C4nEvMccgJsFrsnng2NeN8esqFyPALfrw5G 3SGhYkxSkZSUi41S7iJnAsulk3+KKp9pcFD4m87FcYfqrBt22A 3ko+L3bmzAc67d8OrzpPkn1zcBIhHCEsNMC0LM+KIAcMNgNADo MeADgA9Sahx/O2Ghj9q1vyYkvZBXv67+59aCV39Hxx6xEJMBKIjWToWm4ZRDUo YYURHkkYCGHDUAIAGZX0KR0zzOxusJL68E5lwbjNW0Ow4msuSO KAygCsAJiIxMYmpUJ7S3al3ExTVieW02Y3UkEonWAXjUtJ2PI0 o6EDCh2w7t/JEHrgYYHISyAlMjuNyBJHCuIJEpQCTE6gE4HKCvchBpBiQU4iM xBUkkOK4nMDlOCbHMQWBSAH2d0aTBFIcleJATqBSDFP8/ZusOVbKS5kNd7YUXylxm3JyO+VU8mZh9IVY9oRt7OXUmCvJVvM 8tojtMJ5PFXbBIX1+dQfXtR0QHj7cI+ht6+x8sik0Mcy/pRj5vylgXDFpNbRWrTc90lj+0hiWdeoVvX7JqFvRajQrOrVWrz ZoVoxGmlEuPJucnJeWmpuWmhEfHRfg5ePrvsrHzdV3lVuAt2dk cFCon7eni6Ozna2ro6OTvUOgX0BsdGxEaISfT4C/X3BOZn5ZQUVZXml0cPhqJycvNydvV0cfFxdfV7dgTy9/99WeTi6rHJxWO7t6urqHB4YkxSVnpOWkp+Vk5+Tdvn2bYRijzk TraZ1Wo9cZNTqLTq81GzVGncmopWntsnGFNmnMJq2J1ppM//QCTyhAWwwmi4lhmBt37k4eqv91KFU7FP2msHa0o6VDMDx/4z3pD0uqj38Ujp/o7W073D/S2zckmJCkrRdBthch/k3bAqVP0zjkecLT742ikl+4nE8xRAMjOhhVA6DB8ccAaBHMiGI aBHmIOt6x3dDvNZe+6av6DW9XuM84EqdQfJrFnrElJtnWE7bFV 8ue+nq3tyrGoaOKiD0GOamogkm/3oGg/bP82POwlcQ+eURw68W0Y0ehwGFe4hUs4Tk4fdBupAaVWKNTRP6 l9RtOn7ROryOT64hNleyJOKBygJUkJEcRJYooUEgK40oSl7OoW dLuOJ79cmLTZ9sb39q8/nZj/e3azQ8atny0KeR8KDWB42ICUbJhGZcc83LtLS45ORLZ12zTXud woBPL7oX8trOqKvjjCVazMXZ7m6DV5zHiIRdncFQNgA5DdCSqx 1A1gmkRTIfCRoAZEaAD+F8s8u7urQ8P7mRysn6rrf214wDtu+o bCP4VwwwEoqbIFQ5LiyAaGKNhmEZRGqBqHFOjqB7G/wf5PcvZt9NKHMAbTUOy9+MFLXbH8nCxPSTDEBkGxBQuoVAFbLv o7tqzEY7oApldtofLCQUfUUKY2NbqRDFWKICjBVY9DdS8CyKFY QWAFTgiB0CGABmKSklYiiMSgEoALsdZKhaQAlyOoxKAyXEgxYA Uw+UEKgWoHCASBJUBRIYichSWIYgMQWUoKkMwOUBlCCKBOfM2u 75u23Jj/56P2goulSQ/k9r00e5t7+9OuZC/4f72PV/tiXsmhH+CcDmaS+V2QsEDXnWHalr39Q8P9wgErZ0dTyhA/39uGft/oYBBzejVZoOGptW0YdlgWKaNKwb9isag0WhXdLoVWqc2aJY1Zp o5e/rllJS8zMz0pNiIqEDfADdnPxdHPzdnXzenIM9VwR6rAj1cvJzt PBwdVtvbr3aw8/dwjwkNDvcPCPTyjQgOK8zMrywoL87MD/P283J28HG183a29nVxCPFcFebtEertGbDKPWCVu7/HqoDVq+NCwrKSMzLTc7MyC0pLKj//+DPGzBi1NK2jjRq9XmvQ6oxqnUGrNRh0BqNaa9boaQ1t0pkNGp NBazLqLAadiTbQjMVisRhoi9lkZhiGuX3vxmxb/e8DSZrB6NcH1432HBJ09x+RLix8/4fi+4cjp59u7e4ZFAoFwsN94+dS1sshx4uQw11egTio5ziVehh 1PMPh3ePhP/LYRgjoKLaFAHo2ReO4CSMNOGcFwX/HPO9a7+6l5oKtZQ7rbtft+2B/8c28lKsxaZdTCm+Vbv90x84H2wLmApxPRrs/1QE5zVApKruhAy6icvbGrayAmbCE21arhg8tvJV7VAKFdDumPs 9LXkDSep2F6+0knpzjnLUvdFZ0n3H1ORWTfA0N6nNo224rSuEo vdgKW67clit340jdbJRuvBlHlznfhnvbW77sjjkfbzfrajfvxR 53dBatzrqYve+LQ3mXSriTbEyFUorVjsL1vJze6MrLPtkX8DAR 4nvexueF7PI73OS9Dh3FbtNZtgd3Qt4qnP2QYFlQQsNlazFshe TSOKZj40aKMGK4geSYEWCgcK0d/8NDzZrk+PdDQ76Kj3v/QMtScurvEPIzzmZQTE9RGjZbh2AanGOBAc1mWUhcQ7I0gKWFWP 9D/F6237/fRh7NO1oKsgfwvH77EwXEAg+SA2yBAjKMWmDhiwRfucq9bxMcI SCy+52PVPLlTpQYcKRudmM1RJ4AiRfY9G3mSf0wCYIrAa5gkXK SraAIGUEq2bCMxFRsTIHjcpy1wMJlGEtFoRKUUJG4kvinSFxJA CkglSSmwLAFDKgwVAVQJQBKQKhwIAeUHLebsWr5dH/HO+3tnxzKeTndbtQmSB64+bMtIYsRIfLwzv+0ZD0XYXMC8x0v4 Oa3oREDvo1t1W37hg6PCIV97b1dN27eZBjGbGZMzL+GgX9M5Dp GozbpNEaj1qjXGjVa3bJu5ZHx8YpWo10yGx5ZzMu0+bGW0VsUs 6dTE9LyspMr85MaK3KzIgLSQ33TI/zjgz3DfVwjvF2DV9mHebmEea0K8XD3dXGI9PeMCvT1c3Pxc3OL 8g8sz86vLiwuSE2PDfQP8nAK83YM83YI83UJ9XEJ8LD3drPycb P2X2Ub4u0c5u0c4eWWGhWRFp+Ym5m7tqr2P9/9aKHNWrXesGI0LRnpFVqvMek0JqPerFMb9Bq9UWs06ky03qzXm Axas1Fr1mtpo4FmLBYTY6Atf6tcbt55c7Jt48/DufqB6Lt9Zcfb9/R09/eOTSk//E717UPprQctA0cFfUJB30DfuDitQQTZXoSsb5Klo67H6+06mpB QGQQ+wxEdCpYh8k+EUGOIBoHUMKxB8WUUf4ygvyFuV3k797EUn tAsYj/mHa8qK7+6ufLKhqorjWU3NoY/m8EbW02NBdn07ECjT0Gc09w0kdtIo/V0BGt/NZYisI876RDXsv/iS+Uqkf+2acf08cKWN9xqBnOUnXu+bk4/k7pucbhe+C7P9VmXgDuIv9h241Gbjr2cjvW8zrVWnbXcjgZux3 rOwUrrg8W1F8c2XVTYHtgA7Sl17t7g2FJJ9acgc17QKdxd4tr0 +Y60FxOJcbb9VAa7ardd4HztU//xTz5Peo1RAXKXmIvFO2871jdZCWLsT8XyD+yEvM5hnEckl4GwF Qwso8AA4yYUMZGoDgdqFDWgwABQIwb9acd/t6tVm5f/aVDkpyERdw91qpPTf4Og/0AYDaM0SRkplglG9DBqghADAEYU1qFgBcEfQugXkOMZ510tVjN RVkdK0MxOLK/H6mgRUFgjSgSVo0AKcCmOyjArhadb71Y4TEgld7sKa9gzq7BZg pQ7Wo3lEXltcHivVccm9rw3LsEQCYpIWJiUwGUoKoOBEsBSDJV jqBTgcpxaIDA5ikqQJ3/7TwqRok/EDX/rCSQIkKGIDEHkCKIAqAIDcgyRoWAet59y3fdx2567B7u/7w0UBzgcs6t/ty71pVTnSecAZeDGjxpyr6dQE5jriVwqrxMJHPCvba1p2zc0NN Tf39vS1frmmzcYhrFYLDTzrz0t/mc6qDXpNbReS+vUtE5t1q6YdZon0i6Letm08pdRu6TVL2tMOpN oWp4Ql1BWlHH5WelFyVhjQXJNRlRVRlR1dkzX7gbZib7xvoM12 UkZEYEpYQGRvu75KdFHBB0p0ZH+7m7JERFriopKs7PWV5Q1b1l flBZZnBpSkRlamRNZnh1eX5pYkRNekh5YVxSzqTxxU0n8lpLko +2792ysy05K2rZh01+//W6mTVqtUas2GtQmo8ZsUJt1K7R2xajX0TqtXqc1GHQm2mAxaM0 6Na3XmnVa2mikGcZiYowms/HJl9ftuzeOte74eKDCOBT7xUDuXHdTn3CgRTB44sLl01/9eebL3/oUz7R29w/0DfeOnUqsG4O4Yoh3hV0y5jhe4niiCiRNQfBHODDAsBaCVwhSx yK/43A/xMmvcWKJIMwI/Bfqdo2/6xBPGsKZ9+UfqkZzmom8g+F9B7KnmhK7dsV2bkuVbvSZaSTLW3 GnSftV50n/Ef5TdTYSH1LiRB2LJNujPAfTd93vr7p4pHLqDX7RxEb5F2H7Rw tlzZsubzn45uHGKVX9wS9ZvCsA/RiwvwQubyHuL4LVz2GrnkM9nkE9ziOrn4Zd5FEFb2xr+w/bdcw1+7xL8Utsb7H16uMgaQ9XUMkVeVBTeMCCx6b3G4OnSm22d EBeCtT2ZZugBXbOoGeX0FW4zbWz0U+wxf1YqdVMBG86zrplL+z 1LMZ6RLLNgNCwSB2MaGFKA+OPSHyJRWgx1EgSJhTWUPhDa+t3D hxSV6z9NavgUWjog0MHNalJf0DQjzihB6iORWk5XAOC6EjchIE VHNfgGE3gWgz73t7ugVOgiqqpt5tPtB4tQnL2goJm2xP5hNIOV QFcSQARQkpJXEHyZJ6ugq1I5AAro89FWGMl9sDEAFfwrSfyyfx OOHzAumObtSQQmweknCRlXFyC43IMkWNggUSkOK4gMRmGyTDWI oXLMUKJI1IUVxJPHA2YAkelKK4kEDGKy3FchpEKApMBVAYwFYH IMVxFoTIMkxPWErvGTzeHisILruRV3Cyuvlp6/M+RsueKYpSx2z/dueOLXQmXksAM236ykCjthiIG/Bra1rY2jxw+LOjvOdjT9uatGwzDmC1mmqH/ZQpYlizGJdqwYjSoTYYVo3lJp/nmp//dvqf/z88WDa1Z0i0tLS2rl2mTRSk9FxcRnZ+e0NO87cDGtZtLMuqy49 ZmxTTV5F2YP6Ic7X7jGenMUHdGuH9aWGC0/+qC9PjB7tbinCwvN5f0hLiq4qLKwoL9T23d2bi2KDm0NCVwXU5 YTXrAVN+OD64qrz99cq5/e8/mvPa61I7a1KEdZZcUY7ITAzkJsQeamnRLy7TRpNEZl/X0spbWaGmNhtZrTAYtbTKazbRJr9EZdLRBZ9JpaK2G1uv+DwUY M0NbTPonF+Jv3bspPLTzTUGVdjDml8MZqr5tvQOC9v4B4Yz8zG e/yr79a/bOB+19w4M9o11Hp9d2nk1ac211xA3nEnG8aK9zb4FTybHVgV9y WN9FxSzzbP9DEY+4rM+qah/FJP4XQ/+HYyYEeYh5XrPa0e4kzrYeygeZLWD1NGx/Mnbt5eRNLzonDFglbYwf6MyYHaQSm+095jZs+a979CS7utZ+Ph JesCLPu9gseK6aDdny4f7KF/pLjzxrn9W/dfpOxK4Bh6b0bS/1lo+Op227WH/gZ777awT/PubygAh6GQQqMd/TmN9pPFgBQmbRwDkqZL629YOQAgnk1FLfeb+25RuUp4qNe+AQP Utu2mgzF8lTWqPjnKxXthecnIF9BESI0rpERFZtt2krtZ+PJCZ 4q2dCNr9zMEAWjk+w+LMhjof2op5PU8TvXMpAgCUuoUbAX4j1/2Crj3HWBzj1MUZ+TXK/QVmfAPZ9rvNLu7ofBiVfw+zOufpc7B3UpGV9ASGvYzafwFbvo7 bvAsf3IPYDjP8pbPUObPMBxPsSWH8Gs1+KTXqnsuk9vHotfzaN f7wSydtLFO92HM0l5bawDCMUJCECbDmFKwBf4ebavwGJ7cNzh5 xG13AV1pQCIuV8/lgZkSdAIgftunbaiIPJeYQlRygpTkowSsFFpHxUYQPkHEzOAlI ClxPsBQ4qwXAFCeTEE18LrsQxBQ7kGKbEUSlKKEhcAkgZjktxI MdxJYnKcKAkETmOK0mWlPI66+EmdrSd5wQ84xHzTGjxlbyMF5N dZx2in49MfDnObo5PiNh2k/l4SSccMRDY2LGude/w4KCgv+dgX/ubt//OC/z7FDBo6WWdVqM1GHVmy8rj3545fbO45FZV7SvVa3999ZJxxaDW 0CtqHa0z33rzrZZ9B/bt2rFj/fp9mxu3Vhaty4pfnx27qSBhfXZ0eoBTWULQ5pLM/OiQ7MjQhCCfmECfEG+PgNWrQ/z8ivPyq4vL1pSW5GUmh/g6xwU512SFrc8K2VoYOdW9rXNLUdv6zHNH9w5vzR3amCnckHFs d1nz2vSa3LjEsOC+9g6L0UTraa3W+Nho0upMerVhyWDS6k0Wrf 6HS69/ffFly4rWqKeNerNOTWs1tE5n0ukMRqORYUyMRc+Y6CcDmFt33u lt2X2tb41mOP7XgWRlx8YeYZ+gX9jZPyS69bb4p78kn/wgODbd2T7YOnL05Ivv9MnUyeVfR1e9sXXxjEtL4U7li3t6fvH0 f2X+LFO57jsEetvK6rOi8ofx8X8A7D8A0yDgN8j1RetdXU6Tud w9pYj/QFbpd0GRr63yvGXt9GZo6jWf9BnX0oPZE1Pc/A7Cdjgg8Azhs9d+e5XLZApvIo7bn81tSvfrLth9X7jmaUHjxIX oyuO9sk9D1/fVzYx3v3iNDG+Lrn754LTBOvJZyFbiUCl36Wnn9q5nC9Zy+mus +9byhBWkoNBv4qnyi8fse8pYPWnp53ZmTw3wcvZbxbURqfU2+w tspr1wCQufdvYZ25DbcxaEHrBqespuPpM3586VWYN5EHHeZ/vra+b/K2p6r93nTLjDqVinXW2Q04sszp9cLg2gZYD8CDlfp7KfsS074Z 9+NMXncErAcc+sGVbVNFly2Ll0oE35UePo9XUDL287+XLvhXeT 94vZeZ3s8gGybNiqatyqeoJdPM4unGKVTFGlE+zScV7JGCdz0C 3/eNi2o069pezZALvRcjSrGctttRupxCV2iASQYpSaIxAxCisRq0 VX58FqKK4LxI3YdzazRf6onECVfOpEIcjvhcMF3O7NuNQVVUJg gUAWSFgFYCmOSnBUjKFSDJEARApwGclWslERCktQWAZgKYz8XS giQWAJCsswSIoiIhQToUCMolIUFsOoFCBSAEsBIsFREYmLuZTc Gp4D8ByEixB0EgFTGC7G0BmIGIfYMxAuRa3HUvHCDjhgwL+mvb Ztv3BY2CPoOtTZ+eaNJwli2vyv7wj0apNGY1jRG0xGWvPZV+Ki yi8PjzOf/vR+3+HF0krL9/81aSyaFYtabVTr1I81K+oVnebRyv+++aZlc8PajPhNBclbC5Ib c+LXJIdVxoeUxYaWJ0QVxkQkBvpsrCq7dfm1l85f6GhpO7B3f1 312qKc3BGh4JnTik1VOcXRXtvyo3ZXJTRVJZUlepbHue0pj+pp SO3fmNm/Oae/qeTc7MAziunTMsl7b71jNpiNWqNOqzdojDo1vaKl1TqT2aCl79 95Ojbp+qZ9zJ9aE20x6ExaNa3XmPQ68z8UMJsYg9FsMlhMDMPc uXdf2Lbnen+VZijm1+HUxb6mnv6Bgf6+vp7OIaVU/u3Pqu9/n33haltPd8fxkSPn3s7d8ADn3YvI/G7L9P2YwZ4DZ954qu2rwvJPO4aW9u5fXm3/JZt4kJLwZ2TAXxzqd5LSw/jPqPcLnJ37nObzbNurQFBHVMgrnt5nfNOuOKe8yvdX8ZwWbKOV icMLgYeEHtG9zladPvkdfod32AsbWWs7WH7jjp4S2+B9rS88k3 u8s3Rgsf/sH3WD73JTB4SvfdV38YuwWkW54Ob6oa+53s/ZeV4n4occhuvZkhBy0RFT8tlKPqlko1Ju3OtlWa/ucJpO5ytCbFVBjvNpDkO1nF1V1vvL3UYzHaa8Vs1F2gvXoKV7o vc9E9DaZzuRiC2wyQWAzQM7ucuBnw51fLi/9umKne/sPPRdX/TRp3iZJyGb93DWXxTbAONLkMMDqmLa5USj+6nA0t7Q7vKQQ9UR WcNp1jMxtqJ49/GkHff79791ZPDD+fXPHtjyxqHU8wX2E74Okmir+UQbabqDJMl2 Jsl+LtVmNs5eGmknCnWeibcbSfUYLYxT1jicCuVPRrt270Xi2t GC/fYnikmlLapAOXKAi1BMBWAV4CpdXY9Vkbn9kLsEyzzh3Nu0+mS C/4Rn2HCxVUYnCOn3PrQzYDrIY9LRcTSUfyzUataFklGIDMcVbFK KknIclQJChnFULFwCSCWJygGuxIAMBXLwpBcgVBQsBbiKAnKcU JCYHEdlGJBjqAyQKhJIMVJB4RKMUrKpBQ4mJ3AlgSsItooHxGx MxQFKNiFlsVQEUAK7qWyyuAsJHg6q76lrPzh0bLhH0NXW2fNPX sBkMT85r/PvUcC0wuhWzH8ZabVRq/nmh48vvKb/9THDMEvPvapMTKM/+9yiNevUjHrFuKJZVhsMGo3FrGc0fy617thak5nQmJ+0MS++IS due1nGrqq8NSkxZXER5YnR8b7uzRvrGIOeMTJnlOeOHj62obax MKvg7Ru3GIYZ622pjA/YUxx/aE1Se13GgZr05orEtrVJwo2ZA40ZfRuzhLvXPPzxQ4ahGYYx04 x+RW/UGIwavUltpJdp7Qqt0xqYh79/sqfpmk/Ah00Hmf8tmwxmvc5k0Jr/Lp2Rpp9chabNJsuTwcDdO28Ptu661VelG4j+dThV2feUoH9wqK 9vRNDVNtQ3d+fB4g9/qd77svXwcMfEqZLdC7jDMwD5mWf9yCPzpt9TYrvsCbvVt13d/uJaf+/u8rs99xdr6w/27LHkJP7Mhr7CcT2C/4l6PG+1c7e1JML5ZKRPTY2bw+bVHtsLewcjR/fyNzawswVoksx+nSxyz8Da+u718Xs3rO1N2jxKxkxD1s9Y219J Trxvvbq75cwruSMTeHRvUNUVqzQxni6MbZ/zqjrhmHtkm/xGUecrdr6y2KR3UN92m5YyntgdLOBAxcbFbFKKkHNE3mtNcSNH bNb2OtYJ7Ou7rNa1+O4bXSO5VXTylfwT8tienqyOgfL2F1Gv3o yOxazTe9jzfFQJEQskNkusUvhv+HBfuCQ5eCogWZJw4Oqp0LoZ yOY5lPqZRRgotgayucnJH3c6VsNS2fNERM6w+95yj6byqBRBlt 3xeJvRBOehtIbLnZXndufKnsqab3rq5tGIuSK7I1E2x9OsT+ZY T2bxp1J5k/H8U3Hc8UT+qRzuWLrNyRj36dB1b24b+PFovCjbX7CBl9UHeQvJ Tft4s3GYkoMqSJaCjZEKIpkAACAASURBVIkwYgEgSpSl4DtOxz geaAYhctj2OY6bJDtuv6AkQViQmuG2L8h6pCmp6Uhx6tbCSvew 3VD4FtuD1TbiQExMsuQUS4JQcgyT44Qc56hYhASwFSQuBbjy76 NPmAJ/UogUJVQkkKO4CmBKFJUjqBKgChRXAkyOUEqMlAFKgbEWcCAHhJ LC5WxczgNSDq7gIFIWkLAIJQGUuNNULlXQiQYfDq7rWdd6YPjY sKC/p72795+XxaZ/rxX4P34BtU6rNmk0jH7FaFjRmU0W3W9//CyT38or+VQwYPlrSW8w6dQmy5LJ+BetfqTXrhhNK4zm98edu5v q8pI2FCbsrc1+elr44Or5T26++IJ8cmNxRmF8cHak75Y1xerff jE+0p5XPX3yyHhjzcby3PJ3rt9jaNPciKAmJXxPcUJLeXRrTfL x5nUTLfXD2wsEG1IFjWldG1I7tpR8+e51xqjWa/VatdGgMRnVtHGF1i/TRrXRqNUwBv0ns7Jbm7d/sXffnb0Hmd/+MOlog9ZkfLIg0Jj0WgNtMDKMmTGbGNOTsQBz887bfYd2XRfWr Awn/nw4VdHdKBAM9PcKh/v6DvX2jr9wc/Hbx6e/+G1A+vT+CWlcvQjin8eRPwCkgazfcK28wIs+CyHvwpAGgv6EoC +jI37oFBqki4b5yeXG2l/ZNt9C6I/A6WXbpzrZ8yEOp6wLuxK3ZqXVFyaXnCxwFgXHPpNbpjrgtnGAk/I05nHe3UMZ7HDK1+mMleOLqIecl33curqDW7jNaX3DgXcUiSeO Q/7HrCJf5SQtgOxjq/bMQtFdILplo0reeGaeVVxClZaRm4v4E3G41BpRYogSkPM4Z4rn OBZZMDnpn7cI8WcQx3Ow7XnI9mRy/RuRVVdtohRpG9+Kq77GC5qvav4spHpsjVwYdT4BmUEQOQeVsPE pzF3sXnlrc9mbm9bcqtt5vWuf9HWnoFch8DEMHrLYK8D+AzJxx KOvnjvngyhwuzn36JbqiLAmX9cRG/85KnIKCz1KBPTtGHqrV/WgtHWmefK1w6e/dk+Zwv0miXARFjVGJIyTcVI08hSIHAdRs2i0FAo8HlAz3/v0h0NnvhhY/Gz4xa9St1+BHE7wcg/bj5STEnsgA6gcxSQUJmKhUhSWo6SKspY4uoxmO1UfxN1EAb63s 1j9sw4F51etWUv2poLew6uKnvOMbuHWR/DG/YInyYpKq1PxhNwOkxHkHIRLUFSOowqCVHEwMU6IcCAGiAw8sbk DOYZIEPSfTQEiQYAEQCIUlmKogoRlBCzDYSmKyjFMTOByhFqEE BkEi2AgoggJBxMRmPiJ/hhDlQBRAvvxDKqgEwoY8q/tqj24f3BkQDggaOvofvKm0GShLf+6fVRtUOs0OuOK0bBC69W0W W9eef/TO5t2vh6T8Wl7h+XXX/Qa2qCmDUu0cYnRrtBqjVGvNmsfqfta9tXkJtTmRp8S7mWWvjY9/sbw8FtG87+Zo53pkZ4ZkT6NFYWP/vOTRWd+59Zb4ilJY83WiryKd2/dZSyWM1OTaxIj95Wn7C4OvyQZePzlzYefv/nt3Quqo3sFW/MGnspv21Dw3rWXGJPRoKX1WoteYzFqLEY1Y9SYVrQGs9n811v3 F9bs0Nz66N3R0df2H2D+WDJrjAa1Qa8z6fRmndakVRuMOiNjsT AWs9liMTEWhmFu3nurs7N9UbD595G0pZG4S8L6kd7u3oGj/YPD3f1DPSekix/8R/Xd0tztT/bOquIb5hDnixTnIUCXCdcPXMsucROvItyfSWDhsNQY56OGJnXT/v9GhF+rKP5w8LA5OOY7CPqcWv2u/fYRR0W84zxa2ccbLGX3F1ttHIvylgZX3ajafnNd4slKny1DpJ/EwfG8O0fi7iynvI/br2tdNV7GlwZbzfq5zIZs+WowYXwMijxlnfEKK1OCZB9bfUBBZ Y+hKW1rnzu68fZe78lQ+ykfrtSbXLDDJICrICgRZC/jOU5G87bVpe14OnXDK/zCY9Safmp9H1ElzBfcKtz/bujaZ7MEzyYLpas3DdVKzubM7S+6VBf4fACQQmABws9g1DzkJX Wsentt+qXiUFFe4Wh/+/GfwmO+gcn/AUILsb5D4xedBduc54LJOVsrWYjLsSr7nHYb/qit3SLP5wXMa5EMkSGBo6vKRVmtp6eufb1/8rWIShEvVIF5KrCQs1ioggxREv4XML/TZMhp3F+JBymA90ja5ud3Ct9xjenjhnYVHryxZvABnrPHTrCOI/fHFwChhIACJpQAlaNAiQIlRikplozFm3VeNZTHSt0SliYJCmlq rCg9UNWQ5i4Mszm6LXNtf11KUVJtcNhUSLaMXFfPn03DZdakii BlCCkDuBwj5CRrgYPLKFLBxhUUtkCiSgyT47gcxxQ4piJQGaCU FCEnCSVFylmElEsqrYASEGdgRAFzFqy4YmtniZ+PKGbVXJi1cj Uqo0gVhctJXIVjSgArMLCIAwXuMJFH5vdAoUcCGnrq2g8MHR3o Fwq6uvpu3bj7/xcK6DVGWm00qA0aDa3XWswGxqCm6cc67Ru3FtPTvjt7zqK36HR Grcag1dLLeo1GpzXojLrlpcGOA9U5iTU58Tvryr64f5Mxqhnaq Pnl546mrYUJkZkRgTW5mb9/8x2jMX73+VdnlecaqjevKar+5N13GcZy+czpNYmRB6oy9lWnfP z6OcbwJ6P+ndE//PHDG71PVfZuLercWPzG0zLGqNMsa7Uak173hAKmFb1BazKbf3r 0+vaDnxyfYv5SP+gfenNXC/ObnlmhabVepzdp9GatzqTT0gY9zZgZi9lkspjNjJlhmNt37rV3 dIu6tv08lEYPR77TXz3Wsa+/f1DYLxjoG2jvGZp87urit38sfv1n78VrUevnIcfnUdafKPoYsX nHpeyyVfIViPUtCRsw9BHG/7aowegZ/D4EvY6Ct6rqdAFhPyPQD7DV50T6vPPgU14nUte0Rh/JC+otCG0YLC1+ZsehBxO97x+ve25r7FSZf0d29bqKvRGFT5UUx bam8CZDgcyTLfW2mw5aPRnX/LE4rn0WWn2Cn/YMN+MUntnvu2+OmzSExu+vujC84c5+97EI62l/tsiDI7ZzlHmGKDOiRUXRou0hw5NQdF9wvbh0ZspzZK3zZJXdXJ nriZ2BbaPpB57N6no6feJIsqw5Tbm37PmW0Mm8kktNIcpy3ngk ayqMPR/FOxXuPZtWcX2f/1yxa+cmh0zhvgN/Jsf+F4J/RKjvMd9nHfa08edjcRUbiK2cx6q5FUIO70iW3cia/M7wli1Wgkpu/xqrvhqqs9Sha03zNWnW1F5ybxanp5rbX8MaLmEN5jsMrnEa2sz tq+IPVfAF1Va9NWRnUZKypVjabt+UZ7evLHZsZ8WFVufRULbIE VWyMCWBywhUgmIKDJYjiALAMoApWISSDSQc3nwkp7kMLar17do aMZMbe6TCq/gw7jNUduxI7dm60K46XnIv4tnmsmeH1VwgUAJEiQAZRMhRXIKS UpytZAEpjitIIMdRJUAVGC7Hn2idETlApCguxTAJgStIVA5gCQ bkbFRCsSV869lVduPBwTMVySf7g7YLg5u74hf2uJ2NJMU4IceA CkNkKCTHECXApITjyQIqrxcKHvKtb1/btld4uE/Q19PRIbj55l3myQ7rX/8iWDHSZo3JoDHqTfTv73/+qeyC+S+1hWGYX/73bFXpvaPHGb1Fq9cbdHq1Rr+kX9ZoH5v0GsPKn0MdzXWFqY0l WbW56fs3N75z7dq3738yM3C4JjOjPjujND56TUbqfz/9lNHqf/nhx+eevlhXuaG2rOabjz9kGNOt5y/WpkS31uZ2bCg6vG/TDx++w5iMjEH32tOqzu01vdvKOzbkvyA9zhiWjDqtTmfUaowGD W1QGw1avcVk+fXp1571iXynuvaDxk2fhEffDg2/P3DM8khr1tJ6Hf2EAloNbTDQFssTClgsjIVhmDt37rV39Ii6d/wwmG4Yinivv2y8fVdfv0A40DPQ19PV2991ambxix9UPywdvfFx aL0Usn8JAn8AVI3avedSdtkq7RLE+YJCNBT0mM3+paSCCQv5ng W/7+v8Y8M62j/sOwj+BuB/As59TshL/PTTgXGyHA9RuPtwZMnJsjZRzeBc2aA4c2AkcqYmcMy+qYkzkcR vr7eJOMkhJE780SJ83XY0ZYfPura+C5/75M4hvkc96y9ys07iWX0eB2aJFAFIba49N7vpnILK2wHlbKW2b 3ccqI+b7YzcO24TddIh+QXP0retUqbD2/rWvzRpt3kTVtAJCkdZWXOsoBlbXzHuNU3GSKk0BZUpw1JG3CtH 1wzfdCiYItNPkdlzWLYYZJ50KB2tGHqt8sgrxV0Pkgo/7j5oSoz6HELuw84vu2zoWj2dCUtsoAUWTxxhvW035HIszunoYO iGrsqguFFrbIGFKl2sZgJcjqc67WyMajoaIdhvOxZDyeyIRS6y QKBKkitz4i+4YwouoWJRch5HbotMc2Ivpa95o6HstXUVV+vqrj fU3VtrP8sjxBBQQJiSwGQUEAFMgqMyApERsJQASi6mtIKkLFTB Z00H8o4l5N3elPBiYuJ8ZfmR1+1TJXteevngZ4eTJLuw/F4oaMDh0DaO1B1VAKCkgALDFBiQAFyCsZUsTIbhSgKSILAChWU oJsOAFCASFJahTyiAiwAuxyAFAi0gqJTiTwfadlWyalvwjEGv6 gseaddt3C5QvgM+B3eGn83iTROEGAUKHJYCSIbDCgxICLsTeWR +DxQk9F3fvrZ9n/BIf59Q0NYhuHn9DsMwZgttMf3bvcBjo1GrM5uXTYzJ8vDt+3PJ 2d9LJMx/f/hDqTqdnvLHtcsW45N8Hq1dMqk1BrVaq19RW7TLolFhQ0Hi1rKk 7RWpm0qTNpWlbq/M2lSYuK04sTEnpjo5tD4v5bsP3mW0Ws2jh6++8PLa8vq6qtpvP/+IsRg+unFtS2FqR33ewLayzoai0QNbry7OvyAeH9y9oW97tXBr eUdD3vlTA5bl32idRqvWa9R6vcZoUBsNKwZaY3r0wVdfnZr76v jEj0cnPyoovZWa8bXivPmxjtYY9XqTWkdr9Sathjb+3QswJgvz hAJ3797r6OwTdTf9OJylH456d7DyRGdzz8BA31Bff7+gr2/w4OGjc28/kP34UPrZz0nbzkK2L7O4GuL/Yu4746K41v9nd/rO9l16ExGkiAqCYMNGkWJXpKooKopIlc42OgqC9O27oNhbYmKq 0URTbpKbctNzb25MuTfJTaKyuzOzs+X/AlPvzf9tfufzfXE+M3Nm5s3zfcp5zvOwLIj3215Z17lJN1iCTw UQKUVsBPrPrA3Wot3W9JQvt2/9urvXnbDqNTZ0ExF8DqN/Q/nvAPy/CpA3A+B3ceiGV+SrKzLeknd8U9f3YN6Op2YdbE+Ur6zZ49W7BD 6yUxDeK/AYnyfcvYMT1hUW+5hXcE+Z7F9+SePc3KpZcgUrpR5Y0exX3g+t rGctLyuYPLu5+bwkaGje4mfgQD02/8yc1NteUY8Fht7wCrzMWzgWVdGX0Fq/Z/jpWXGPAawXUf6/IfxTAn1zecIPs0I/BfG/s9FvUfwhALwVt+yLlI0PWZxXIe7nAPIFyr8PwJ/4BLyRl/t9aMRfPALelYhfqD9CL1n8MUDchReZ/WT7ReOh8LjAQx8jrdrNnt/CiezekVN7PD28cSO8oluA62BkUsBTB3vVZRCLKldkPx5SIOfXp 3kYQzAtgJoR0Ihz9ASqxkA9hE4isB4iJghojL3g6vzcm7nFd/eUvLTnyIv7D721Xzwo4ulQjgHEzBhkxGYkFtLCqAGD9ShiImAT wdIh8AQC6wiO2iP9rxlJ1xOSNAU5g28K48bT2/vl742vVNeC6+RAdJuoZjffNAfUosgEAU5gsAmDdDCqRbhGDmpA sEkcNEHQBMw2QDPZRLABhs0oZIBxI45qEMyIQacQyIx7aBf61B 7AlowCkhdA4cfSkG+8A/89L/xTafSA7+Gd4ZMrxDoepoXQCRw2cgA9BzITmIHnPZCBrWtmzW8N LajNbqhQ9Cia5c0NTcqXbr38f4UFHFa7lbRTVjtjo9wPvv/7iPri2sxbW/IvpGZ8qhl1/3jf+cDpeui0T9tJi91qYaxWh/W+1WW1fPb2yydbSstzV1bnrajdlVRbtLKqYGll3pIj2YsPb11c mp00eVL14KvPHBYLbbU+ef3Gpqytedn5X3/2Dzdt+epvb/TVHlQWb2jfm9K9f1377hRF4RrVrlTFrmRFUYpqX1pjYfLpAbn9 wb8YkrQ9IOlpu93CUBb7QxtjsdkZi8PF2N0uh9vhfqHt+LXDR9 33SYeNpmx2inRarQ6KdFE2B0MxbofL5XQ5nM6ZFOK7d+401DeM NJZ+0r7e1h7/hipjoL60RdnapFS2tChV8o6aZpVyYmri4y9PfUnt7v8LwJ2AoP +A4EO2+GX/jY/zl15nEZ+ibBcXIHHio8TsT/N73ik3vLhe1td18+U1dcPc5Gru1nYiu43YIRduUcas7t4c2rpm Tl1SviF4e9/W5vNbm24hsXrBsqmotBr5ttSTCciRPCSiSywcCeWWruQsLg5e0 iuNqq4ceHNVXWdk94aIvgL+hkqPtNb4qmGvNS2SNTUlp6/u6DwrjKwIWdaHhPVAIePBSc96xEz4xfZJFlb65ZYtHe6TFDQmb H2icKcNRv8GgN+B0A8c/Dux5CsE/wBEvoZYPyLAvUDvD4r3uwOCP2GBX0Aww2Y7YNDCBr7y9PkgL+9 hfPxXMXHfZWz8ukXuiIv7DADvQrHj0rZCXB/KGZ3j27QNjq0DQltD9tZmH13esB6q3o4saRUQ4yA0BSITnryjG 5AI2dptdwM3ybh1adzxUEyLwBqEpcFQI04YCVgHISaErUdBPQa OwTFX4zKvbVlhSE4yri56uvDIWwc9RkXwOIBoWagOg3UwpGMhO hBWg4gWgbUoasJxMwapWYSGA4/jyEliw1/Wr7q4fHl/3s7+14l53UuPttTe7dk+1YatbADmNnlUFnDVASwdwtKCoB5kGy CWlo3oUcJMwDoI1LHZBhA0wmwdCGtBSMNmadgzcUFEB6IaFNKC bAOLrwn0UxThS0dZxJsI+yHI/i5oljUo9EuO3yS+7HBwe3bI2cXIOAfUY6ABY+lglh5lGxBYR3j 3r8PW1QPzlKH59dtqj8g6VS2qlpr6utu/RAcdf9ZW4SMWsNL2B3b7jzT9kKKsFOWw2H54690vbzzz4L23nb aHNtJutThoC0OS1mnaMm2jbNN22kI7rVbX/W/++cbzj+m6roy1XBytf0zbcl0vv6ZtvqZrOTNU+9TUCctXf3NP/4e+/4PL7rj53K2MdetLS8q+/9e3rukHzLdf3Hv91rWx1gnV7jMdu8+27zzfVXSqtdCozB+X5fT Xbp3oLP/klRtO6/eUjaQtDDPNMFaHzeacJh2klSEt9DRtt1Cka5r69MkX3zj/mGN6miJp0sZQVgdlddFWF2V1MLTD7XQ5XQzjYmi32+12v3jnVk NTbW/T4TuKjba2uHsdKTr5IaVSplDJ5XK5StWqkMsaWtu1L71tvDc9+ PoPHuEXWazvWdh/WIHX/HOmBMvPAcL3AY4TRKws3nOrqq4nj7YkDCcn69bJPxjJvFDq2RM vMa7gmZKE+riQ8XnZ8riuzAXNGYv39O5aNLA3WlaT0DAYWXxKs uy6kK8rm9s0GBddUUAs6CEIvZA3Hk7IlkOlq7xqUuru9p/4aFD11xMNz9wo1b1Rf/bljhuvVGverDDd6v7gmbzHuj0PreEeWiNozvaQ588/XhlaWwdn7OPl7FzSf3Sh/DgQOYaIHj9QMr298FsEfRMA7uHENIo9ZLMfwMiPAPCJr8drVeW 29eu/gaFPQJCEYScbpCDEBrL+4yH9+85iy859P9Q0unKK7uUVPwyf9z kA3wWjxz2VeznGCP5YrGDnHiCsUbRbFnY8JaNBUr8JrsjGE1sF xCgHNOOQke/blyFa1wUIB7nJTZLeVNjoCelB3ABCOjauFxJ6Ca7FMCMCGmBQD 0PD7JiLsbnP7dl6IS//2aKSWwcr/lLhMeQJ6yHQCIN6HNbjoA6HdSioZUF6NkvPBs0wZMRgLUZoEEQ NoYP4qhsrj7xfWXdreEP5YwFL1EcuXy1/U7H5TBO2sgGIlEtr93PUs0ANiI/jqA6H9BhLh2EmPmHio+MIocMwHQIbUEiHwBoY0cKwHoWNGKiHE R2MGDmQCeXqvLw6dxDpxwHRDS7+I8ZmIOiBf/ADyfyb/jm9c1rzA3UxfhcCER0O6ziIAQONbMgIwAYWrMf8BtZy0quAaFl Yfn12fZWyu1OmktU21dy6ddPtdjvcjMtl/5NZwG5x2S0u2uqiSDdFOm2kk3a6GZebcbinSfpHip6m7LSNtNk sVoqkrIxz2umwMsyDadfDH90Pvnn4z799897d7z64++0Hd7//+NXvP3rl2w9f/ubD12z/+tRt/Z65/z31/Q+Mjfri868mTFNPPfGM7b6VeTjtvP+9++F/fvzk9Q+eN//tqbH3nhr88LmhD54ZfOep4deuDd65NPj568+47//LZXlATdtoC0NbHZTNabU6bVanfdpBWxxW0vGAZOwWh9vmdtvd0 za7lWRIkiFJ58yeAmVjGOoRCzhdjN3pcrvdL919sa6xvqel4jn VZrot/jvVarVsn0LV0q5SKpQKeXurStnc3NTSajo9+fFXZ76gCpv+xmK 9xSI+IpadCz6i5q+cAATvwZwfYcEnaIRuy/BI0RNHc68Ul1ztaLvzRPJArbAsTdiSzW8olNbv8S/PSd61o2Rp9s64gu1VnWH7O1lRNazIyoSKqehdzyCiM3HY6L65B/fvzUronu9lnENMziHMsYKJFUJ9QsRUZsbFo6kdI/M2Tizeqd0y2ps2dmzRnsH4yp5lZ3cFno4W6wIEZl/E7Mk1+YVNLojUJy29sGvBaE58R92szAk271UW8Hcf3w9LK+8fK PsxMOQDCP0QRj8HgH9wuZ8uXPSpXPWwIPcbAvmIi5IoQqMEDcD 3EaGFjdzz93vvcLm1sPDrkgMPN2z8R2GRPSj0Hov7CrJI6ysrF 6kXSIeWcnMPAgm1vq2lvmOhGS3ilg1o9TZoSSeOj3MgsxjQcaW 6Zd5HZEBoH39zp8dgOnrKE9QjuBHGTSyOlk9oPVE1BzeiiAnBJ 1BkhL3oQlzxS2Vld6pKXj6UfSm74tVyzyFvSA+zTTA0+ahvMmY iYD0Im0H2BBuchEETAuoRbAIBJyCOgSce9kx5dlvO413ita1Qh HKV+tiqZ4oDVFs56TIgqltQ1USYEmEzyjUguAbjGDiIAeOYCa6 ZQLQwZxIH9RBiQnETihkgjglFTDA8gUJGGDfjsJngmL39Tmbyt 3UC3s+A6FcEymAIDePfSUPf80sdzT7Tt+RShlDn6X3FFzPimBb DDThqhmEDGzchuIET0J9CpFWz5inDCxq211equrtkiub6ptqXX rztdrudLofTyfzJLEBaGJp0MCRjp+wUSZOknSQdNpuTsjgoi4O 00M6HtPsBRU3T0zaGsjIuC+Ow0cy0xWmxui3TbstD9/R9t+VHt/WB2zLtnp52Tz90T1scD6epHx+QPzyg7lvIBxaGZNwOt5txM1bG Pm2133/APLjvePAd9c2nti/fp756j7r3ju3eO9Ofv/Pw8/csX33M3P/aZbnvmrYx0zRpZWw2h83qtE077dNOh4VhLAxtZWjSQVsZ2uacI S+bzWEjHaTNQZFOmnJSNoahHW6X2+Vm3C5m5mjx3RdvH62r7Wy qelq+jWyP/49qub5xj7ylSSZXtMhb5cp2uVwhUyiOKhX6F96c/Kel/7aV738VIC55Zumia4z4ogkAfgcCPwb9T88qbs69ojx8feiw7sr mw1cPNL63bNtVtkcbOktL+OlRn0mW92mR5+lA/hkfyDg3+mnxnLML466HLD0ZlFO/5piGWN0P8rT+gjOzw82eK0/wt7Wie6qxvaXcXdXE7gakoIXYpAHChoBZdZLCwsBjyfyWTcCiE mDFTm7PYpYaZY1DoBZmGQB0DIg0hkWNhu9+rWD16E6/9Z2eoe8AwD02ZAGA77jct7bnfV3XRBXtup+3/Ycd27/bs+/HygbryuSPYOhdCHgIg1Y2+COA/IfF/yfk8y5L/JR32BVlD11R8Z8N6XdrKu+1trkDgz8C2K8iC9W+zfulY5Gi3gR 06z5gWY2wZZfnQEBWIyFfB9VsBuO62aAWYKkJbMRb0LtWerADC B4QpJ3w6cpljXqzdBhbywE0bEzH4eklyBgMa0FQDwFaFnsYiLk SvfmpbanXUpOeWL7hqfXFr+8TjkgADcA2sQADAOoBSAsgWhakZ UE6kK0HUROHYyQwDYbphbCBD4+gxAke3uUrakyFVtWC0Y2SQ7n irjgfRTqeWg34jECrh4SdRRx9AKJngVoAMbIhAxs1IoSJixsIz Mxj63mgDoU1IKphYToQ1LLZOoilhUEtium8vUbW8QvqAb/LLPY/YICEWA42+z6Avuq17NTGrjHFWyd23tk5xxDpf3oWPI5A4wg8ho BqCFJDkBZhj+PevamctDogQhWSU7e1tkze0SqTNx2trXzp1gtu t9vpdjldf3bFMdLmpCgnSTEUTVEUZSdpu42xWxykzWGlnJSNcV gY57STtLqmSSdpYxirnbFSjI1yWEmnlXRabI5pm2PmhP80yTy0 OSw2etrGWCnqodVuIe0WkrZS5DRFWx201UFbmBlr3mGxMQ8tTg vpeEi6pmnXQ9o1bXdN2902h4tkGKuFmn5on6YYm5OyOWw2hiJd 9LSTnnbQFic9U1zU6rJbnaTNSVNu2uaiyBk4KNJJkQ7SZrczDp fb5XQ7HG5mpu7g3Tsv1Tc0dcoanmwtvN+R+GNr/LXmgaI56QAAIABJREFUvGPyJoVK1apo7ZK3t8tbW1vbGhtkw+e ePPX5d7pPqYXrbwK8M7O3XA7Lvgr5TGHcl6HAJz13dUYc277tV MOGZmPq7iezDtw8fPz9+J2TWHwvtlqHJQ1zl49JErXzF46tCB5 J8B1ekv5UwJqpwJhj3gkHgw7lrTAURjWVeCSewHlPYNhrMO827 P00EHSWHaqDgvXQrCkkYAr2ugTMHuQWVXiNJ4v1ET7HtsArK/D15Z6ja1AzlzAKcL0AMXEINRFpit56o6jnk0tlky/EbvyLd9D3CPwQw50oxw2DNAp8PS/ks8y1X6xbcS9j1b9TVv7Hz/fvLORrFKd5HJrPIzk4xePf9wr+yiP0I4+57/lGvrZt17dNjT9MGh52d36/Y9sDX/E9Dv4+vkA7p3WfrzHSY3QVnn+IlVTt01wUMjh3c5OgbT1en8tL 7OVwTZBII/HvjRcXFWDxfbDvGSRymFtULBhcyDHhuAnDzCj3FCSc5BB6lGPC EDMBGUXQKC/p2dT0S3ni9kju8TmLJzKznz7iM5wg1EaJddFibaxIEy9Rx3qo5 3lqIr20CzzUsX6apMDRLGl7lkiRFnB8+can8/a9Ubrv3bpDrxoXHzoTnKbZOzlW966s5i/dZfpbsUteh4TnOJld/seLJerlfP18gW6BSBPnq1sWpk/36cyCSldJm1P8x1dI1XHS8XiJZpFYGyPSLRRpF3lqEj2Pb0dzm qG5lwneP7j4Q4yww1wXJPgMDDdFNnXvebq9/JWKfbdLk6YyQ7SRQg1BGGC+gcvRY4gRQiYQ2Mj1Gkwn1jezF3T NLWjMbqhQdrW3quSNDbUv3brlds90JPmzzxFYaZeFYqwkTc0MK 8XYHA6biyZdNO1mSBdjc87o2xnQNqeddDCkk7E5GKuDsToYm8N uc9htDtrC0BbGbmNoq50hHaTFbpu2kxYnaWVIi52yOGe8D7vVa bcyjI1mSNpuYyirnbYypIUmLXbbQ5qyMLTNQVspcpokrXbSypB WB211OEiX3WK3Wxx2i9tuc9M2F21zUDYnRTp/0v9u0uYgbcwMEZA2x0z1UbeLsbucjJt2u9137rzS3KDsUrSeat 71lXI5rYp5o31LX0u1rFXVqlK2tbbJW9tUra2yVlmr+pT+va8m v55umPwO9L/unfQab+6T0Ylvzk24TKyv8e/PCR1ILzScDU/T4WGVCWU1Zbd6Ek5vEg3E8Mfj+do40XhixMklBbXzetLDVWkL9 3Tlpeqag/eWBh88FD+5L3xq0dyT0cmHNqXG7F21VDZ3q1KapxDmd0jyFML8 BnGhwiO7wSO3QnA4RzSYRphCBeYQz75sKLkO29IgHkvGTgk5Jh 5h5OOTAkLHiZqMyL1Unt+jzyq+vTjrr35xL6Mhz2FRN5F5TyHh T3HCbiNBz7ACr0KBlyCvK6j4ZYR3Dxfc5+MOKWb34E2LuVYPDu nJIXncaR6fxrgkC/pwbvAHzbXu+TF/B4DPBLiNJ30TXdk2+/gWn4nZUvVaPL+avbQqSLYrZDhss0yo3IzXFPAS+vgCMyY2eIT1 bxCurRb6G5LTPvOOmOKlVoee3CTWSgVGmGvC+WeEgtMivk4kMA owg1CgXySQZ6ae7Dxy+nzwnoOeeYU7T+pKhq9JtzTzs1ulO9qF ucc4+Sf4ud3C3FZxbrsgu0u4fcA7VyfJ0glXjXuuaI/YVtL90pnK55vyru8//NxA5ejNrNJzDc9eyH9md+5jRSdeenNz3hueHmc9o87y1mhFO0a EuV2ivFZRTrtnXmdQwUl+0rAkRu29tNtnk0Kc1yEo6BXmdolyl MJCOT9P7rWjm7+mD59zWiB9h8f7gScgYYmd7fEjFHndc191vH5 T9gsbD72+5+BrNRlP7JhjihRpBXwDLjAI+QYuOonCUygyyfUYX cdZ38ye1x1ZoNjRUKPo6upQqpqbGl586SW32+1yup1/1imCX7KGaDdJOUmSoSg7RdkpkmFol4N205SLplx2m9M+o8N/xQK0zWknXQ7S5fiZI2xO0uYgLQw5bSetjM1ip0knaXVYpxnS6q JtTsbmsFsZB+miLYzd6nCQDruVttvslI2mSTtls5NWmrLRpI0m rRRlo3++TlntM3nBDtJltzC0xUnb3HbSTdtclNVB2h7hj1jA5X a6nHa7yzFjdN156U5tbYNKrlI37LmnWu1oW/CGIr2vtkSmbJHL5TJlW4NK2aJQtqjkBzu7lDdem/z84amPyehsMzfRjM43Ld76VPzufv6RdV6D6YKS3IyWS42n/3pk0qB6c7jlXnO4OZI7QKBqCDQAgAGSjIg2t4S0J4c2Zsxe2Rk cMhEWoYkLNST6nw5GTJDnIJF3eJZs1exDBTFRXfN54xHCkWjJQ CJvaDGhjhEOLZYOxvPGAiAtDzPxRBp/D1UmsrIOTjsqGFjL1nNgLYpqUZYWRMbBUFPI1lM1qokPSpo+it +rndt4VNyUxVesFKpWC1oyceVGTJkiassUqjYJFFskpfXsBecA 7GMIoFCAZEM/APCPbPA+xJoGQBsA2NhsGoC+D/T6eu2yH30D7gHsr1nox0DIBFF60GN0MV8rFvcv5Ww9CMQc8GnI 8T8ZuL4Jka1jl2/BF3Th4BjsqQnYfLU5JKcnNPHCtp0fzltrjt6ryr4mn6WLBocwQ IPAp7iIWYCOcfERIXc01LMjG1xaG7H8Skvf17X9f1WOfNw99O9 1W18BeKcAzuNszhMg/zrAfwIQPMMSPAPwHweEVwDhdVB6ExCcD4i6vHjVGZ/YivKrZ1MmciKHlnhWJaTKj+03vBjaVQy2SYh2Sd753mX5hrAFm qUpz7F4aoD3GMB9miW+wRJdAaXXIY+nQfj0ulV/i45+CsAmAOE1QHiDxX0GJJ5iCZ4GeDcA7AbCPb11+8eLYj8DgK 9hlg2CLADnfWLFqL9yx1xt+LKLCw+8ty/ntV1RZ8IDznpi4zCixuFxBB6HQB3KNsCQHhT3J2KZ5UCkck52Y/bRakVnt0quqK+vvfXi7f8zLGBz2kmXnXI9EnLaRdMuinbZ7e4Z FpgR9RmtS5NOhnTNGAgz1xnrTyxAOkkrY5u2kxY7ZWVom4O2OW ir0251MzYnY2McpMNuZWgLbbfaGRtDWynSQs+UBqKtDuoRZqwG u/0RazCMjWFsDrvNSZNOm9Vhs7oom5uyuSnS9bN5QpFOinwU3aRI x29YwOV0uWiHyzWTpPnq3Zcam5pblO1jisp/dGaSHTGvKdMGGw60qWRKhUqp6FYoVJ1ylVLRWdE3kNlyXP3Xe2 e/nK668IHXpr5Zxd2zSw7GNufN7d4e2NQIzGuWrujLGR3XfHOu9I 2KBRcSxWopR8PlTflz9R58jVQ8mBB0oGj23EMRCQeimvKFJ8LE WjE8DEAjAH9YMr8rMTs3oyg2JbtwXXhvOE+PYAY2aOYBpwWsCR YygaB6DJ+EIRNAmDEvdYCvYgu8rBFZ1+A5ko4aebiB4Bg4LAPE 0SMRp+ZHyndtkt8M26INb6yYf2YNT08gkyg8RWCTXOI0H5vAea clxFkpZMY8dHHCiiow6gILfRvDv0CwLxHOv/mCb1HoCwT9NwR/gRH/ArEPQ/3f2pP9MDTkbYDzBjvoileRUjK0kqMVcXVc6cllxI6DQEKpr6ww YChoezPWkwrJNhNLuwl0BIw8G7fvtY5IWYVHXrl3TpnXrl0Rjb n777TEX1oFjRDwJAZPgtgkApvYQq1fYPc24QYV4KvBIs95ZfXl Dl489vxbkUX13C21UJaCk9HOz2jlpbcL0rr5ad3CtF5ecpcws5 PIUIo3dgrSW/Ckw4KVhXN27i19cXSBYYmfOszvWCqyrghaXsVv2iLSB/GGRdnPVid3qNDlOcK0Su7qOs/0Y6KUHl5WJzerHV3fxc8a9I4+HhLY5hcl80ru4K5r5axr46d3C dYdJ9L7iLQTgrUnPBI7U7OfjFv6AY59IwAdOMsO8v9OrOoP7Nk 8xxwTOBqRdiN/8dk03zGf4PO+hIELajHciHD0IKJnEyYOruYFDWXwMmpZ0U0R+Q 15dQ1tPSdUCmV9Y93zj6KD7j9tn/CXfAHyUZ9vmnJTlJukXRTtImkXTbtpymknnQ7KZbc5SavjFxaw OhmLw2F1OqzOGaeAts4c42PsNsZuszM2hrHZGSvjsLkYq4uxOe xWO2Oz2612u5WmLRRttdsstG2aslvtDtLB2BiGtDM2+4yb4CDt DivDPLQ7rHaHze6wMrTNQZJOG+UiSTdFushHUYDfsYDrf3gELq fLZXc4HY9Y4M6t+oa6RkX78ebqvzZn0qpFH7Wv1zaXKeVKmaxN puhqUSra5E0dMlnDSW30jpZdPU+e+5LW/OOHZa1DPjWF6Y8dWHc+x/9oAbyygxXa67FVMbvxUOaELHZ8G9LrIxydLWpdiu3fzD+6zXs4 06M9D01s4EhPsXy6/LYfTj+/f/Mr22frg+c9njhnMtn3QLZHWBUflXnGVAc0b+Rp/FgmCDyNQBMIqGNjRgA2wJCJAPU4aoTFBi+Ptk3shHokuV4ykAI ZcEyPIloU0MGoBl1gToqqr5u144xv3lh0/77QyRB8lAXqOMCkADJi0uFZEuVyvmwDv28Vd9hfOOYhHVwgOLI XTpYJVml5iy7DPtej494X+l8UxZ4Wrh7jrR3B4tQ+88Zzd77qt 0BHLB0lig55Di3naDwwE5swcvj9K7EdR4Bl5Z7N+X4Ds7JacMU 6VsMmKLEHgYfA+Gur8l4tDRlN8uxN9urb4HViTWBvws6XS1Y/lcoZF6AmnD/J5RsFiEHqPbpGuq2O7aVjhWq9Dg54NtXOrVWtbe+e27GdM5iIa BPw8ThCtxDRRRDqKP5ItGh0vnBkoXBsEXdsnqchXjK8nN+1VqJ cHj2ydu/71X46f2iI73liM5IiA+Y1iet3CUfDuYOiDXe3bniiWCJbyetI4 w+tFo/HC0ZiuGPzeSMLhWOxYSdXZu7fuikmbf3m5IV9ywTDETx1FE8dw R+LItTxxGiCdDAxoD1rScN4cNJtAH0bRx/CsA3g/Q1b3evdlTrHtDSku5CXu19UsC+mtzjWtN5raLFwZLFInSAcX8A fixKPJHj1b/KqbgHnDYFhAxE7WrKrjyq7jikUitqmuucesYDrz2cBJ+Wyk06a dFK0y0Y7bY/k32WnXTTloCknTTko0mGz2inSQdNOmnTaSdcjv+AnU5+xzUQHa MpC0Va73crQj8wB5//ETNVAysIwNsejJgI2B2NzMKTjpwljt9oZq8NpdTitTvuM//+Lwv9Z+f8arp8NgRmmoCmny+VyOVxOJzMTgLlz94XGuqNyubKz uebp5pzptsXfdCRMtOxplLU2K1UKhUIuVyhVMqWysXZwOCZnUL q4Z/z1B6e/+qbl6RdSj3ef/OiFvjdeTK25CM4e5mZ1hShrBAWlAds75hTXhSh3BXfsIzLq2J4 9eOQx/8J+zw19vKCBzZvej4ifCFgn3/fEyUWGtSuuZpbfq0kyF6FrjoAe6uDIZ7G5zbySLcKxSLYGAY0s UA/CGhBXI5ABBY04pOGjej7f7Cds38xKaETXVosG1sAGHNOwIQ0Ca hDuiGiRZsesnDZAegJe2BnVeShoMoo9zmIbQWgSJ9S+ooYd7CV yYM5xdJ1crNrOUfugYwJcHYqr5+Bj8ySthYIlTT4+x3yX1QS2b eaOhgtGon270jl52cCqHfzd2/x7VvDGA2GdJ6ghEBNKmEXC/o3YZiUroVranON5cla6HGvJYFdtRhf1oOgwK/Hi4gOvVUWc2IAf3gDnbyUObJqtzC18tjv1TLW4ca1QuUZ6LEXS ky5q303sVQKhY4CfxquwPaznEH/vbo8k2aId6lnlu6QjEbCZwCZxXIdzDALYQEBGAjHwYD0fNohhr YfANNvDONdjZK53b/RC4+rdf6/ynpgtGFrgU90ARxmB6BPi5lzuiA8ygma+sSnr2Xzf3hjhWDQy4 QOeJhAdjzfGw9V8rk4aOR5woNRnYDm/LtszvsdDoOfBBhFsxEETxDYLYC0XH+XOVs9teWM8V3UD87oGIB +D4EMW+gGW3CvsTg3R5XgWqJDgYTjwZGCmJmrfCd6Ww8T2o9j2 OixbwdmhILYp+OvHOQufBvjPsoN0odkt2UdrFF2qJlVTVVPj87 fvut1u5v9CfQG73UHTDuoRnDTttFNOhnIylIumnDPRAYp0kDYH TToZ2j1jONh/FmnrTyxAOmmbwzZNkxY7ZXVQNhdlc5E2J0m6adJt/y0oq5uyuuhHQT4XbXNRVidldVHWnyY2hrQy9KPoo9Nuc9G2X0u 7+w/g/B0LuF0ul8PhdNlnag3dfuVOY1ODXCE7Jj/yrGz7w/bF/26LPdW8S6FStLQ2tbXK2hQqpUpZ19lUM6xdUqgFhB05bR9e+No 59aGlzfTvDbmvFVd93DFGhydfEm9tCW9sZy+p3Hjo7tJNTwtiT dJll1G/0U0b30xIusnyPssW3+Dzn1y55k3/2OE5OfX7nlIs0S3Ne6Gg6dOWFHUpFF8pChrN3/lOcOIJUUGu7+gCVI+zTTA8yYO1HL6Oh+tx3MzBNFzMRHBOeRHH NrBW1aPpZZLRNZiOL9RxCR2KaCCR2i+yv0Cy9uj8pRcC4/uCyvbNmUpF9DxcD/G0EsnAGm5uDexzwtfnGhZk5OwqFxsiISMbOoVDEwiuIyJORGUW Jq2Pjc0sSIgenIvoEPQ0xjGKeJoQzlAkdyyIb+LhJhAzI5CZBZ gRniHMs70YXaVkLazyUu72GJmdqcAV6+Gabdy4bg4+wlpwKrb8 pZOJR/vQ0Fapv1Ewyxy65vE9bf+JWHeHHfA4OucpLOoCJ+oMFnYFDboJ +E5KclUBvRuC+rPQrJwFaZqCqnel6ZVBil3cnlRe32phzxpRTz qvdw2nd4noxBpu90rx8RRRV6pnxzavlt343gIitzC6qfzwy7qo 3k2BdYfw5SaAewuZrxHLNvANgZwh7623SzcYakX56znF2zkNG8 R9GZyeFFF3mqAnRdiVHNGauWv3utaEZRWpa5Matnq3rxb2rBT2 JhPHkkX9ydKuBSuvZdX+Q3ns44GxN6+XD7/HD77NZn2NC77Cknt9j2dFju0WZFRGLD89a94Fnt8Vr7lvsCXPA aInQemTLPEzgOQ62/tJQHQbEX0FoX+HZp8Nz1fm1dW2drfKlE31zS23b92ZYQGn689m Adr+iAJo2mGnXXbaxdAuB+WyUz8bBW56prw/5WYot4N222m3nXLTpMtuc9lJF21z2UkXQ7rtNtcj18DmpmfE0u aiSDdt+z3s5G/m9v/xzCM/xf6ILNy/YoH/huu3cQHnDAHRlMPtcrqcDoeTdjqdbrf71t3bdXV1zUplu6zyWd l2mzL+29akieYjjS2dzcrGVkVdm6xZoVQ0tMlbBoxJeTpAYPJc cG3wzsMLX7pa9P8EoXMQeGXHnn/Nz7gs2l4a1lIHJVXMT7k+J/45lp+RHTSF+hlWb345PvsSkSrnbWjjrzwOBTcACw54VeYnPbE9/eWNEfroVVNr108dCiusCo4/FrnwLFs6wtnU6jWUiep5sJkFmTBIj2FaDDbCoBFEtDhqwnCzlN +dBa6qRtMqhMMZkFGAGyDEBMNGhFBLIoa2iVJqZsdMeSzsDDiy M+R0EqzhYWqMM8YXDyQAmfk+84bys7+QhEzCWyo9NPHEJI6buf CECJnwiB4ILC8J7kqWVhT5xZ8IwI1CeIILTxLwaS46JUJOCbEJ Hm7gE0YJahTxTSH+fflophwIVQi2l3qeWO4zKNjUhCvXgXXb8I QuDNdCPLVv4tTBwOK2kDWTOQe+Xpz8fkjszUWpt4Rz9JDfKSjw KjjnGhp8AfI+y5pl4GTIvHs3EeOe3sOLePm5vKhe/5CbqPAKZ841JPIxeO4FbvgZ7txTnIhJPPw0N/IUJ2KSE3kWjzrHmT+FzB2UxvXPXd0dtERZ2vuVX+IkHHiZJfo7 iHyHRZ6X1O8WjIZIBiSFTzStKGn3mt8QscaABA9w551Bo09x5k 1yIkyc+RPE/NOefsY5YpOnl1EwZwoLm8QjjLyI05yIc5yIYemK+gMXTu18QR7 UNmfJ4JKjL07O23kK4D4D8V/nph7z7Vk7X7Mh6lCjYIGSE9kZtNkQUqTmrG/B1qt4Wd14Rjs3q4GfKeOtnMSC3wCxN9EgY3hOY05NpapDrpQ31 NfVv3hzpnO58887WPwzC9DOGZ1vnxHvnySfolwk5aIop51226m fZJJ0MdSjCKKddjO0m6HctM1N2Vw0ORMFfAT7H/gC/4Xfk8IMGKt7pu/wz8JP/oT/kv9fOwiuX7GAw07P1BpyMu6ZVG33y3eeb6yva1B2yBRyXWPhP9 qX2VqjX5dvO1l3WKlobGjtqlccb1F1NSnb5f2GZfnjLMklFnpe afhy6nPK8L5lV+3H0bGvp2/6dm7S8/zttbP6sjk1KUBWJphXIqppEVdUeR8uDak6OkdR5dO3xWNwteex 9UTNerwpUzAUyzkp9DzhteLMkqJXC4peO7Tn6YHioef2V326Jf d9bnwr98AO6chCxMiFp4SwCcNNGDgFs86gLB2OmQi+wcujdQO6 uBqOl4l7ikGjPzoBwSYuqOHzx4QxE2sXyPbxVmd75xbEqQuCpy JhDRvSg5hBJB6czyvYjQUdC53zLO5znpd+2rOunVtfyGsuwBsK BA17ostKCrP2lC3cnpNRGFG5l9NYyG8s4tXv4jXs5Nbt5NYXCR r3EXWFvIadguriWTUy74xeIEDFTW3x7s5DNIGeQ8TWZpE8Harb Ci7vQIkxENFxeUNh4iPp/JVFASlKUUa9JL/eo6RKcqREXF3Mq94rqi3xPFomOnyIf3QjtzcG0/mgBg5/2NuvKwNJqwJ8hhCP85jHVbb0cUB6FfS+zPK9DPheBTwfA72vsL zOgf5nWAEmaLYR9Nd6zJuMWDEYkNByoONfnrOfYsGvs4kf2fg3 UITJo2G7aCyQP+C9/cnWuEMDooW9s5MeA3x1bP8ptu95lu85ttcZOOgyFHAVEpwXcK9 yscso/yoiehaWXoF9LgI+zwDCWwD/THL9cxtOy5dplm68mHHw5eY1Jzr5CWOAx3k0rV3Yu9pfF5E8sX tJ68HYzsoVZ2tDzMnCkUjuYCJ/KJ47sog3Ok8yGuN7IsdjVxc7UA2FjIZtb8mtqezsVKhk9Y1H6+ 7cnOlK4vzzDhP97BHQLppyUqTTTs8QgYuinDQ1k0rkICkHRTlo ykmRDpp02CnnTBCBJp32mb6gj8p7OWnS+Whf4H/C+ivYfuoaQD7S85T1v4yF3+p/8n+wwO+ig85HhgBl/12+gNNtd7rtbpfd7Xa/eucFWWOtTCFvau863lzxblsG3R71kXLNaEOxUtmgam1Tybvb5B 0tirbmk4YlhQZE/DTMfm919l/O/sNi/PyHjie+S970131FlqStz/EKinzUsVyNP38skqcP4pg9+ONCvx7fAy8cXnd2s+iEL6rm8UxS nsGbMyGBTQRnWLj9ldyydw8kXYwL1PuFaFYEH5AHz79eWHi/VP6v2dk9kv17xYp8XvsOgXKDj3KLoHWlQBML6z1wPSzQeor707 jbjgKz5aLsLtHwDnjCH9LyMC2XZ0R8dd7xp1fFa9YlGjLnn1rs NSHCzABsYiNmPjIWHKrKiUqsXCge8OWdBT2uwmHXgLlqMHqcFT qGhZqxoAmh1BAkMXmJRnlB48hsPRo8Cc8yo6GTcNgkK8QIRUwC YQYoYhKcPYEFmNheJ9Glnd7Ko7g6Dp8US8e4WXKxYj3n6BZsRY 8IH0UIE8bRId5jYb4NKdyDKXj7Iq42SHxKyjVyeaeEnEkh75RU YPbBDELijBScFLMnPdgmHmrg8nQ+vGMrBLIdvKpd3rU14tJqjy N1HhW1kooaSXWNoLJMXF3BL68SVNdwqw5I6/Z5Vhzh5h/mbytcWHu0/Pr5qAqVcKMaCr4B4u/C86941e8RamfDY4LNLx1O16jwnFzOrn2eB8v8jhz2OHLIo7pMU HNYUlU+b3/12vXluxcfyVtWmbhT5lV6VFh5mF+3h1+53y+/H44YW5h/N0V5TnZX2/OJquHdig0XdgcUV0ORQ1hys//JFM4o4T0uma0P8dAGC3VB6AiXMOCIEcGNPMTIYZtA5DSCGMQBf Ts5a3pZUf3h+c059RVtXR1tLc3NjQ0zncvdzj+vJ8nPLMDYHxG BnXb9PKcpJ0U7ScpJUg6KdNCUcyYu+CjgR7po0vWzS0/PpBj97srv8Rshp37jC7ioP174KPj/E372Mv4XC7gokqGo32cNuZyM08XM1B188e4LjQ3VKnmzQtE63H Tko7Z0RhX5uXKtur6kqaWlWdXaqGhvUqoUimbFwNjSojFA8jjA +hoWPdN+6evTXz8cePnb2LUX9xZ+m57/Ei8vXzoYjao9Ma2Uo4GJQSjm3NzyN/eNfjHQ80ln7os53hovTI3jEzg6Cgv6JJvu5ux4J184LASPEZzB UHH7Zn7GEAA8CwLPrUp7d1/zvz3iTgGzNEDoFCv4DOh3Fgw/yduzXzq8kNALuUYpdzRQ0rQHWSpnhSolxTUeA0nYOB/SgpAOQsd4kVdiFl1aHG2Omn82QjBGIDqUZURYRg6q4cf0SqvyQ 1tjMzfFN4rjjnEXj/PjtdgSPZqg5y3Se0Rpg2eNR3gOzg0Y8Z43zo1VE4s0nEVqIl5D JGrxhHE8YZyTOEYsHeMsHsfjR7H0ZknLdq42DDDgmBGWjgKZcq RxHVC1FY47xmPrMGAMxzVcRI0QRgFfI+GPidhDCMuIssww24jA GgRSI/gEARlByACxdRhLg4MGBDaAoJ4NGbmo2QvV+2HaII4umKsPxrWB uDYI1Qej+gBU540ZfFCDD6r3FpiCvfQLvIeXevUsjdKn7P20ZP ZknLhrM39LNyC5wPY/51XSwh9ezB7DM//Z9LGcAAAgAElEQVSyacPTxT69cV6jkcKxAI7WB9d5CzXeXJ03T +8Xf3JOSWlQ10ph42avhF4frs6DqwkmtHM52hDfgeVe+0qW7b/lu8Y0u6A211x74OaBzEvb/MuK2PNkaEqt9Ngq3rhIrBXw1AR7DEH1fKFByNViqB5EdBCoRUA tDhsx2IB5HU8mUmWs8K6wnMYttRUtHR2tLbK6uvqbt190u90u5/+BDmU/i/0MEfw8p6nfihk1ky/wc6Luf4Fy/Vpv/7EP/2ut7vr1y38H+ndXqBm4SNsf2QJu0ub4aZvgF4/A7XI4XQ76UcWxOw31R9sULe1yxYnG6puyLQ/aE75tTzsjOySTy1QqeZuiXtnWpGptah7oXlYhZ0UOsfgfAtDdg 4rPz35mm/zMUnPi/eI9n6dm3+TtyPcZTcC0UsTIxbQQdwjf/PrGA+8XL59YsuGxrMrPKiIvRbC1IHRaiA7wl5xbUvBGtqeax9d I/UcyePtKWYld7OCrbMlNfuRlZIF8ddmV7bWvCuepBLEd/Nh+0UIDHDLBmt8jLivxUi/DjWLQAAoMoZKGA1DsMXb4Mf/D9YEnk71GwkUnI2Kubsx6uXTl1YJdr9dlPpXnfzJMOhLKH4/gahbwxyMSesNr80J7li84fGBbjDI/uKs4sL0isO2otLtKcrwiXlldXFhxdMnuI5sPr2k86tNxwLtnn1 dXsc/xA949+z27i717in179vgdK/bu3ud5vFh6MocYW43p52OaOaLRML/+6DTFws6K5ZX7YmLk8+ZMrN56t6r4ZdnqS1uDxmK33D5w8PXa5 VMZgqEwbHwWXx3sr4uKvZom1S0jhheKtVH88QCBxl+gDeFp5nH G5xHaSK42HFeHcvVzCF0gR+fP0QVytMEcbSihnsvThHPVwTx9E E8XLFRHeY4lCntihar50eqUPZ9U+k4Gi8b9A3o2EFkKwH8SidV 51dV4D8TueGXHpseKfORLpZ0xxGgAa5LLMsCEDsH1CNsMhw7hJ YeQwZVA4xZ2/HEerocQLRvRcQAjChlx75OLs4aNkVmTXvEdi482lvxFlfRkPr9 yFxDTiSZ1RPYUbnt+y7YXspZeil/+zPKw06Fb/7o+7vp8eJCNmmHIxIE1AtTIYxthz6GVeEY1K1I5N79pS0O1vLt bJVfUNzY8/9KL7pkMYvefnUE8IzY/bQc4Z4z/nyLtv9O0/0NW/0sOXaTNSdqcpM31M/6LMn56/qdkpP8G+QfXZ4L/M+8kZxIWbT9vCrhtVoa0MaTNabO6bBYnTTldLqfbZXe67DNtH+ 7eeaWpvl4ha5Yp5N3N1U+0bP6xK/6HtiXnmgpalDJVq7JdJpOpuptUrdUnm1Z1F0vzGoGAxwDohb2H vjj7LmP47MH47e+rmz5du+MJQe4u77EY1AhDZgTRcAQnPVLvbg 45Ew12I5wOIuO5zPBz8xA1xtPBPqPivL/kRZjnoyd4xV/XpZpUrLmH45df8wo7SaS0Bra1C9pyA1Rbd10fWDJe6S3f4qvMC ew85HlQCczvAmO6A49WSdSxgAGBT3F544keh5vA8F503rh4zag 0+QR/TVdK/VMp1df8s9rS6i7md78Uu9MoWNnOSz3Oy+zlrjvmt2pswdzBpbN 7Fyac8E3uk6wbEKb189OHOBn9/MyBwJTRmOix5f7Di8NHAtYOcrP6BFkDvHUD/IxhfvooN3VYmDYiTB0Upg7z0kd4WcPC9cPE2n5h8gB/TZ80bUS4amRWYn9vw+s70sckC4+urb1YYXhrRbE5Yuvw4p26Ft 1H6yvPVWvfisweIZJknLXN23qud1z/bNamIe7y45K0QUFKlyCti59yUpg8LkoZEqw9wU/u56X0c9f1Eeu6eZnd3IxjRNpxblovL6WPnzLAT+0SZLVxMjp4m QP8dceRVVXI6pzI/Jqa82/6lbQIy/L8j23zVZZha/sBqZm/+LT39p7C8RsZCgOUmIMmb8ZKVgvHYhAdnzAKsDEM13FCB7l7Dk GDa4H6bVBiNx/TY6AZhAwQS49CBog7Kkm9WJMuv5xa+srSowOlLx9bdWWX6EgRK 6YTSWpfe64p/bltYeNRiZdXbXwlO0wdvul2ZvhUCDQKwQYY1aO4GuHoYbYelAy uQjOq2NGN4fmVm+rLmrtbFfKmhua6mzP5Ak7Hn3+OwG532O0Ox u5kGOfM/BfQDvujvQOHnXb+Co5fYHfQNPMTfjWnfsF/Lf/fr6L/ADM/879uPfrWzw9QFENRDE0zFOWgKAdjn0nNdDiddqfjUQZxQ0ODXK FoUSpVzfVnZTu/7Fr+feeSx5tz2xtrOmQt7Y1NMoWiSak6MlYeN7rY49hqfGMDwt cU7/lcNfkP9SffTX76YPgalbDlaU5Wqc+JBMyAsY0gqsF5A8K1z2cu vLjUa8Q/3Dh36+0NsWfncQdg8TASNxWe/lyK4IRIcNKz8L0jK4bLWWF5iSsM0vhifk2KQBcH6fygfiL2Suy qO+nIsICjEcAGb8nIaumeclaonLOqNaCzmKMOYJlRtkEkHUgWF 9YBc3oBnykw4ALgOxQQb95Y/HrK7mdS9z67uexdj/lnAYmG7WuC/M0sXzPLY0LAmQziXuR7nQMCTKCvnu2nZwWOsQNGYV8t4mXGCbM PPOGF6FEfA3u2EfQ3sHwnAO9JwOcU4D3B8jbBfpMsn0mWzxTqd wULvMD2nIA8LkF+l9lBZ9g+U7jAWLvvyxWLLwJg0/KNV1v1/95S87pvvClsydk91Z+yves2H3knceNdQNzHCjg2J9m8v+2e76I pwGsECDCxgk6zAs6y/c6B/lMsfxPgZWJ5nWJ5nWb7nGX7nWH7nWH7ngF9z4C+Zpa3ke15ie1 9BfA7zQqYhGddYntc8Jv/7IK114LmHTvYeJ839wYQ0MfZWhF8rMS7vgpZcBzgTAH8y5uKvl m96fbsKH3cymtA/F6eYiWm8wb1GEvLxvR46EnfbYfnVKYEVm6fE9vhA2lglgkGNTC oBUEdmzuEZd0oSOsZ4C9qC8yqaXltbNPl3V4HCljhCnBlw6Kzh 1Nf3JpwLjH+QsLK26nR5+ZvemGNRx+CqkFQz0Z1IKKDIR2LrYO E/WuQlBrWnLqw7WXbjx5SdimVyqa6uqrbLzzvdrsdTofT5XS5XH+ KXwD8NHH9f/DLcP8KfzB+u/aX8Zu1/59bfzicv8Z//95Pc+cf/JXT6WScTsbtdt+5c6e+vl6pVKpUrTJ5y3BTySdtGWRrzNutKf3 NuxQqZZPiuKytvVVVVzFWumAsljM6y79nO2fJrkMNLzSNvH3s2 XsTn1on33GtyH0WmKX0PnJUMBaHGHmEAROc5KQ9nZ53pyj7xYL sF7IrP61cfn05OsQhxkRJzyTFP74QGWAJ9XzBuK/PYKqgeC+wuAjN3i7qXoaPeMFaNjQKBOkkG26nz9L7Y2MANglDe qnfYLI09xAQJscz5T7HN/BMniwzgpp9hYPxgsZ1osq9vLIKaeVBQemOEEVJkHyXT2NOYMte ftkuSXmppOywpLxUcGRP+IG9W9fuKZ+3f8u6cv+SEmFNGV5eQV SU8Y+UehwujSguXZext3BR/vZVxQv3lIvKjogrq3iHK4QVNfyKcs6R/YLqA/yqYkFVsfDIPq8jZaLKEk7lHnHVYX7ZflH1Xo+SokX5ZcN9l3fu afHLyt1woq/umQvLWmtml5csbW87fOF82L7dJReMawZbiX35gpLikKryksfPz Wku5RzKER09QFQd4FUdEtQc5B/dT9TsJSr2Civ288r2iasOCcr2Cw/vF5cdkBzZLyrfR5QViSsOCEsPSg6Vex2qCjoo99yq4C5VSBO7I jJVZSMf+S6/DnleZoWOCXbXzj55QFR9EE5VIXEjO+o/zDj8pDCu0Wt5K7G+wKd3GaYVokYcMcO4GZ81Mj9+z5aY6A3LU9 IWHIvh6DFoAsYMMG5GWAaUGBJnXN9daBxLP2g+ePJC93vqTZfz/Et3s6O68FVK/xNbVrywLvX5tUH6wOCLYbMvhUadD5GMc2AjBE+wOGY2aGDDkzA yQYiHM9F1cvbcjvDcupy6Ix09HUplc1Nz3czJYofL6XQxfzoLO P8nXC6Hy+Vwux0/TX591/EzZu7+N377qt+J5c/D9dsl/xt/9InfLfmjW86Z+Ivb7Xa779y521Bfr5TLVXJFs1J+ounw3xWZDl X0261rj8mKFB2yFlWHvK1HpZCVj5dFjM2FDThHN0vYsGj3RKvq +tmmy48bP/1u8h6588QtIEAOxh0XN1bwteG4GcZG8TVPp21/Lr/oxT1bL2+uebty7WNr0T4uX+uz+qV1cy9EgUM4rhey1Dhs8CIGF 0Vot8Sd3+yrnhd6ap6HXhJ6bXaQ1n/9zfSIqTnYCMQxcAETBzOI/LpThBntQOhxztaqoP4kzrgIMGPsSYx7SkgYvHFNEM8YyDX4oeM +0JgEVUsQtQffGMjTBvE1s/i6ENF4wOK+WRU7fU4meZXtDw4eC8DO+GMGf8IQyNH6CTSzYvvm Hime1b1SWLvLb3HfLJ7GV6QP5KoD+LogviGAo/HiG/x4el+e1l+g9vPQBvFNwZDRlzB7c7RSkT7Ad9BvuTx06vTRJ549 VnyxIP1qnuLz3sOvHEi7tC7OnCa7N9TwUcf+tw4E6vwJtTc2ND vcmFj0ZvGciUjhqJ9QN5vQBPN0IVzdLEIfwDH6oUZvbMIPNfti Zn/M4Mcx+HMMfoTBlzAEono/3Cgh9GKB0Y+r8Zdq53oNJ/AVK0R1S6JPZpW+fWJhT7V48wl24HkgdFJ6uMVrKEsyssKrdVXR jdYtl45wm2IF7UtFJ+dz9F4sLYiYMESPcE3CwP4k3tJiD98Oz9 jDfo0rCJ0POEHARhAyskAjSoyI0p8o2HdGX9T6XPHA+eInW1af y/Eo38uObsfXNomPp+CjIsEoIdTw4DEU1uLgCIQZMNAIwQYY1+GQ FoWMMGjGRcPpSEbL/2PvPcOrOs9877XW01bbfasBEiCKEBKSkOhdIBBISAJRJFBDFEk 00dSl3VVBFbVdVt1bAoNxwzYx4ALG4BI7TpyZtEl1MpPkTDKTX m1zPjiTyTnv+573fEky1yT/a39c61rry/6t+76f5/n/mdTOpIPNpU31nq5Ot8fR2tb04P4fcgo/+av7C/x/6//le/t/rhr+jxf8/zzl/+b3f/km//tdf/L4hw8ftrQ0uV0dLmeH0+nqbW18zV30s64l33dvnm492uFtbvK2 u9xuh89xyn9yuT+V91NABXCY3fv6vqEPJ8480zv53tuRb/9w+Mvfm1sxScUPkHXdUZ37WSmGnRQ23d6WfWNr5mR6trq68YOz Oc/kGofs0QH7tvubFj+VhEZZbtIoSBwIMPHX5ux6p2jzaxtX3Fq++ 2F+zgvrKz5bmfvMrvyXC2ZfiwMhABUjkDGSKYM/PtZbh7d0UYlue8WZuJFNSBGBhmAAkSBAEgNlCik0UBlaZqCOGY 2hVZpRGCBDKBNukl0yIJw4JvRuY4+dts0YxVCh2BBFQhQKUnQI zRsxn6o2XF5NdVQYlg3asGZkwkYQMYGIgYmIIMKjiBGHrUSzI5 k36gbuSgw1ZYHTCE9jpNlswdhtXXENJxIHRraXRFYvCCSue2Fb/r3C5U+nz5hIWHlza/b9vBnhuSRoJroRK7xJjZp9PckaiUGyEepWJmwFERvSLUg3wikT iIhwygAiBhgxgbAJRSwobEZhE45YUNiCNSOr83xExLqJj8QYp2 Za9JnmiRlJT6w49PVjs7UFUZeyDYVu2naNSfZHNR4xBheRCWvh u/tyH+wR/AuE8DyoWmnVQCmQ0ShGAawaHd2fy2SdTFt3O3ZDl+HsGk6eSYV FpGIgAzqEDaOm8jeOHb/qX3dwtLAjcP6t0Uyt2Hy2hl7SSXKaTAMbUFDgZGLUOBQEQMaUj BkFQxnBIMYBDoUIkhmgAOPwJrKzlUp2LDrQVNpw1u3t9HjdjS2 N9+/ff/z48cePP378X5gC/330xwLk4aOHba2tHrfb63F7Hc5LrS03XQd/1JPxM9/qp9oOt3g957o6XW6Px9Ny3n92+eUl5kmOl0zMZTblmeTKB4cH3 x33v/+S9M1vhr7/o+pnb8fk91AzuoUid9RQoXV45s7bOyterzz05oHqh/vrP1+b/fx6foiLCYo5j1YvejEBBSiTKnIyAkFqxd01RQ+K50/MX6Jn7Ly9rfRufvUrZSUvlO17de+8K7MYmWKf4BiJcBpHdM4kJ 89wHQNLvfSSCWN9g01dSVSDMCWwOoPDNL5GqAgFr1CUTtFTFD1 NMdMUukpRKoWmIQyxqSNZW/bvykvbk1u5Z85gOh82QZUXwyKQARPmEyfmHKpNc6xbX7mmJKvs nOXwSdOxM5a6JmPtOePxE2LNMcuJekttvbWu3lh33FJXZ6q7wN VeMJ4+KdTVWepaoqpaVxe37cg4sTn9WHrxOUvFab6qXig/aT5y3FpTL1acFg/Vi9UXzMc6DEeazHWNYs0F/miDuabBWHPOcqLZWNtkrm0yH2uw1TZZa5sMNQ3Guibh6AXziVZ jbZOxpslY02SqbTbVNhqOnbPUtFiONNpPXDDWnLYea4mpbWP3V bBFezKbq8+87ZytzCahqNj+PfzWXirhCrNyNL65I6GzovSliW3 BS0zRblhabGrLtQWWAsmAr0AkM7wcGzWRJ+5rRvPH+fWOmb2FR LYzT2AQQZxmFGSrMCTuff1Q9zufOTP0UvOV6xe/p6y9vtd85hCzoo/NccSN5rKySBQk6hyWERvmgcoSnf80+IzVWCQjfopFOo6d2M7mt TFpnYvLW0sbz3b29ro9rjZH24M/JJQ9/uTjv/Z08G9Bf6TAo0eP2lrbPC632+ns8LS73M3XHcd+0rnt167Vr7lK O931rb62TpfP63Ken2jInFhKxjEOmYAsMpPE3Jtw6r6z+oUuxz svRb79/UvfeGfxxQa8vYNK7BT2uuZ0Hdn/7PkLb/S63h+qevrEqfvteS9WmweXxU5k575cl35lm2U4xTK2gkyu5MbW z+ktLdJcB55vXaZvXvPCmtU3l1d+/uDGZ9bmv7x1nj6fHuOxjrEk4ICIFMyGxejQCtvZ0/TiETrVN+NcvX0im0jJfGiRMbRYCKXz/qUG/1JhIs0QTBf8qYJ/icGfIY5nGCaWxkzkxpy8AGYOGznZluG1Nx4goTmMgkGYpxRIgt zc/pTlB/YujD4fi6YF9i0sfAEK70Phq4z4JWB4nxHfA4YvMeIXgemLjOFL 2PJlzvZPwPBlaPkiNH2AxS9h/n0M7sXSr81gXib8Hcr6GrS+Ak13ofklYLkNrK9Ay8vQfBea7gD THWC+TZtvw6hXcMxrjOU2sNwG5jvIcheYbiPjXWi8C4y3ofkuM N6GpjvQeBuY7gDjHWi8Ayy3GeuL0HIXmO5D62u05UUSfR9bXo6 eeysxLTJrua/h1gtJ/pVwAotyYqz3MFl7mYp6ip33pDk9UNHxldzy12JnBxIzrqPltVG ObF6ywjDDSpQoCbbAmpgz56lFXi6/NW4gDwcNdJiiVYCDLB8U2AkSE1i89FKt5/lHR7Tx1Mtb48fXRTXXUhlObmtbzMAGEuSIglmdMCEGqRjICCkI yAxWIFQQEwJAZWgV2YdzuPw2KtW18GBjSeNZT1en1+tqbmn6Dw/ixx//1fcL/E3pjxTwOJ0dbmdHp3e8vfab7m2fuLK+5CsY6qhtdzu87k6Py3X Ofz7DvwxOsoyCGEVkAwtMruxFHXXJnUfzIp3hD/9Z+f539rzSZ2ktQeud1GzJuj5Y5H6+0HF965kn1tcGDo+9sqpB Ne7yWncPbOx4cp1D4Xeetu5z8ns6LXtlkh6wpozEF1+Y6csxSf GcbInW4hdEFubdy5/hT0STJqwiHGT4AMuGBBQ2Q91unFhjOXoBJnhNqWPRewf5ve2m3 e3m/U3mUodpX5dpT6dxj9e832fY6xL3uMW9PsO+buOerqjicZQeEWw 3lyY/NCSOkwNNZv8mpGJGY2CIMwTio73b0aqzCUkvi4b3EfoBBr+FzM eAegyZx5D5HU39GlCfAOoTwHxCU58Q8onIP0bUbzjmI0x9RMi/Y8vn4uNvpURfTYybMi25wi9/Qsi8wi6fwis1nDmFM58iy66hrDBerqEsGS1TUVaEX3XNsOpJkh lhs8LssjDJ0tnMMJsZYTOnSKZOssIkU2ezwjhTI1lhkhkmWWFu WZjLVIWlurB0mluq85lhS9ZL/LwXZqXdTFt/LXbFpVMvvJw0tIbtR/QY4YdS7fU11PwhCl+hsb6/6l+2Fb2VmPTEkg0vMCtqoh3bBNkONciFIBfirKHM6PO1VEYrLq qPGc7mQgKUaBxCJIiQwiCVsGPzLA37sh2BzOYOi2uNZTzF5qik Mp3c5o6Yvq04KBKVJRqhJQqqCCgIKBAoDFQgIyNGAkAHtAJtQ1 vYvFYqxZV0sLGk8Yynu8vp6mhpbf4TCvzVfEb+hijwn7XAw0dt rW1et6fT5+3scHW5vAOOE//gy/3Es/jrnRtG2mvb3Bdd7kudbufZwInFk6lQ4jkdWaU5s7pLyIbj6Xly cpU7tr7C88V3tO/98OLXX1s4uMPaUg7XuumYgYLj30nd8DZFaRwvHaz5fsqq9xjjE 0xUeM7aZ/NOfhUmTKJZMpz9BDPzBdbymQ05n7WsahZPF1mVNBBkuTFu5Ytr N7+yw3Q5msg8vgoYlRF1lg0hpHMwjIhsiw5sI5VnmdQJGD9N4q +QWA3GSGj+NJg7jeZcAfE6TAijORGYEEZzroDZV9Gc6yDmKcr6 4ozEV0v2fcW2YITdc94e3IQjHD/NCJNC3FiO6VgLSZTXrfk3u/2fsOH72PBLbPgIcY8x9xgLv4Xk14R7DPBHRPiYgb9Cwi84428Q +rlJfAzZn1Dxr0ftGt53+uypHduP7Nq6zlls78uPGSkyjuQax7 bahnbaLu2PGi4xXSqwDRWa+nfYBnfaBwpihnfbh3ZbBorsw0WW gR224Z2Wgfyo4V3WwULTpXz7yG7TpXz7yC7LUKF5qNA8VGAeLr QN7rJfKood3B11qSBmeKf9UkH8xVOxLRdg2T60d0dy01HPl6dP vttQ+XZl9XuHDz2srX/Ye+rKkycG758cfND74pd3XZwQC4v5gwXG9hxLcCnSTGCaYJmwQ dEayrKcOkpl+nBBU/RYDg4KRGOJzBId4ycw0kx2/yZLdX3yTnlByXBcx4HYQLrdVUqt9HFbnPEDu4hkJgrLhTmg0CS CGQWQMIEqIGEW6SxUEHuFBTqOHctld7Qwad7FZS0ljWd8PT1OZ 0dbe+vr919//If5+d8p8OfXf84FHj5sbWlxO11uh9PtdnS43X1tTW87S37rWfJ vnZk3nJXudrfb5fO6G+oDx9KCqSDACkpMbHc+t8lH89fXr/hmZkHYcHBX/tXO4Pf+Wfn2D0+8OWkaTBU9a8SyfaWjr3tCnxw78mF7ww/6hh4nLL0jZIzPrbpkPVC3P3R9Res4v/u0eKhdKL1IMroSlneKm8vs7blG/xx2HMX4LXvfL54/nYjHMCNhWke0ToAMkMTwOhbDkAsBTrbyE6uZC2VsdRtX5hLLHa ayNrGiyVDdIlQ1iZWNxkPNfMUFoaJBrGwRKlqEijZLZbcpb5RN 6I2N6TEnnbPXlxhD86GKYBgYJ6OjGw7CtElAXhPof+Spf0XUR5 D+hKZ+x1AfIer3Av17TP+OAb8H4HeY+Q1ifonIr3jD7yH8JUY/oq2PyI7uhZ2Fxe1zWndbGg7YVvYaiAqJzvKywEocliHSENQQ0j HUEFAZpDFQofgI5KdYpAKk0VClkErhMA01CukAqQyUaaQCrEEo M0iFUAVYhVCFtAKAhhiNMGFEa5AL2016vCjZuYApLhi/8+XdlY+OHnpwqOZe5cn7x46+Wnv8wfGTr5889ehs1cOjaVPLzW NxRikK6yZKFygNUhGKkQEbMluDy6POnqZS3Gxeu2UgF0hWWiGM himdpnVGUGaYfFuYdTUFle+mFVwnZeUzR3LsrdVUpgdvbojuzc YBA1E4PswzEg0USMuQkSEjA6AAWoaMBBmVoVVoG9rC7milFruS DjTua6h3d3d5ve6mlsb79z6dDv4XcB/9769P/pe5QGtrq9vl8rk8bk+Xy9vd52h4xrH/xz0bf9a5+nbb3r725k6P1+NrOhWsWTKZwY3FRw1tNRQ2UjFPcn Pvw0WjYHuluXOjfXhZy5eeU771k8D3v7v0egkzxluDszL1wgJ/x9itb7h7P1y37UVxXfestiNz5LXiZHzyk8vqvly/RMkSLsdZpdWGjiK6ZLuldatlfB4XFMiQkPewIOdeNjfGsCpGCk fCPNQIVAmUWV4RRIXlgjQOi0izCOE4QUs06Mm8tohT5xi1maI2 U4wksNpMPjyLC89iwzP5SDyrz+Km5vJactzo5pmHd8/efHDR4ZK4waWcbkIKw+rYHEgyVNRTts8w5JvQ9AGyvINi3gPRD 1HM60zsPRT9Omt4F5FvA/7XDPyNSH4jwp8T9mcGw28o8mPK8hZZNzrjUvnM0aUbLmzJWbZl W9GW5MHFQAFoimFDHCfxSANQZbCOGJkhOgYyAxUIVUQ0wmsES4 DTCJYhq2KkAKxCpAAkA1bDMEQTFSGJIRJiQ4iVECcjIjGcBpFM IY2CKsVGIIkgqDI4gmAIcQGTcNlsHLUaJ0zcuMgHzdjPChLHBl hW4qGCGR2iaQw1jDWWkRkcQbSGkGwyS+nm87VURge/syXq8nZaMUANAg2iMGEVjkzG2S9tx7knEtdM2dcNiyeq48bz7e 211PJudqsjdnAbGzQSieM1DssQKQTIGGmEkRmsQqhhICMUhrSG oi5vY7e3M2m+pLKm/U1n3N1dTldHa3vzg/ufdgT/pVcK/7voT2qthw8ftra2ej0er8vd6XD7PF6PtzniqvyXzi2/9MyRn/MAACAASURBVC1/2F180dHgc/X53O1ngrUp/lTzaGrU6WNUklPMHolvazL0ZnOjKViKpcdM65+plv75Q/XDn5z/4LownAA1yIWsppaVu13Ppq+/S811R587ZpXS2CkRK4gfFbbe3n76G2cTI8ncmN04Pts8kmwdn8 cPC9GT0bvfLj34hSO28VjoZ9mIwCmED7NIAUQjWOU43chrApYQ 0ViiIUEHnEZxEQpNUSBCozBEGsI6BgqNdAZqFNIprDOMSuEwZB RIIjajnDhrYkn8ZKIhyGEdMApL9Ci7P9t4wEXFPksvvBtVHoyq rzVfKLOcL41qKDM0VZsbTsYd7kbJEdb4TQx/JXC/I+hXLPcLQfgVZfwWyboyo+FEjLLSOrDBuu2cJdppXnY43rddDM XiaR6ovKAYeJ0lKmQ1jGXI6QRKgFVZohBWY7EuMDKCOssoCOos o2GoE6izjI7RFEtrCOoEqAipmGiEaCyrEaJCNoygxqAIZMIATr EwIjAqz4UtKCRAhWdkDDUCVciEGKKytIbBtECrHFR5RkNQB0SH rAQMCuFCDKuxtMYinTerSeYLR6hMJ9nZYJ3cQkc4okNOYrmQyM kCHRBswTVRJ+upxGZmU1t0b7ktuNbuPEKt9JJcV8zwDk4ycQor hDmsAKISqGKss1CFRMdIx0jFZAoDHceMbed2dDBLvMnlzSWNZ7 3dXW63o62j5Y8U+OvnEfz31/+DAi6n09Xh9LY7PM4uh/vicNvJL/m2/LZzyVc9eeMNJ72uXqfHeW785NLJVMtwFlfcSC/ptTQeF5QkeJUDOoEhDgXNluEsx+fvTn/z34Pf/day6UpqTOAn58Q2VSUWjcbnjtqP1xnHlrKKyaSwvJ9hx5A4ZFr 7Qs7Jr53fc2f3eiVrpZK6XEvOe2bd6c/XHXr7WPx4IhomSOKQyiOJIBkwIQpIgJEw0kQSMQAVAYUCEoVDA IUgHUKUQhidUCoEMoQhACWAZIBkBoYoLAEYoHGIYWUKSjQTpIU Ix0cwVBmgIEYSmFC0dWA3t91FzegTd/XaB0qNynxOSSBKPKvEsuoMXptjG8+217Uwc6ch/hpgfk6hX7Lcxzz7K8r2lnl3T/zwZhwymnrWU0tPZG57cVa+W6xfbw7MYWQOBw1EttAaR0uQliBQ IFAgI0OgICrEYJ1lp0RaQYyKGAUBFQMF0RIDFAR0SKs0rTCMAm iJAQpkFMDIgJEAHURUCDIKYjREKRCFBaQZmCBPQgYYREBiGIVm VMjIEMgQywDJNJIBCSEmCGiZAWHI6JBRIAxBEkRMCFISIBIfF1 gVXeekFgySHS2m0W2UZmRCNBtg4SSLQohWGE6abT9fRaW0ksIW 61Cu0Z9ibSmlMppJTrvl4mYcEFiFFcIcDFJQgbT06dvSQAG0Ao CMaIWmFGgbyuHyOqhk54L9F/Y31Hs6O13O9uaWhtfv3X/8+PHvH/+dAn8B/a8dQUtLi8fl9rk9TqfX7e7xun0DjnNvdu/9lWfJT9yrnuo45HJ3tnR5Lkwezxpbbhvczhe301nNM3oOiKoNT 9OsznAyL+rzKG/a6tH26e/8TP32L0597qZlNGPG0HJ25/5NR55adupidGeeEEwQNSsOW2iVxdM8EwLCpDhfml/6cO/Rz5Uf+uzBI5+rOvTWwexnNkcPxxn9Aq8ATgOcxmGNJ2ECVYZEC NIx0lmoc4wCsc4hmQgaR2TM6hxSMVARG2ahArGGoQSJymKVIIW wKsvKLNF5RgN8RMQhghREpjDUgTjFEom2a/NsLRVsVpc4r1/YdSp6bAuWWXYawCkOh1leodkwQ8I22+gWa4WPir4FhZ8A8AuW+ a0AfkpZ79gPtZpHk9E0LwxlsSWHDWs6LDvrYntzcMhGdNYQRGw YMtMASYRVBSQTPiwACbA6YnXE6hhrBCiQm+KQilidRQpidUJUh EKMoBMk0ayOkQKxRpCKkUawxiIZsxoHZEhUjGXAqZhVMApCViN QorgwQAokikhkM5J4LsxhBYg6i0OQ1XgU5pgwBhGW1lgcNgKJJ 1MsDENLYPbc7mqyrp+a4+d2N0RNbqFVgY1AViZEEVmNpyVkVBb YGw5TS7y4qMMystUUSrW1VdBZTrzNGT2yg5OMrER4jSUK4HQOq piEOagArGOoE6RidpowGood3c5tb2eWdKaUtRxoOufr6XI625t bmz+dDn6aqPvX+nP8zVDgT/Tw0aPWlla30+V2uRxuh6vL5fV2dTkcz3Qc+Dfvyp/6Vj/fvr/Tea7d13R24mTGxCrz8Da2uJVOuzDDWWIIzCAqYTUEVcDJs6zdR dSWPaeCr974zq/Hvv/VZU9W2S6l49Kc5D3uxdWnol2rxOAMoiF2ioU6BhHCaJBTEOuH7 Bg2+U1C0MprdsqPqADNqAzUGaRDqGGkslBiscpCBSIVQJnmNMx pLAxCrBAoQaggICOoYKBgoGCkElpmoIpgiGBJRIrIKCyjECgRV uWxBLFCgIJgGOMIRCrF65ALwRh/Mle9M36Tb1/Nq6atx2K7c8VJKw5BoBqBxkEJ0DLL6NgcTFjQ2mZIfdUS85OYq J/GxPw4Ovrf2Pj7M6tdcwJrY5SkecHdGd5Bbrmb31ofO7IDqCJSE VYYEKGYMMNICKoiLfOMimmVAjoFVAbpLIlAWqHgp19+jWJUCuo 0VGksUViikELhCE2pFB2maI1mNIZSKUajsE5BiSIKjWSK1SkSo RiNAhoFNArpFNAhUAVGMTAaz4QhUChWo5BGQY0CGkWpFK1RjE6 BME2rNJiisW6OGS62FF2iZvrBqi5b62HBn0wrAqMyRCJcABMZg BARQ3PNDVXUEi/Z6bT1b7cEky1t5VSGl93aHjuwlQ2KnEJEnUMSIDJGCotUAmQIV Qg0BGQIdYZWgX04h9vRTi/2Lipt2X+h3tvjcbjbG1s7Xn/9wePHjz96/PvHfz2Lgb8hCvzJGsF/UMDh8jibvY4Wt6PX1+a91l75g571v+hc/o57z0jLGae3s36yPmMyzTq4Rth9nslotLdU2UZXmUayxIkUHIo xj6db6uqphd1ZhU9Ovf+7Kx/+rOGzVy19GcbOjVTpeuPpVVGjc4DCgSuCoHOsQqBKgExgEBIJ4 gAFJikwCelRSPsRVAhUCVQwlgjxI+wnUGKBhIGEoILpIINVwuo 8CCIgITrIMCHASICRIa0gSgK0DIGCgARhkKAAhyQWqoiRAJIgD AEgMSAEgYSJzpIwBjLDhBhW4U3+Ocam3Kid59ZWB+OPHzVfyuD 9PJ7AyM/jIIQTFDMJ0SSeP5mxrat/afaDzKU/ysj6QeayH65Z92/rit/b6BxYK1WvmTye1ejJPPR8evE75tzLVneVKZRmDM41BRPNoURza KEQXCSEFhqUebw0S5DjBSlBDM43yostykKjNMegxAtyvCDPMSi JRmW2IMWapFmGYIIYShDlOYI6l1Pm8NJsQUoQ5HhBiRekBENoj ijNFkMzLeE5Jv1TD5IETo7n5QROns3LiZw8j1XmcuocPjTDJM8 yhGaJoQSDNFsMzTUE5xlC8w2BRGNwrjGUHjVygK90UYmjMGnCf rzVNLEeBmyMDCmZQkFE/BDJFCMhPjjXeK6SWuzGOzps/XlGf5K5tZxK85Hs9qi+LSQgcAor6hwI0igEgYShjJgQAArNqAD IkJYpWoPm/o3cjnYq2Z1U0lzSeMbT4+5wtjW2dTx48MbjPySX/50Cf3798RTTm2+96ehwdHd2dXp9Hl+nz9fV5+3s7PT2e+rf6in 8TVfmN3w5gfYTnT7vBfnMMiUrdizbcKCdWdMb3zZqu+Cktlzgy uvn9p9NaPLCxSFseGnZxs86It+6+o1fhr7ztbXXKrmxeSZ1sUl OsERM/BUkXBMsYZNRNRgiJkPYYtQsYtAgBAx2PXqGGpOgRMfINnGSFyT RNG0hYY5MC9xVkZ/ihSmen+KFaZ6EkXCFF68KbJgYdM6g88awYAjzYoQXIwIX5oQpg b9i4CIGVhUFzczpBu6KyF0RhGmDEDYYIiaDbjLoFlPEYgobDGF RDJsM01ZD2BDrXzjfm7+0+/DsyVxenyMo1nlPLMi+t3nFc1mZT2akTKWvmMqufMqxosQXGxeJ i/rAPOOLCQs/X7zvR2Wn/2HvYDCz9+is6hNkkYebcSN52bftaW8bcp+ylfutlSOmqhFrRVd 0ZY+l7JK5vMte5bOUu6OqeqwVvdbyi1GVwzOrpaiyfmu5x1rZb S0bsx4MWMtGbJU+e7knpqLPVt5nrbxkrbxkLuuzV/ZZD/qiqnqslX22iovWiouW8l5LeXfcscGYw4OmsoufXmk/NGip7LUd6rZWdVqreiyVfZaqi9ZDvaaKbnN5l7Wq13qo11LVa6 rstVT2RB3qsZePWPKnUOp1mBaKPto+y79ZDAuGiMBNcewVzhi2 GDVRmAYkwloji2M76qilXVyhJ3Z0lz2cEe05SmX1Gbb74kd2Gn Wr5YrJes0s6JwYFviwKE6JQoTnpljuCs9N8WQas1eFuPHtQoGL SetOLXdUtDV0XvS5PI6WDteD1994/Pda4C+mP1Lg0aOHba2tXrfb7XR5O7xdzotuj8/V2XbRefqOs+Sn7vU/8G560lnm8Zw/FapJk5ZZhzdy+06iZW3zjvqFrL6Zs1XLfFVY+QRe+NTchEcFG7 7UP/rjzmtfCX3hZ8qH/3r+82FhMA6oDKUirFi4SdE4yVpkAxqj2BAtyEgYhwnKzJ1vFpd 84eiBd8ur3jtY/X75ngcFC6XZxkHeKBlYXQAaQQrhNAGrLNY4pBKic2yERypmVcI pmFUJVhDWCNIJ1BAKszCMoAa5MMtqBGkIhTGKEKwRonFQFVnNz CpGMWzkwywJE6xzSBeBamSHxc2Rda7PNaf7FwlDQnQgPv/N4tUvrll2I73g1e2FtwtPv9XR8vxU4tq2BWmfMcS8lbDkCw0dv 7vU94vDJ+9dfvDeqTuqkFM3M/XW/PlfT5n/rwmz/gfNfQ6YHtLmNyjLI8p8F1heoO23aNvTtPUGY32OMd9iLLcp8/Mw6jk29nnKdJMyvcRY7zL2l5jo5ynbTdp6C1hfAubPMOaXGPNd aLtPW15mzLcY43PA/AJju0NZ71CW25TtRcp+E8XeYex3KNNtYH0J2l5iLLeA9Xlge4q xPcmYn4HWl6D9Vdr6EmV5gbY+R1meom3PULZnqOjnmLjn6ejnK NtzlPg8E3/FdqjPfHkbUs28itgggjKAKmYlIxfisEoDDYrKfEtDFZXqJEVO6/AOo5JsclRQSzv5ba6YwVwiGXidM0wLWIZExkQmRMGsipEGgYaQ ioHGMBqMGs7h8zqoFF9SSXNJQ72nx+NwtTW3dbz+Bwp89HcK/CX0J6eJHrW0NHncTq/H5XU5PR5vY2d3i6+nt6P5ydYDP+he+5PO9DuufT53y2n/2cyx1ZZLW3DxSZTZOLdmmE/tWL/2bkbKFxjqA4585fTRX491fVxz+BuVjR+M3PvXyNd+In/4zY2RmuhLS+YGN5jHV8f412ao2xMnVqdOrVqoZRp6Fqy8uqvhg 5HqF/s2BmtWTZStHSvPnjhUecvZ/NWJNU+W4r5FrJTOyZnGsUzrxArTaKZlIssykWkNZFkCWcJYmim w1DCZZgosFSczjMFMMZDBTS4Rgun8xJIo/yr7cJZpJMUYWCKMpkePrzEPLyFDs9nRZMv4avv4WmswSwgt4QL pVv8K21Bmkj/n6Od8rq/4x7+r+L52YfOzmdGX4wrfKU+5kTXrStyy26k738iveXSm7V5wS VUbXtjCZozFbJDSNsqnTn6j6vT7ZWNT60ZrYqsOkhQfsby0cOH/mD3r31n4AwZ9ncx9aFpzw7gpKG7wixsDxuwQv+qKee1tceUt47 qXxXUvGjfeMK55il/9grj2eS7zlmnNZ4QtIX6rX1h/k6TdZrNe49fcM62+T1Jv8yteFNZdE9dfY1feENe+JK56iV35pJ Ct8TkBIScirH1GSL9lSH+VrH7OuPGmYektU+Zd8+p7fMbLQto9 LuMN4/qb7KZJbvOEYX3ElHUravl9Q8YdQ8Y9Q+ZzxvXT3DrZtNc7s38X DkXRuogUjlUhHwREQkDBROKJjGkZ8kqC6UIFlerFBc3mwWxjMN XcUUVlekiOM2pwOw4asIxZnWUkCioQSBDKEEoAKoBRIJAQ1BGt gKjhbH5HG5XsW7S/ZX9jveei1+loa2pp/9R38PEnH338yd8p8OfXH2uBh4/ebG1t9npcPq/b63Z0e10ed2eHp8fjcUvttd/x5Pzes/hLXTtHHcfr/adT/em2kVXC3laY7kxsdVpO18YVjdoWv0WjD63WD0+c/tXqdZ+F9Kt2+ztHWr479Y+/lb/58+7Pfa24/4kdDZpta11N+M6FJ94oark88PzD2tHpjc2X6yLvpFZNziwYNOT 7+J0+Y4HHktdh29q1pEw/rX5pXUNQ3H4+qviipXDAWjRkKRi0FA2aiwZsxcPW4kFjQa9t94 Cl8KK9eNBa2G8tumQpvGQu6LUWXbQUjkQV+mPzhxJKR8z7fHEV A1F7fDMOupY7JuJrei3FvaaCQdPefmPJRbG417b7onFL67Yziv OJL606Obi69Uz1nTMVH1QZR2am3Vi5653dK24tS76RlHFj5eYX 8isenlgjV1jPbZvbU7q4v3z20ZoVVTcX7X85qf1S3OCW+ZNF0e frbdl62sZ/mpn4bWj5HJU8PfOcd85w3qyJJXETSTMvZ865uJ+vqTYdP5fgaD WdORHX1jSrvRmX1pprmhLbLrH7W8w152f1lc0ZKrOfP0EKmg3F fbPPBuJOXkQ7z5sPNs/xNc/qO8kdORR32Dm3/iJbVjPbc3puf/nCgcMzLlzAhS38ntaoCw3znV5+d6u4zzf75GXL/m5DUR8+2hAzUm6ZWGmdXBk3uNt4+nDiuT7zPh9X0M9WtsUOHrF OFJLONWJ/KhdIYHUbDGM+ggSZZWWCNMKrBlETgMwKaqK1qZpa4iVFTfaRLV Ypw+aoppZ1sjme2KF8TjZxGs9HeKhAEmaRgon26ZIHRmEWKYQN E6Th2NEt/I42OqUr9WDHwZbzvv5Or9vR2ua4/+DTzOLf//XzCP6m9PDhw5aWZrfL4XY53M6OLpfT53C5XW6Hx9PTeuEt596P vEt/3Ln2Wkfpucm61FCmbXiZuKsJpDhiW4+Y/ZsXj9bNLvFTwkss+cdd+39aUPbVw6f+vfzAd7flv9Z14/vad36rfvu3HVf/Je/IO0LMwPFz3+4e+klRxSs9Qz939fz4lONHM5Y8G73g5p7qH67Y8 XbmjjdTcu6sKnq9oPJ7FB+ZkXS7+tzP7XNfpNBNin2N4l6nuAc UuU9xr9PmN2nzQ4p7hWJfo8hrFHef4u5T3OsUuUex9yjuNYp/lcLPLc787LY9XwVxcuHRb8ckh4pr3264+NN5GW9S4FkKvwosb0 D7fUq8Swm3KXR98dK7lSe/NysztKJiskTt3fvGCeP4bG7MYpGjuJABBjgybraMRSVMxK1+cv W6Z7KXPbUq88bqLVcqVjp6o4sHFrd3rZgqzbiRveLpg+v8nmWH n+djX6Znh80nzlnHs/iQHQftQOWJYjH0bqAqtnEni2d4S5nqraTyoPlYnfloLVt1jJSd FCrOCaf3WS6uNnVtoCo3Wc8eMlQcijnQivOOzjx6ClbmGfu3Wf t3wL0l5l2OqEonVVgZdeYsf6yKO1Y2z3OaP1bI1u6d2XMA1W3l j1YZ649x1fviT9WDA8WsbxMMJEDdiMJInJjJ1G0UKy7wxQ2xFV 5cdsR0aYsQTKec8zlvqmFsPgxZGNUANYIDEEkIaBiFCBciTIhw obmm85XUYhcpbLQOZhsmU8xtlVS6m93sjLqYiwIGTuW5MM+EGK CgT6eD4NNaQIZQwlABjAzsQ9nc9lZqkXfRvpb9DfXuHpfH1dHc 0n7vwRuPHz9+/MlHf73I4r9JCrz55pvtba0uZ4fH5fB0uDwOr8Pt8LlbOl0ud4f nKcehn/lW/8a78jPuwnNjFWnja6IHNgr7z8KlzTPaqoWJeXOvLEkaPsDvOWH Jc+/ueXqrY7Q+/Jn9XdI+b+BY6PrlD74e+drP5Q9+kjd0ParaN+9E39rugYXHz25 p6Tk/dWO79xKfe7So95k1Z4cWHXJlt0/mekLFA9eP6Q8SKzvZjce2tOgFzmfMm1tMeU5LgdeY5zHmeY07f eZdXYZCj5DXIe70ivleQ0GXkO8zFHQJBT6hwCcW+YTCHi6ndd3 5iYqJm7ai87Xqa8tq3PX67Y5n30+vHjRscRu2dZuLek27OoWdH lNxN5ffknJk4PjEo7MD3yo+8u7hnvtVt4dN/tmMDhiJIjIECs3IgEiAn6DMkwZxzMZOGNhxHHt5TqKznNpcbij fP6t3qWWE5ycM9sCyGaca6cRBw9axuEtHiRyLNIjDHK0hITTL4 s3HlftntRyPdR9iju2zX2g01ByObzohVNXaj7QKVYdm9hTaRlc Krm10aXZ8d7l4cmdMzWljxVG++AAsLTX07TFdLEYHTnM7+9nCA bCr0X74Ai46SeU12uqdYsNBoalgVt9epmZrdMfJGF8NqipOPOf g6vaKw8uwYqUkyGkW+/hy5ti+6LpuvuQ02HUUlh2O7S+Mm9gIm1ayjnXi5CKgCEA1wDCH JIg1BMKIyIRIkAlCUU40XzhEpfhIQYt1aIs5uMTcWkZlutnN7X ED20nIRGSO1TkoA6QRIGOsslCGREVQRlDCWEOMxMSObOFzW5nF XSmlbfsvnPb0enwuR0trx737Dx4/fvz4479T4C+gP7E5e/ToUVtbq9vl8rrcbofX5/V1ejq6PB6nr9vh9IU7aj70bfitd/kbvqJWf0mKf5VxeAtXehpknYn1VWP/7Kgp60xtrmlkcfzE6n13Tu16qib3WnmOf4/rza7dV6q2q63qh9/Xv/Ovxc+HDAO54thCYXSG6fLc2cOZJfcrF/kXxg0sLnr1TOGdY2uf3L7uWm7+7fLd947XfNGVcXWTdSR+nj/j4JunUpUNUSMLbaHFxsBCc3ChObjQoiSb5EVm/3xraIE5MN8qLTYGFpqlBUYp0STNM8tJ5tAi88j89TeLDj64sLB/S817HZuv7V4ytKnkhZMn3muKn8w0TyZFhZJjgimmiWSrkm4YXb DiWtG+zzize/sW5Y+k5kbqbzxY5N8iSqyoIEPYiMMWMRxl0M1A5YlutuuzFjyR lKglzFeWp16qjSqpTaqvWzG5J2UqTQiJSF04y30UZ52IKm20De Wzmo0oFHsFAYU3DC0wteRwh/aa68rMTXtA/aZob4m5cY9wuIgpLU9o8BrLq7lj+VFDxeb+QqZ6k/VMCaouNrWUxA3uM54vg2Ulsb17zQMFzOEjpNAFi1vQgWMzTh83 V55mClstZ918Sz5pX5owvJOcyhVqdxlO55NjRTNaL5AzucJgsq hacIA3DKeZW8uZkuqYunN89UHhZB08dniGqyKmvRge28Y2b7D6 5/MKQQoBOsEKJiqGEUxULKgIytCgzrE2HqZSu0lBq314m03JtLRX Usu9bE5H3NB2LJuxKnBhHimI6CxUMQnzUEGczmINIQWyYRbIJO 5yDr+jiUn2ppR2HGg+673k+7Qj+I88go/+3hH8+fXJJx9//PEf5gIPHzY1N3ncHo/D5Xa4nG53h8fX4e50epwul7O/5dRb3vxf+5Z/vbewa3R/ysQK89BGcXc9k9kQ1V4WM7ZgydMpqTfSLONRhhGx+FHxoXeOFt 7de+q9c64vuLY/uc/qy3V+8Ma1D7878NV3544d5saWWcIp5uCctOs5OXcro0ayzH0bY 3wF2c/VLHt2fYKSkBRZsmJ693r5TJQ71zSaYhiPWXk/b9GtdXBcgGEbHbZAzQxVE5q24yvRWLUS2YQlM5FtRLYS1YwUES tGolqRbCPjttTrq059pa3kTt3Zf2xfIa0uvVN19NGpsncrLP4o FODNU3aLHsNKdiLbid+UdW15wavl2deOrPe1rSzzHx/+yuyTZ6MurhelRayUahhYLranGS6lMiOxSU+kNX+r9eznWg/fPX3kfvPxZ8fLeqSjfuXcywMd33AVPdxhHJwVd76ESa8T9p6zD mzjJ3mjH5CAwAZioGemzbsFH9vK1uZGd+bD1iRjz+KY/vWgdhPftEtsKWXKdtNHikjPerN/mejYBMuKUekBk3cn508Wx5bD1izLpWWWnjXcmZ3GsyXs+VzSuC XKUcSfysc1u2J7KriuTKZntnUiydazFhzdyhzOsXnyLL2bacci Mj4XByzGsdn43Aq4b69Yesx8ooQ0bzB1bxPP51nOVtKlB2B1sa U7W5yIxiGGliCtIBAiTAjRKkYhzEoIhBAbSjBfqKJSvGhns3Uo xxBIM7VVUJkuss1h69/KBESs8qzO0SGGkQEtAaBAWqKBBBiZBhIDZMjIxNq/ntvRSC1yL9rXWtJ0xt3rcTvbm5rbX7n/+uNPKfBX2zr4N0SBx4//9GRxa6vH7fa5PV5HR7e30+m96PJ09zrbOzvavU7nkx1VP+1a8e 9dKeHLG1cOL44ZzDYWt1MLu5IaHLVvtJx898zZ9xv33t49c9i2 87Xc7S9sXTQ5f8O1NWf+8UzhrWrjsew1zT1T3/nZ1E9/v33ipqnsQkz9aVvNic0jY5tHJ2yH2qzFAWpBJ7X+eGx7rmVijn Uy1VK/h0o7Qy1st1V0zGqqXBU6mX39gs2Za+neaejKs3cVWDx59t5d9t 7dJneepbvQ2Flo7t5j6t5t6i4wducZu/NNPbvEziJr966YjoL8iO/4q1c3+h0zWvfn6J5DL6tJfYejnQVW7w5LX5G1d4/Jsyuqq9jkyN0wUbHnztGVz21ZJe/c1Np+uv+71lWquaTffqZ9xqluw4ZOOulcVMXJmV05uz5TeObNI 9uUvLKXaotvHdotN6w907GqsbXi9f7h2QAAIABJREFUadehV0/Vvntucd/+6P1Oam4/tbnT5NtjVWdwQVrQBCKJYtBqCc42jidGyfOFgJ2TLDhoEZVZpt AidjzZOLnEdDndMr6UnYjlFZMxGGscTbWOLhfGZnEajwOsWY4j ITsnxYqTiYbAbFGLwsEYMZBkmUix+9PMgQUkaCe6DQZEcyjBPJ pkHU2y+BP5QAKnzgCKkdVFEjKI/rnm0SzL5ZXGyVTinyEoMbx/hnEiyTCUZBpPtMgzSdDIKSJSWBhmgcwilWU0lpUFQeWhQgzaPE vjISrNR3a12Ea2muQMi7OaWt5JtrmihnYg2YQ0jg2zQGFImAUy wmEWahBrBGoQKZBoBChszOUtXF4DndqZesBxoOWc56LX82kt8O A/1wj+WvobosCf+gu0tLR43G6vy+12urpcvi6nx+12dzndPqezw9 sz1l7/zc7s33mS37i8bNvQDNvIEtPx81RiV1LxSN2zk8mDK1YGV1S+Vj pnfM62V3fnPrd7XXjNlusrT31wcv+tFmPxUZLU3vfkD/qe/aF98XM0/zIdfYeKub5y1z9k5r9HmWXB/OSC5NeiV/eb6/KsgeSowFK+NHfWsu6sDQ/wrCk0U1619401Bx8ys0NMcoRJuYrmX0Vzr+DkJ3HyDZh4BS+8A hZMo4XX4MInQNI0SArDpAhadJVJug6TnkCJOkwI0/HXqTlPgvlXqfgwPfsKNU8hSQpM8oOlEbjsOlgQJokyPXt4UUFo nyYtmMieP5pS+XRb8/SXTfNuMsIrxPQGsrxKrNcKDjzadvxy7tDZ7u9O7LhWuF7bXPVG Zdlr5QciHXntQ7k+36mXPYeePnTpi/6TT4fS9vXvq/lC7CY3f3aLoM5hVMxOYSwDEMJQ5WgNgTBgNAaGMa1zTJjFU5gO cawuEB3wGsuGBKKwQENMmAgRAxdiiUpYFXAqy+gmWidYg1BBTA RQYQI1gQtyNjXaokbzCot1AFWCFY4okNMwVghUCY4QRgVYx7RE Qx2BMKanODrM0iqAEUSHEYowWGPYMCRhllYBirBQRSACoAqhih gdQYmwMqJlWtBmmhoOUqkuUtBgG9piDmWY2w5RWZ0kxxU9sAPK RqSx5FMKRFhaAUDHjAqwhhkVAJkhYZaWcMzlzdyOBjrFl1LaUd J0xt3ncbs6mls7/pMCf68F/tz6U/vzTyngcrncLrfb5XG5nF5Xu9vlczp9Xkdbu6+zw9H0hnv3x56s bwxlVPSajZdEY2cuyGkyZ47m99+Y4duwIJS048HmuMnYolcPHn twrvGdxoM3d1XdrSy+fs6+q46K7l2z+q0FiZ+h4DVu4W20IgKX Da+tvru6/A5eOIbjwglJL1rXeIRz2cZAonE8jT+Sb81sTV59kySO46SutYd eXF99h6T046wAzgqR1HGSOk6Wq3i5hNMuk9RxkuYnaZMkfZJkT pKlkyTdz2YEcZoMMyfZzHEuSQXzNDrZjxcGUUIALhjHGROG9AB JmyCrguyKAL9kXFjiRwvHEtaGS3z39qujZz7bUfOw+sLrI/F72tGCy4ZFN7hFV8mc4Q175OwTLVtHj5/5fGfu0wWrp7JO/ENZ9WePbhg9v+J8/7ILbQ0P+4+8VON+r69S8y6t8Gwpe9q+/ozp1GZhIpHRREYBMETDIGJCiFYwrWJKAYwCaIVmw4TTjYwEaYW CGgMkiEOQqBDqLNF5MCbAMQMJGgyhWDIUj4bjBDkOBQQgISyxv CIgiWED0cSXghtX812ZZDwWyYiWAa0ylEwzCoIKADKNJIACCIY glBikAPjpwUT5UyMwCFUAFIBkwmlGGCJQQVSIplXAyIhSGFqno EQBmaJkyIfirRfKqRQXu7PB2r/BNJlmaaui0tvZHEdUfy4MCkRnuTBHSzSjQCrEMDIEMgAyoGWak QGjIkrCtuGNXH4DtdidtLd574VTrh6Xy9ne2Nz22uufdgR/Xyn88+uT/819tK3N5XJ1dnZ6PV5vp9flc3q93W5Pt8/Z5vS5293tzzoP/qhr1U+706ZDWVueWLJoas264cZFB4dW1T9jrahZMXZsz92zySO bDr/cfvpl39mXHTv8RWUvHt185WDcuUNMmhPbNcYwadk8OrOt2Xax2 NazddP149ueOhPrKI063kqtPskdKLeOriWynZfnGXq2o/1VIKcm7sypOZ6CzVplztWa6J4N9v4N1ktr4gbW2y6tNY1sMgxt Nl7Mtg5uNg2ss1/ONg9tsAxvMg9lm/uzbYM5MRdzo/u3mnuzY9w71oZOldzsrH81WP5U/4rgcYt7y4yefFvP9uj+3BkXt0T1bYoZ3h7jzVvr8hR7XjjYc8d 99/l90+XVr9ctGt0e17/dNpAXO1BrqDtPbTsQfWZfTN/q/LsHTn++pfCpsvxru/Y8c2Sn3LfkXN96Z+eJF3yn3jpX/e6phL711tN7qNy9wpHS6EtrDWo00BCK8EjlsExYXYAqQWGeUVi ii6zK84rIK0aosiDCUzqHpwVWE8TJeLY3XexfbhzegHoyYvzp9 p714OgW7uxWc89K4+UUcXyO5XKy2JkePb7cMLCcO5MXdbyBrt5 tHl4uSAZOExgJYw1zmsCqHKdxnMRyKg8VloRFrLKcxvMahxSMd Q4pBEc4pHNY4UXNzAZFThOgiojOQ0kAKg91jqg8jGBKZy1y8oy G41RqH1fgih7ZaZbSrc4yalkbzm2JHtlKJAOrspzOMjKNdcLIk AvzUIJEJ0hHUIE4wjEaHzeRwxc0MEu8qQc69jfW+y753K6O1jb Ha5/uF/h7R/CX0Z/WAs3NzR6Px+12u90et6/T7XO7vR6Xp9vt6vB2trud7VJ7zdf6dv7Km/b28KoLVzZXPSwte3Bi7eX2nHMvUfE9i3dHSnvuzi1uOqO80jx9 d3uLZ3/foOvezTWhE5aeA9zpOpR7RNhZZXfuEpR5+KqJVU3zbqaueytXG Js1YyJjcWjzAnm1GIrBKkQqIsFo62SaaTLDJM03jVo2vLJp4TP pQMIkAqEGkW7EYQN/jWOvIkYnYArSEQZcQfQUpKcQoyMUYXGERRGe0w3mcev+N46d+3 Kw7G73vht1R++dPvsd9/a3i/kJO5HMJs1skgWosuiKKEyQ/Ol9derNBdvVzNLAEU0+emc01rUnuneXrbfA0lVua6uPb2xNaD9 radqzevCs+9VXWp6+73jm1eGXPtd34+ut01/x3LrTetfj/qfm/Dd2cmMxwvhcYXS+KTiXD1qwJCBZxAoHFYQ0jDQMFAg1FsiYqBy UWE7hTTpPJAwUntY4EGZNcizfvILeXYYr641NtVxTTqynGJUdY fIabUfrbef2kJNb7e496FguVXzQcrY2zlsWdabCUn6ePVxmHFp OggYk80AToE6gQoCMoIahgqFKGJVAjQMyi2WWUzgkI6BgqLC0i mkVYY0XwiYU5LDKMSpGigEFjExQAKqAVI6ZomiVi5tcH13WTsU P4dxm20CeIZBmb6ug011sTmv0/2TvPaOjOtN07XfnHCqphBLKOYEASQgQEkEiWUiARJIQIHJQQFm qqr2rJCEhEAqlVLVTVUlEBxowwQSDweC23d12tzt40pkzqWfOm TkzPTPnfN+cdpvvB56eXj3f3/H8GN/rXXutWrWq/tW93ueu57mekTWEn6MMigxSsAphBo7q+OtdBqiGoQaKaghm4LB KhI2tpja2QOlS+s7uXZ3N7mGP5Ozp6Pqmd/A7F/iW9Ht8Aem1B8iy0ym55F7Z43S4Bpyy5HZ3eByukZ7e566d/zCQ+/OzubJ31b7He9c+2JJ3ZWPlrIYnX7DnXHrj8A/42LNFFTcaen84EPzzfuMvtzY+4tY5bI3NC8drF0yssntXm/wFlB7BBO1mNTpCS9r6aW3CZM4idbnjfw3s+sVh3r+Q0Gx4yEYG w0nDSs5bCD8br8ZWf1IbPZ+H+SN4PYJSRVijYD/G6iSjU7CGISoK+xBUwRCVRDQS8iGoH8NUFNZwcsxS873uw9MPz EVTaMYomtZk3rYjY2xLw0+PlT0sIUYQSiFZhcT9OKJiqBcsu5Q x8Yc3m2ee7Drzbr/xZ7XSF1DSLJx0GUkKIqnTSNoUlaKiiUE4dQ5bqAlR16xx70WlP 0tO/TQ97YcJBZfTTjYnjS2PmF5gGufZKQqfhVEdRgIoqqGEnyRVBvE TiEK+PqhKYAYJ+1FERSE/ghs4G6AJH4b5cVgjEJ1hZ1KwIxuIdS5s8yi1v409tcl8ZrtQ7+ B2DVqONMS69iP1W83tx8j6A2RVK76rxdzSSOyrimw6JbTtooYz ST+F6ihs4ECHIA2BVAjSIEiHYB0GGgypKKrhqIIjCgKpMKShsI LBOgrrMKZjtEETfgzXMFiFIY1D/BSm4ahOojoOB1BGyQxra4ZTfZB93FS7n51Kp9U0S+chKKOPWuO wnttEzAqURtNBElEhRENh9V8ZxCoKqzCqwpiOwQpuvfh6Z7GUV t1Z097oGpQkV29bR/fj71zg29RvXeDly5c9PT2yLHv6+lwup8cjyW6n5O6V+vp63U6p r1eS+/td/Vc79vzSXfx37iVXtDUbQkuLbi5b9HbWxofHLC21ic2dO33zycf axV0HI/YdP3X1Sa33jmmNG8RdpBdp9opJ6z6Z3Oti6vqYPR2mPU5zTT/zRmtpv3/DUCBsa2dK/VjCgYviLonY3cvUS/QeB7vfQe5rZrY3bHb73vDMCTu6yT1Ouu4M07zdNJuHGzStkYwi IBrFBShiFqMMAddpxqApg8YCKBFASS++PLTtdOBHQuQtAO6Y2Y cZGR8T+S67tCnVn3b8y73J85HoDESGCFSFyDkc0oFwhU27nnH8 Ueelzz6taJ4MX+cBeeewQh+8eArOn4aXjeFLp4k8FVs8Yyu6Gr 70fmT+M2veHWvWPTHiORV11X6wY6FSEhlITlAz0rTsaCOVDIRj cyysInSAQDQInyMxg8EUijRYVCNxg0R1BAvARBAmQhiqk5iB4i EIDgA8xDC+eKx1NbL9KLqrjT19gG5bZe/biB7aCNdvFHvW2s6thtqXcdImpnETUV/Jte2w9L+BnyoSmzaiLYv5mSRKZegAjagQHkAwHUVUmAxhqAHhQ RjSITyEYwaG6QgRxIAGkCCCaAgZIvEAiuuANRBKRUkDRQwInaO wAEkFENqAKBUz+dPNzmPo8iCw3RbLJiPOlVFBgQhEi3IDlNdPr umMGN9MKCyu4pRBoDpKhEhYRckQBasI+bpfQEXIEIVqVPjEGmp jC5rlydzdW93W6D7nkRzd3b2u95//a0XwXTr4Lejfp4OyJLskh8vtcLokp+RxylKv5HR4pG635HRLYz 2nPpcrf+1c/NOR7Ao3bbtIpYfSNj/ZGjURnxcorH6+N0ZZLI4tsfeUJxw/ld3pTnK0cjVdIHkStnwPN99Bbe/A9suw9U3M+hBd8D4Qr1OxgTrXP6SWfgDAKKACqPUmJtwjhduoe B22vANoI7P48WHX3/NxBiyG8LDvQaYbYOGscKSDmslBdYTQcFjD0WlAzGKowQAVED4Y V2gQQDAVt55L2R1Sl++8A6wzkWuvWVYNhBUMCmsGrYePmTpLKu +2vPHwiHkizWSkcmos7Y9h9HhKScHOpycPVe+aGc3uPmaVdlhG 9phGd0Wcr4sZOLRg6IBleI9teE/C8JFSr7LomJF7cHz14NBqr7TO8Wb29neW9QzmG9sLtepc+Wjiy boVWnPM3EpoBkZmADINAx8AGoANAOkADgBgADgIQUEAByE4AIh 5lLqMQwYAOgwMCgmwhM5TkxH0QBY3uIq+mEN5o7jpNHJkEXouh ZiMwX0RYDaMUWLZ4QTmbAI3E0P5bJw3izybR4+lIqoJNmjYQCE DQAYAAQACEBQArw8cgIEOAwMCAQAFADBgYEBwEIF0HNJRcg5i5 xFMRREdhUIAXAJQCKABgOpAnAmPl+roorPAruJF42b3PkKNRXy IMBNr7TwEZ7qptZ2WkdWIghEBnArRiIIg2mv6MIq8vrWpMKrAq IbCChE2upra2ALSXMnVndvbTsuDstvZ29HR/fjZN3eB/zzU0H9hF3hdDrgkl0uWnK4+yTUkSYMul9slOx1yl9PjdMvtb3u 2/11/wd9fyOqdWkCdgzL1tPYfNB++va/x6eG6T3abphaazy5n36hcXDWZWzcR1rLTPvIG27KH3HPStKtTr Gk27Tkt1jSad3YIe1pNNafF7fsWd7habn6y+oxi29TIVzRRFV3 Mti5ma5OtvHP1Ma3jnY+XSgN01XHbzj5xx1DkxjkiyodmSqbWb VHzSaZLHKKyrGYRdBH1EUyQZhUWm+Fx3cxPJtpP7N7a81FU6SR fcyRqdC8/vJE7VcdvdKM5Mp7fs7btaoP2KOpwq+Vwo6WhyX6oVWxoMTVIws 5RyzpvRtVsQt3ZsCMO8wknc7JTOHYm7HCX6aiLP9nOHjsd3zSU d+QWFTdGJbfZG7bHXSjdEji3viuwafJszEjRgs4d2NIuJLontu bs0smu5Nmy4ls70ozSzOvrEuZLuZE8YWyJyZsvjC0TJ4rYiwWm 8WL+4irzeHHYZJF4sdA0tpodWcVPrOIn8q3eovDxEtvoKvPEMn EqT/SuFMY2mCc3C94SdnolM1XEjhZZR9dbxwot40uF0RLz+MawyQ3m 0bXi+Gp+rFD05nPjefz4UsFbwE0sEyaX8eOLzZP5wtgys3eFyV skegtEb6EwvtzsLRLG8sWxVcLYcstkfthkoenCcvN4MTuRz00u M0+nC1PprLcoYuCgdeMwsM8gi86Ftx00zaQjBgNpqDidGtnWDG cO4mU9lgtrUYXCDZIOMaiKYhqGqihuEKiOoSoKazCmIaiOwSoR NlbyOhdIrena0XZaOivJjp6Ozp7vXOBb1e+6QHd3tyzLbrdbds sutyTJfR75bJ/UJ7skt+x0yQ63xy3JXRcv1H42VvqrcxlXpxYmDcDJgdSOL7q6H nf2vvTUf3Lc5ks395VSa+o21X+wbOcV5sgWQU3n9XhmNtWm5wu zaeFGRqSeHa5kL9CXRyrLF6p5tvH0gmu72342febT4TfeOrbyS kPJtaMVVxq7Xo55fjq7/sphW/+GsMED4RcaxZG9+XPdZf1BEN1S1DRz7MORRZfzw/zRVT+orv64Jj2wqODWin1/sDfSiOa8sTbnJnNZT43zj2KPSNbzBYRuYYOZcZPHiHWnFle+GZ MWSMu61Nz9T5bU67D1KmK5hYfdRuzX8YX3YNP1xJx7R1v/hz3nMhyu47Z5LOomWPA9ZMFtZMG7WORNLPxNMe7tuNxnmQUf5W 64xLyxec9dZ/9HT97ouOJ4fLftJ8OLncfZXPei/LsLMpT06vmtvU9KGq5X99w9M/d5UdM72LIRcrmXWjFNFHmpVTN44QSzyketmKFXzFArp8jlPm6V nygaIVeP4iu9VLFGFs3SK8fo1Rexoov0OgVbMUkVz9CrFbxYI1 bOEiumidIgtmKCXTnGFnuJtReJdeeJleNMsY9cPsEWe4nlY3Tx NF08SxRNMiUzRNEEt9qH53uZVX5q5Qy5apJePY0tn2BWzRD541 yxQa2cJVeMsaumyIJZZqWOFU1Rq3VqpZcpnSCLVXzRW/DC21C639bcEzG+0jRtJXUWMbiw2RXWBhmkKWi5wz62mtJYQqPo IIupGGkQqIrSQRpVUdzAkdfpYICADSp8ci29uRXKdKft6q3paH IPud2Onp4e5zcVwavvKoJvRb91gefPn7+uCFwul0tyOSWHy+WS XZLb5ZSlXll2uSTJJQ10ywO9w4e+N1T0zwNpf30h42i/RRw3Lb69bPuDzdsebEu/nE1Mi6aJXK6uGktrxZY1250VnM8O+3FY5yGfSE9FWM7liWc2m5 sOi51HmNb9XFst3byXOdIQe6zjjWH9oH53t//dWu+7J2YeVZzTYk40W2pPCxua6cKTWFEDtWdj8ZVdLS+UsJK2N 9qedD54tmx6c7aafuyzfU0/PLnx6tb11zc1/uHReGWB/WIWX19PZbv3jn+aOX0Mn7QSsxZuYKXQ0MiXO0yrmti8I7mVg4e GPrGVThMFBrI4gCyeQZaN40tm8IwJ+yJvYcUddnGQXBwgF02jS/3oUpVcMo0vnUKW+KDFM6YSX2S5ymbK9LIG6nDJ8uDO0zevVXXc Pn75ra3zBxf31pD5DULM2bAUJWHl7YraX8ZE3dpc/lmn9M/l1T9Fzd8D1AOIfwwJDyHhAeDuQfw9wN9BLfexsIcQ/xDmHiPCXSC8C4RHgHsMiQ8R/gHEPoLFD4DwABbuosJ9hHsEM08R7gEs3gHmJ0B8hvAPUdNtNOI WuuAB4N4HzBOYfx/i3oOE94DwEHCPAP8+4B/D/HsQdw9wjwH3GPAPEfE9iL8Difcg/i7M3QXMPSDcRyz3ybDHEP8AsA+A8AAILwD3DOEfocxjwN8FibN 8Q1vYRAk2KyIahmkUN5Mc1rkPzb0AIgPUtjOWiRxsliQ1hglyi B9BVRT2w7AfQTUM0VBIfU0iRiGNsI6tJjedAelS0o7OHW2nXQM uydHT2tb527vAdy7wbej3GcSy7Ha7XZLkkt2yy+2RPB53n1Nyu TyyJDtcHlf7oKvjYmNr75Ifns/+9UDajYspacMMNk7ZtTCbbsemcdzAiJkFMZ4jaIGTXt8ZNVJJq mZkHgYhlNbCw89uEqr6oYQAHH0fjbqDLrwLL7wPR72LRr0L225 A1ttY+EPE/hAPf4+w3gLmd0DUe3zch7HxH1aU/+X6jT/hVnTnXmzY/2F/qezM2TVY7Z9bGtoe7guv/EHZtg8qUqaTNzxaV/n9DbYZ3jq2yFTfAWLdNRduFl+rp8ci7cNF1MbdXPqoqUiPPTIU 3rR/07y87/HF+IG9EUP7w8/vjzy/P3LwQOxwc6xzQNgxiJRKUSfPxQ12Wc/ts1+ss53fbR/dEz66O3ykOuLcloyR+g2TUym1/ckHHamjh5O924uHhvIOzJZeGIgdy0uYKgrv2W2tbcpuG0hr615 9brpy+kaF9/p27Uqpd8JyqMlU12s7KFv2Oy0HnJb9DssBh/VAj/Wg03JQ4uucpv0eU71sOeCyHOi17O+x7HeY6l22QzJf1xp2pEvc 32Y+2G1p6DUf7DI3dIoHO2wHZfM+ydzg4hs6LEe7bA1Oc63Tds Blqu+yNnSL+1vNB9vNBzpM+zvtDQ5zfaf1kJPf7zAflsyHusX9 rdaGLlN9p21/t72+036gy7zvjKWhw36s13SgLayh27Kv03rQZdrfHt7QGXbAIR 48I3ZU8xPZdIiG52EowLC+WHt/FVbqAeEavWo4Qq4W/fGEnyE0mjBoWEXxAIFoKB4gYBXBdBw1UERDEAOHDCpsfA25sQ3 K7Evf2VvT3ug+53Y6uv9tsvj1HMF3G8r+o/V7XUOyLPf19cmyW5L7ZMntkfo87j6XW5L6JJe7t092ut3dJ2ZO rhrM6ju/8G9Hsv5yNOvERRs9jlrfTIi4nMbMcrSGcLOpET29UOYoUzAUKx 2hlWQQgjHdvHBik6WmByy8Bkz3qPibTOrbaNJVNOMGSH8HpL0F 0q4i2VdBqgpyVCRvDqTPQymXVtT9rPzgLxKXXkvNvRa/NBS2w7nhZs/6OwdjWnaD/Hpz/Ymo2VJUoWgD52ZZZoZl/CyviIzCmaaWig2dIKJ/Y9s7h596zONRJimfKapdXHiDTVTCd0zZ6840vHV75blRse607X CX+WCL/XBr2IFW29EuywF3WO2Yfe+Evf6sraFbrG8OO9hjPtBpOdJqPdJ qPdgefqAtst65rOVKfuNbBW1zqc0zuaeCsTWzkQeduVP7ll5dt ezN4uzr63NvbMq7tTZOTw2bjY65nCVq8SYj3mokcP44Wk3l9HR GSeW0NEZJZdU0TksXAlmskUEp6ayeRflTWS2V05J5PYVXUihfK hfIxv2JXDCd0dNoPZ3R0xkjjQmkUEqioKdzvlROS2X1ZD6YIuh pnC9FMBJYLU4IptBKEqunsHoKoyaKgRRKSRXUZabpEtPEJvPMR lZZxhppnJos+jNEX6pFy2D9ybyabDLSeSXFpKfz/lRey2PVdMFI5NVETk3i9WjcT5E6gWgErSfahmuYLRKI8KOLpsK 7T5h9qYzOkCpO6iQZpBANxQMYoiFEkIRVBDdw1EARFcECBKxTY eOl5IZWOKs/Y5djZ2eze9jjcnR3dTt+6wLf0Ue/Df1uRdDV1eVyuSRJkt2yyyXJLrdb7nO65F7J5XRLTsnhlhy97r ZjyvGlE3kbXexnY6m/Ppv6znhm0ll7tF4ar5YK41Zx2moZ2IIVOwGjgzCdq+k2j6zC/Xbz5FLr/nYoIgjCr6fvD5UO96f31ce4q8OkSqu8PXHkaEz/oQWOPQln6+zyNmtftUnaHumqOfxg9o2AO7JpB7W7jKgts0ubym 7vrv+gMa7pEMhvofaesc2swg0cUgDmw1EFgRQInSXRWcbkXWba 1wbC3Zm7vJ0/nY6Zi8cHUqlde9HEXij8IrA583cYDWd/gqS5QdI4nDoLEodBQh9IHABJgyDlPEgaAUnDIOksSOoDCQNw0i hInALRfmC/DpkfIeJjxPQQCM+A+AEwvwvMV4FdQQsc1vZd9rEUcYxivTg9jV JTJDHDIwoDdBjWAO4H2BTAZyBMAYgOEB3ACkBVgGoA1wHiB4QB U5dRxACIBsE6eH0QHWA6QFQAqwAxABIAkAZgA4J0AAwABQHQAK YDVAWoCmAN4CGECMGIAjAF4ApA/QBTYUyFMT+EqxCmAETFuMlU8fRWUFSDVO6xnltD6zwWgtEABis A0QBiQHgQpoIw8vo7/QDTAKoARAOwgkIKhhoQogFEhTCfOWx8DbejB4QbUPKEpem4MFu AKCZMRdAZhNQpKkhDCgyrMKzCkAK/TgchFUJVBNMwRCWtI6vJDWdAupxa3V3ddto1KMmSo62969+IY9 +5wLegf5/RHx7bAAAgAElEQVQOejweSZY8Htkjy27J7Xb3Odyy5PHIsuRxy 739vcd8jTneggQPMzIa/XcXcn55bv2JA4XmTZtsTbvCR3IXzhSwB/bhcYMFed+Pz7kH5bVHOmrCp8qFlmY01wes3oXV3pYfvdX11xeK 75Zu/v6aKF2Mn4/s/ueuikebi68t9/xdT+ZcEucjGR2Ju2Q58OO9xde2R1zcFD5aHT1WEz68tvjt2oPP z2U1SyC7k69uCZ9cBRk0eYnB/RQZpOAASoR43BDFqQLLgU4Q7d7hfnT+y1tdfyJvvX8s8/yRiFONcUfcVSM3um9/tKyrX6g9ajvaZT3SYWpotB7vEI70Wo45xIZW6/EOy5Fm6+Em29Fm8XCzeLzVckiyV6tw6m1Y+O8s/S8M9CsT/hUB/SNO/REbdjdlnZbacjRurCBiKlycYKx+q3nMEj5iss5EEqEE7NoCTMN NKsfPcFSAxUIUouNEiMZ0gtBJTMXpIE3oJGmQRJDAdJwKsphO4 QaJBwjcoHCdwVWSMihcRakgiWsErtN4gCaCFB6gEI0mAyyhEpT BYBpNhkQywCEKgRsCojP4HIMGMXQOR0MEEiDwIIsEbNbx9czaU/ZEVch025s2WULh0BUCvibCQQYOMIhB4QGKCJKYgRMBCtUJbJ6B QxgcwpF5ApmDsSsQEkSxYBg/WyAebYVi5uHoa+ZDbSYlG5un0RBGhyjcT+MKTRoMomFkkEJ1jA zRr+sCLIDhGkYFSUynwkZLyY1tcHZ/5m7Hzo4m9zm3y9nT3ev83YrgOxf4D9e/TwdlWZZk2SW5ZJfUJ7tlSXJKLqdHcrqdbsnVJzuafCfT/ZncGLlmyPRwMv1fBpf+rGXv7uI+a0kb17Q60bvFurcFjhzZuOO LwtU3kMSTUZ2nIvua0ZIJsCDAljgWjR5s/LO+sg/2xRiL639Rl/dWbs7l4rF/euvUe8Mn7oxN/sXzAw+HF5xbIYzkxk6tOvV975qLZ8kth/HSFnpNM7m5qjIotT24uXDjOZDQYjp02Da7DNYI2MAxP4mpFBxA kCAMGyQ/kyvWt4AF7hr5rvdPb1e9s/v0Ry3yFw7pF47WL7v2/fhYrJFKTZhYzcLOW9nLYYghYpes2BUrNWemAyIbMPOGmddMYsD CGSbaEFltQcR0KXfoFEi5gnF/jsJ/T0B/mZj+J8dcf+q88mLkh+90/Lgrz79kzeUdHZ/P9HwW6P2JcfKllHy2jG5dy0jrrGPFNu8Sq3epyVvIeAvYmQJup oCbzDfNLGcnlglTBdxUgcm33OorEsaXmrwFJm+B2VtoniiwTBR aJ5abxwus3gLL+LIwb4F1PN86nm/zFlgn8s3eAvPkcvN4gWWswOpdLnqXW2aKw6ZXWcaKrN41pokVp ql8cWqxOJknTi4zTRaYJvLNU+ui+xqEle2btn2+vPJ70Q2HY8f eELwF/HSBMJ1vnSkSJ/Jt3uVhUyssEwVhU0Wm8WVWb75pfIU4XmyZWiV6l1q8+baxdRFj e2wn26D0SRARFKp77JNFqCHAQRIOwHAAg1QUMwgqSCMKgusYpm HfdExrMKIhqIKhGoLoaNhoKbWhE8qQM3Z2fdM76Ozp/J2Zwl9/9Z0L/Mfr91zA6XS6XC7Z7XZJkluS+yRZcrlcsuRwy07Z5Xa5ZZd8yn8 y3Z8CKRg+iRw4x/3VxfTf9JfcbW9PKd5JnFoTNrlObG4AmUOM8A7OGmB5U5hn34Ke UyDXgS3yxDrq7b6o3BvxERMLzBMJa9/ZU6oeS3ed2Dh4ddHut3N2PEiuuJK9N8iuc+DrO6i1jirH5+WH/iAy50F87ovY3GfxK28dcv2oruVzKGyEKJYizr0hGmGYwkIKhag UrFFwEEN1DFUoYSpTPHAMxPZE7nItMqpJL0tOoslXbEtuxUaHY rAJMz5NYgoKaxAexMgAiflRVIVRDYJ0GOgIoqGojr8GbEAGDgw MhBBMN0Wd32SrHAKmm6z5pyj9aO2Oj87fflH3ZnflO/tOfHz69Ps97Tcu75TurNx5Y/upl32X/mdciZ9aOEOnaNzyKX7jBLtxgl0/y66b4srHuPUXufUXhLIRbt0FoWyEW3/BtHHcvMXLlo2wGy6y5SPshovM+gts+UW2/CJbdoEtH+HKRtj1F9h157nyEXb9BbZ8hN1wgdt4gd8wwq0fFja Oshsv8lvGxS3jfNlFfv2EUD7Gb7zAlZ9jy4bZsvNc+Xm+fFhYP 2VeeY1NvJuZ/xeZRV9EFM7b1o7x6y6wZSPs2mFh/Qi77oJYPmbZNMGuHebKR9j15/jys+y6IXb9Ra58lC07z5eN8qU+YfVlPPFtYNOpTXL4uS20LxKd NRN+EVMIWMUgP0wESDJAwX4EUVBEQRAVgTUUUQGkwrAfRTUU1p Cw0VKqvBOky6nVHa8rgm9mCr9zgW9Tv2UNvXz5sru7W5Ikt9vt lJwej+yWJI9L8rjdLrfs6uuTZLcs9Tn7+hunmpdM5PLTDBPk04 fQ69MZvxrO+quh9XW7l9jbl7BTWcz5lULDSSRDppb2c6d3WicK IjrrQXInXdq/4HwVp4vUFDBNW8Iml9iPHsQyB+Ho66j9fUB+BOjPAfOhuOD9+K yPIlMfx+Z+kpj3x/FpfxIT94N1G/+wtOIX0TkvU5d8xsVchwvPWl1HzGoaaVCYTpMhAVZxbJ6Bgxgb ZBmFE6dTLKcOgMSz3OrJqI5dC3zRpI4BlYB8DDHDCKpABFBiDk aCEB5A6QBBKShrYKQG0UEE0wAZQIggihoIHsQhHUbncCSE4iEy bDYlufMEkywvXXI3OSNUtH/u1EMjy8g1j4qxw9mnb1zb1vhDQIcAdokJv3qs9ZfJaVeWLfkoP uExwObQsEdAfB+xPEGEJ4B+jorfB+xTzPICcO/D4geAewrxzyDTC8B/AFs+AsIzID5/fSDTh4B/ClleAP4D2PwC8E8h04eQ+CEwfQiZnwPTE8TyHHCPYdMzYHoGWT 8E5ueAewKbngPuCWr9EPBPAfcB4D4AwhPM8hRwjwH7AcDeLSz9 6/TFfwLQh4B/DsyPgeUxoB+jwnNIeAaEZ7D5BeAeI5ZnQHgfMn0AhA8g8SPE/H0gPIPNzwH3DBI+BsJtonjc1l/HGAsxgyZVltYp0kDoIEEoBKERhEGiKoYbJKygZJBCVJQMYniQR BSCmKMRHY+YLKc2dCPZZ9N3dtW0N3qGPY6ezu4e55PnH7569er V11999V1F8C3o30jkv+ULSLLz9eri3h7Z4ZRcUq9Ldro9Dpfb5 ZRdnp6Ts42Zk8uoCRLTEWwa3Tgo/mg859d9WS8HCuvOLkpXsyyzceEjBeFylb2vIi5QEhPMi5PqLOu HqPJ2c18J67fAszhhLDQPbYcLjzHWoIn/OQr+DIH/F8D+lqD/asnSX+fl/HNa/N+kLfpv2Zs/sxbMUmk9VFoPkdGLZfXwq3upHUcJZwXpz2EMkQvgmIJhOo6qCG SgQIdolaBnKG4yJqxrH5F3DkROkZv67Oe2MX4brGCIQkM+BtN4 VEVRAwcKRhg8ZZhQH4f4SVjFUQ2HFRRSEFjDYA2DNRz4EUjDEY XAVZSeIW3nl4pHd1Cbt1Bl5WvHPA0vXLaLFttkhr3zEJ57AVgC 7FJD3CzH73W0zn+QtseNlTYSm1uYytNiZbNY2cVXdrMVvUyFTF fKVKWD2eEkq7qpbb1UZTe73cVvl5mtDrbSyW118JUOtqKH29oj VPYyW3u4KieztZevdLIVvXyVi610MJUOtsrJVfXylb1cRQ9f2c ts7RF2SKYdbu6NHq6yi6vq4rc72EoHU+FiK51cVTdX1cZVdNg2 nF2yUxua+4Pj5x/HbzsvVHiobU5mm4vd2sNvczJVPcw2h1Aj0Vu72KoutqqT3t5FV XXRVQ5mm4vc2ktXOajKHrKqm9h9lJW20loWpLOogqF+ABsA1mF CJbEZjFRJOsAgfhRWUVhFEQVFFBRRYUiBoVkM0lCgopbRUnJDN 5TuTq3u2H7mlHPA5ezt6uzu/S2D+DsX+Db09e8Rx2TZ7Xa73W5ZltwuV58ky26P09Pn7OtzeQY kecDZLx3XTqUZizGFxEMYNEdFjhHnLi781dCi/7cv6SMlf+STk2vurVl9M3vdoxX8hFj+8fZdH7VWzY2c1j9e6fG GDZYx03YsQAjBpPDuwyCtc8X655vX/w8O/0MU+xWK/5NJ+N85af83gvtJUvjPSJuefnw6fbgtzFFv626wO+rsnooFY6W iP5UOCkQQZecJNkhTAY4IUlQIowIYZbCURtE6wvvN4eOlYSd60 LQZEKtYap1hE+spn51RSErjMMNEGgRpUJjOECEeDVCIgaMBAgt QhM4QBo0GcDSA4QGc0EnKoAiDxHUc13EsQOG6jfFlilN54vnMD Y8OVH1Ux42GR1zYypQNggUKvXo01tm4YLQwTS06+YWco1XR54q 4mZUmLdekxJr0GCawkAukCGo6r6YKWhqnJPNKkklP4ZQESyDNO pcuGsm8miDoSYKWwKvxvJYgaomiliyqySY9VVCSzHqqSU/htSROS+L0JFZPZNQ40UgStURBTbDNpZtDqbyeyOkJnJHEqMmcl iHo2aKRxakpvJYoeuO2vld38a/8nZ9IA1+Oy/99POvKan461qamWIwkVountEQ2mGaez+S1JE5L4I1EQU8StERR SxDVBFFJFpQUk57KawlcKIoI8kiIROdJPETgAZIwKCJA4TqJKx gbZIVLAq7hhE4QBonrBGGQpE4QBkEECFTH0ABtG1/DbO0FWQPpO50725tdg7JHdnZ09zx59vou8JvvXODb0L/tKXz5sqenx/M7cktyn+x2e/ql/n5Xf7/LM+BxD7j7HG1KY4FWKCgcN48Tl0hOt6e4E0a6C/9pcOn/6c+5ra/L8y4sf7bp8Ke7F47Zd3xaW3Jtb911r3T9x7t8oaih1eaZCFYXb VrOgt5msHQkPPVeQuInnPklHfsDOPY5l/JJesnPTQnBvLKrppLGxaNnEoNrzUqcWV9guxQlzEcwlyz0HMOG CMHARZ0RdJHRLHzQzuq0KUQzOkfqPHOFJudJKhgW7ttsO9SHJA XhZC3sRHeMss6iLzTNxfDBGIseZ9bizHqcJRQnBqLEQJQpmCDq SYIaLwZiuVA0PxcthmJMxkJzMI7VIwVjoWik8nOJrBFtVZMWat lR3pz179dXfVwbN5Ib2dSCpk+S+ePRzpN2Xy6nmqNDKUe+bF88 VxI5nR1hLBHVVM6w8SFCCCHcHEVf4qgQw8yzdIhh5xlmnmHmaP 4qz18V6EsMc5ml5mlyjqIvMeQcRcxRzCWGnaeFeZYL0fwcw4Qo do5i5kl6nqIuMWSIouZoZo5mgpTpqsBd5th5lpnj6SDHzvHcHM +GOC4kcCGRCQiCz1zxonL9rbUWWUwZTz7weUPeu0v4WcGimcUQ T4dYep7nrpjEK2Y2yPIhjg0w/BzPzTH8PMmGMOESzc7R9BxFzeOMTog6xwd5JshyIZE3zLxu5gI mJsAyAVqY54UrIhmgqCD9zdOg2CDDhBg2RNMhhp43LZhcz1Y64 EVDWXuknR3N7mHPQJ/c1eN8+vzFq1evvv76q6++ywW+Bf1uOtjR0fGv00SSJMuSS5Zds kuSeyW5R5YdkluSJGd/Z6OvccnUEsZLkCpEajAxG054SrPKln/es/PXnvy/OZc8OGDPm41b+Wxd9Fx8yjuZkVPJyy4eWdd2JeGgxyav4cbDsC mMV822sUKm+hiImACChuZPckdcbMueqM69S872iLsOIqUV5uMb sy+Xi4oNm0UJg4AUgBoIoiO4hmOzGD1DmVRRNKzoLIv7OEalCS 9kUc2CGoZMvx6GRzCds40XCVVnQPgcnHLdfmDA3rvLIm81OSot PdssXVWWnspweVu4e5vZ8Yapp8rSW2Pq2mHu2SY6t4mu7ULvNr F7h9mxQ3BsFV2VvLSVdVVYHPusx04SG/eR5bvfMDx7X+y3nctkDjSD1AF+j1OcKEdnzcgUGmXEnfp0MKf5 OFm6l9u10+JeRU4vRBUT4WdIBSc0BJ0FmA/gfgj3Q7gPEH6INjAqQGAKjPoh1A9jfhj1w5gCIz4IVWFUhXAVx hUI8wHMD3AFQhWA+AGiIogCf/P0Q6RB0AECU1DYjyEKhukopkGoAlA/jCkY5iMsF+3V9/fserBn3Y21WdPpWx5uyHg7FfGi1AzN+EjcTyAKRhokH2KJWQSf RQgfhvtJTMEwBSIUCFdgXEFxFUM1BJ9FyWkc9cGIgqAKhvsJzE/CCoaoCOZHaZ2kDRr1o6+3FaMqhvgRzIegfgSdRRA/iqi05UIxUX4GpLtTd3RVt51yDUqyy9He0fv46evJ4l//5negeN+y/iu6wMuXL193EHvcbqcky+5+WfLIksft6etxSQ632yV73E635HY e8zVnT2cxkxim06iB87P22MFKrmj/hqK9P+vf8sqT8quhpcMDseH9FDe9QBg3Cb5Iu6MCZDfCJa32/krrTCI5zbE+VpiNMJ8vsHbuF08dtLurbGNLLbPhdi084+3lUZO rUmc2R3tzEq5nmANh5CyGqjhicKjCoAaNGDiu4bSPtKqWkpfrw vXYRbdzCu8UJPiS6n++f+uPtpoVCzpDEgEaNnBas0YMlrHlgyD sLmx7isffAAlXoeQbSPJVNOlNJP4qkfo2nvYmnDAPJ1+GEi5hc dfhmCtoyptIylsg7joc9xYUfw1JuYokXkeSboCkt5CEq+iC0SU lwcjc/oJj3v0Ph03Dy+l9bSDTwR06wmuLEQNFZ0G0vrjhZnBBQc+ylZe il/RQVWtt3uXwbDih0biGICqKB0hYQREdhxUE03FEQXCDIEM0rKCo TkB+BNFwyI9gOoFoOKQgqI7DKobrOKKguEbiGoGqBKriiIJgBg 6pCKJjkIoQAZIKkIgPwnUYVQGmQ7iOYCpM6iiuwoQKW7zc3uc7 Tn1xbOfzbbvfrzr544ZF38sCXozWeGaWpVUOVSlUI+gQiykYpp KwSqAqiSgobsBkAMX9CKlQuJ8mdZb0U5RKYBqCGQimY7iKkTqB qDBhYKQfoxSc1SnCj9Eaic8itEYSfoxUcFzFMB+KqxSiMOGja6 nyM1CGnLmrp6b9tGtQcrtcHZ2ux0+/SQe/o4z8h+v36KOviWNut1tyy7Lb45Zlj+yW3G7HN9sLX/9bIDVONy6aziGnEcQgIB1fEIpteHLuwMTL7OrhkdEjX44v+soT 94/n0vznUk7e313/xcnsueURHdVQZhtR4NqonW35ee/W9zctvZKX8XYOPi7kPVmz909PpGoZu19Urrmz2DqJJF5JS5jIP fhxXZKxcOGllChtoXmapHUMCeKIzhAhHtFRKogyPjLMH7n3Fw2 pelbF/S3b722vub+794+7tz3eZJ0yYT6KComowlMBE6fG2Pu2kBvOoGl TaNwlPPYKm3gTi3gfFf8IQf+GJH6Fk38BCy/J+HeRxCtE0mUsIYSnzGHJc0jiPJZ8GU0OYekBNFnHUi7BqVew9 Hkirj+1cDAyr7245cKhRxfCB0up/V0gWzLvPx0+W0z4GF5lk7Q1J+/eXbh6Ii3nXmTmnK2mM3q6itaSBCNBVNJof4ag53BKpqBm8v50U c3kfGkmPcukZXGzqSYti/OlCUqGoGSIaiavpPP+dEHN4PxpJi2T96fz/gzBnyEqmaKSyc2kWbUcfibN4s82+7Ms/myTL0uYTTMbmYKSJvqyBH8Or+byWi6npAtqqn0m4+AXpzfc2bJ gcEH8UGzDR4dKH2xExghSZzCFY1WGURlMF/CgiGkoHSRgg0BCJGzghEGRGkloBGHQiErgOourNKFTuE4QAYIM kLiGkwaJ6xgZIAmNJHWSDtK4ipMGiakEFWBxjSINAgvgqEHgQZ w08JjRUqasA87tS6/tqmk75Rn0uN3O7h7HB08/fPXq1W++/s3XX//6P2uQ4L+KC/yunj9/3t7eLkmSS5JckuSUXC6nS3a6nC5Xryw5ZMkluySn5JJ7m2ZOLJ rKxacRVMPBNBoVSpL/6Hql9HbanrONj8abJ3J+PJz+yp34jwNJn156I/RZ04Z3NpvaK6ElbfDSjn23dPmPBjZeL95w/42NH28nh5jV7y2r/3Rz4Uz89D+4HX98Ink8LHcub8f9+rN/IW/5oDztzcXh0xH0GIb5UCSAIjqOaQw0DcMTAL9ARE4l1n5+OGkit exqRc27Bw+/39jzg66jL/YmBWLQWQRSYMKPEwqGGiSpLKQHl/HuzZSjgnZWWHr2Rh4exDOvA/IXBPWPiO3HdIm+4Ey70FstOKtE53a2u5JzVjO9NWzPTt5RIzi3 i91VfEeV6KrmnTVC2358Xy25b/Mbb5/e9bzePriEb+gE2ZJw4JjoLeCmkkzOovhjjZ2hv0xb8wyQt9Do+ xFbLot1XezBY1TtCba2hd93hq9t4fY2c3sahdomds9ptrbRfLD NdrBDqG3i9zaJdc1CbbNQ2/T6JV/XzOw5zdU2cbVNXG0jX9fM7m3kapuEfS1cbQtf2yLUtvB7m/m9TeYD7bbDXdSe0/SeZn5vu7C7g9/Vydf2sHUdbG0bu6fJWnfi+H1967sH8q4sLgwtPvmDYyV3NoBxE tEJVCcQHcFVhNEZLsCiCoz6YTABwAQMT2DwOIZO4ogPhzUMNhB YgyAVhjQM1lBIQ6HXY4IqCikoohGwH8N1ggzRsIoiGgarGKwSi ErgCoa+3lkYAEgAsY2uo8tkKGk4bYdjZ0tjX/+ALDk7OlqfPXn66tWrr37z6je/+eo/6xfxX8UFfvcu8OLFi56enm/6BVwu2eOWJckju90ej9MtO92y5Jbdkix7uk/PHs+ZzqFmCUqjsVk65kr6xnd6qdWN/Kq2Iw+MzTd3HBxM+HIs75Un8f/ISX/ozZNn82Pa9oOMc6BgfI0+UPTuSvoinvZ2bvkPtsYHslbf3brk8 rpl10tL75Vter9s2Xzm4vnFle/tqrpdUf54Xc7NZTYjElcpLMBQOolPQcwks0CPWHRjUbqRFTmUc ODTo2veKjnw/YObb22rvrNn/4N9x394IPt6OjJDECGOVmHGgOAghoR4wjATgTDyciR2KZycj+S ni8IbPWjSDdj6lC7WI6QjFi2XDIYJoXDKL9AhEzFnwkIW4lIUE YikQgsZdaFZT+YDC6lgBBPMEdTSMF9h2bOtO35QbR/KFfY1gyyX0HAyYna3ydGAFPWYU+abOv5PUvoXKP7npPi3kOlT2 P4ImO8j5geI+T3Y9B5qfQSL9zHbI1i8C1vfg633Yet9xPoAMt3 D7I9h8z3E+gC23EesDxDrA9h8D7U9hM33UdtD2PIeYn0Psb73+ l3I/B5iewjMd7Hwh8ByF7a+B8z3gHAHDb8HzDdRy20g3kTsd+EFd6H wO5D1Fhal7R/64XbDu+XuseLQmpMfHV1zZz3wEsQciRkYepnCQpio4naVJ7006 TWlX89ZcaOo6PrSVTeXZV1NYb0s4WdQHcUuIVgAogIkaeC4hpI GQeoEZdC4StEGR6okrZGsQZMqzhgkoWC0QeEKzmgU6acpH84Ga FpLDBs6AReew9PGMmu697Q39g8Myi5XT0/H8w8ev3r16qvffP3dZPG3qhcvXnR1dUnf4EcllyxJLpdbll2S1 Cu5HLLklFyyU5LcPSdnT6RP5+AzGKnguJ+gVavpbBmy1k0kXlq wImjd22Hv2bR9OOvBVNa/DKW9csT/cjDrlnt9+9ZDK1fuLurcYPFGgEsEpRORRnzM0Ca27iBec9Ts2s +N5hMTNpPPsvha7qEXh11/3F3/ac2Sd5byqggHEThA0hNk7HTU3h/Wnf7j5jP/raPx5937X7RUP2o4/eWJA1/WRPsi42YTD//B4cpPKphpFtVIQqdJH45rJBSk0CBKqSjpIzBVgAwCmkdRzRrTV 4/nDeMZvujWHvNsKhbAEY0lVBpXEcwASACgGkP7F7Jji2wX11mHV 1vHCpmJQm6yhB/aiJ/aTB3dXPZ2S83Hx+wDRaa6VpDZZ647G+0cxlZ4gRCKWHSnY/h/p+V9DkE/xsM+p5feIkr8aOkkVjpGrBnBS8aJ0gmyZIwunSBXj5Kl40TJGL lmglk7RZaMU6UT5OpxqtRLrB6jSieokgl89Si5xkuUjpNrvd98 dq2XWDNOrPVipeP42nGsdIRcP0GUjtGlXnKlN2f/vbL2D7J2hSp7P0qtDhDL++nV56ni89TKC5b84UPuX2Tvm4k/1bDkXEn7TxtX310DxlB8Dkc0DNNZXCc5DTOP44lT8Ts/OlD/i8YNH+3a/GLbjpeVh76o2/FxdaSSgIxRlEFhOooZOKZjiIpgGobrOGGQqEriOo0qOGlQr8ki hI7j2uueDow0SMygMQUR/WFhQxXUVhlEjxOFZ1MON2xvr5MH3bKnr6Or+4Onj169evXr3/zfr7+7C3wL+r1c4BsTcMsOl1OW5D63xyVJr3MBlyzJkux0956e bcyeXozPEriGYH4IVTh+rEiscUC2y4C8DywqWea2t51e2lQ50V vxy+GSV0PJr/oivu7P/XN3wYeja/a41pl7K6L6a+K7G9nyHhA1CGxeZJksdNRwM9GMRqdfScybzW3+ orFgbkleqDB2ZrFtJl0cT8yYWSH93Nv+Ul3iaFl44EBaz76K28 dOftlS/OZyyzhOTaHENCf4bJyfQVWAGBjqxzAfCWkM0EhcRXE/wBWKUHloFsAK4KasttYdIKsNy3eEe/agUzTwA8iP4SqN6CQSRGlFtJ1fQezfB69xEflT7NIxJn+YLpol VxhY9kV7tiwmNK7rmN73qD9soISvbwU5jqhdimnzPFgQQFLH8k 9PSm//IiE/FBZ2U4gNhtW4Y4YOmy+ss19cHjZaIIyvFCdWieMrzROrTOMrzG MrzGMrbZMlVu8q8/gK68Qq09gK89gK8/gKy8RKy8RKk7dY8K7ix1eYp2XGrWgAACAASURBVIr5iSJ+YiXn Xcl6V4oTq8WRFbbJYtP4cnG80DxaZBlesTi4d+cTR6FRvTxQWf P+qbxghWV4Sdh4kXWkKGyoOKl3z/GZx+VHbpV1GB33fI6fufJuLwVehPC/JoUzuJ9hJrDFl7NP/fzUtidbIicjMF84rQvCJBbjs1d9uPnol4dTghnoRRxXUViHYAM AAyBzADIAEgCw8bp3CBABQM9DqAGQIAAGgAMA1gFkANQAtA+Lv FjMVTtB1CycMhJ1qjXJUVbRWdU31OdyeVq7Op5+8OTVq1e//vr/+errr77+Lhf4j9b/L3dQdrvdfR632/26InB53FKfR3LLHtnt9DiaZ5pzp/PwWYoM4qSB0EGzMLvYcrgRiTm/ct1P8/JfYrzBZjyGM79nyZpet8ztLuv6/snjvxlc9Woo/tVoVeumbjIqQKXepZMeo5a3Vq54sX7Vp1iYj9zWap9aZDPY1Gu pyROl+x9N5Q41ZXS3LzzkEna3c7sOH7t+v27ivZj1Xi7Ri0T3k Jv22KTCJdcLD/64Nl6PQCcBHaQwP0bqAA8COISiQRgzIOISjuqYGLTSARHWTYxq CQ8sSHozJc6XlT1wOmrzQOQWV/bIkVg9I/V6XLgm2lSGVs1MKDliptJc70ZSrgPhHmm5h1reQsLfRRa8B9nv Q8L1ktKnmblqwR7l8OOpiPMlTF0TyO6N237Vsuo+iNPDDrqXTZ 46ceVK5KLu0vKnCUtVrGx3xGQZpYWxQZo1aEKjmSBPaBRlMKRG MwGO0GgmwHFzIqHStMERGk0bHGWwtMHRAZ7UGTbAkQrJGgylkX SAJgI0EWDpAE+pHKeLpJ+mDY4NiPQMm3Mzd/OLTRnzGSveLSx/uU6cZimVJEIkFqSpoMnmjd9/bXhXz5s1HfcOjV45+LZz8Y1CaBIyaSyp4lSIJabZhUrMkT85UX h3FXORsVxICnOvpVrywwaLbGOFwrnsjXfrT/3Ume5fZRvLsM1mm/1ZgprBq2m8ki7qWYyayek5gj/d5Eu3qhkmf4pJT2P8SSYjnfcnm5VkUc2wj28Jr+8D0XNQyhx/qDXGW7SwL26ro3Jg6Kwsu9sdHU+fPXn16tVXX//LV9/9U/gt6N+7gCRJTpdTcsuSS3I5nJIsO2TJKUsuWXJLskN2NE035kzl YtM4pmG4CmMaw/pS2UMH4ZjBktLPFy/6DMc+wKkf4Zb3oQW3geU+wG/FmKfa1vaPbutqXN8fHX4etd5GIp/hkT+E8aer8n5cVvh9hJ+kKztto/nidMxifad9zxF78awp5834wodk1DXA6+lrHx+T/ycZqwPiEitcy14zz2zat3CgNnKoZOfD41XPT9CjcYwvTlSShdl 4Rk3GtRRcj6a1ONafzU0sJV15ZP8SYiQ1Yib18I+bGr90tP7ML X94+/i599unvt/23uWWz5xdX5459dmBuIlodiCd66y27B5CEueg8HeE1ZfNe/rYfW3s/i6mvslS38WVO7iiXrzwRNnIUO2zZvHsMq6hHSwejK64wS67BuW cD2s7Eq+UHn8xFl93kiw8Saw/bGrdxM0kIEECmoMRA0E1CNUgRAOoBhANIBoACiCCCD1PQCpANA Br//ZEdYBoANchRAGoChAVoPo3hALMgDADRhUE8WGETuIqSiu0VbHn 31m54fm2wlubM9/MJ8dQ2o/iKo4FMMTAiQl6z4NTju/d3XhcOzpy/cJPri29vgKZQAiFgBUcVWF2mt/0ccXS+4XQRcB7F1gd1djSbjh6mCmYCN89ItZ1M1WHy895d6tXL buaLLVdpn29pnqXUOsy1bpMdU5hX6+4r1fc6zLvd1sOykJ9r3m/Q6ztFvc7+Ppe+97esNp+a4WBL3wTCjPEaskyto72m2391k29W9 yDHpdLau1qf/r06atXr77+jjLy7ejfdxB/wyCWXJLL5ZHdkiz3SC6nLDkll+SSnbKzefpU7lQONkOiGoEqMK ZjjD/G2roTTe2DyWuAuY2mhmLqRiOaTtga94WdbOSrxkHEVYA/BcS7YLFXPO0WW0/aW4/HHunHs2Zg5k2MuoXGecXje6yT8RHTSzM7u6mkXjH8CiHezFj9J LpUI5b17ex7vr33Br6ijV47RK7s40odQsX/196bBkdxJHze3VWVdfR96T4AAepTEocBHxiPby4JcQkJhABz2G AbG6mlPqsqq7olpJa4Beqzqg9JgDkNGF8ztrHHM/Y8M+N55pmZx+qDed/YjdjY2I19vu4aSb0fGmzssXd3dnfseF/0i390ZFRnVWZlVf2rKjMrk9G2+7RtroaDfS9f+UX163b5rlf0u zwlL3jUu12yPbR6P63a59Tt6Veu6UfrPIpnHBXdLcvF5zp/273pStuLH3XvHQut2hfezV3dGvU7fs9tvdzW/blzRWRL0d4OYpGPMIyhhqRslb/4yHZlfKk8Nl8Vq5bFqtRhc9HJR9SHH5f1Pfzs+x0tn+8sOfy4d o9LsmCgovmm+pGL0gbW0LmlKvLoni8Z2+kWLVypHlwhG5mDxih ElOIigsdQLIpiURTEMFzA0KgUFRBUkOIJjEhhiCBBRak0JsHiU lS8K2lMgoqINCbFEkAqolIBkQpSNI4CEQFRKS4SkhgmSSJIXKI QNKUj8xeLq544/WJ9/8sNwtbq5HxFUCYPK0EIw0WCGJY///am3n+6wp771P/WR+7fnTCnbEQQxwQCFUjstNR83tL06426kUpwRqEPzqP2rKKMg 0sfTWs0HyKqtySGqxLdJXnZ5U0v/ofqxb+QqK9gJe+ixe9gRTcx9RVCexXXXMY1b6KKm5jhPazs54j +JtC+DRQ3MO27qOF9RPMhqv5QqvhIUnpd3tRXMbRKGTXIEipdb 8kaupHv9zFe2O1yfvzRx/l8fnr6q8npqRkX+Ifzvd8RcDwP+XttBH4fw3PQxxfaCCAHO88c XHimngjjRILAooBMyamYSndqqebAXuJJHn8Gqg62GQQbfk4hG5 eXJWrn9r+kevSkRHdO/lRIz2zXiAvJRJU6UjRrxGpwbEHW0MhT/doXDxafXKyMUeWxJSaXX2YMzF10XdZwqt512DbcWh14cv/n/c9e3CkL1Cmjj8hPPFMM92laPYrFR9Q1Eap0+GXPf6pZdhktOYu V/Bw3/AIzvIuVfIhVfISUvgNKf4mi7z268M+rW3+9cL+b+eehV3790or RZ1/8gj1w9axpVWDtofGt49yBLw6uObu261Om9w/n6nccXtny5yWPf44vcc4OtFOCjhiXkgmUSpBESqcQy0ti84uG6 7WnFq78aMuezw/U0NvkawckxlOz1r5d/Ph1ST0s9eysjC3f/Wd6UXRj2ZFHiqINVLyCGC0CiSJqzECOasi4Tp4qIhJa+Zgej6v JpJZMauRjBmrMgCW15LgBJLXEmB4ktcSonhjV43G1bFRHJDXy8 WI8qSPH9ERSSybV8qReLhqoVBE6psLOqcBZtVworRt95rGjL5U tP6BYZK/zOJecf14bUcoEEo9L8ZScjCmKhivmu9fsj7y1emC4uu9p7ZkSW RRQozgeJbTDymffefbR60+QwzokpFCH56icP5Mv36+vG1A0nJA tHyafiCoe/rlE9u6TT//n5Stz2Jyk4hFRtjykWBEkHz1FPjGCLR+mnoqQy4NgRYx4UiAfD aoei5LLRmRPiGC5gD8exZ+MSp48ibW5dIEmRaoUSUiUCWXF4cp GbxPf3wsZ3uXxFFoK7+T/60y9wI/Bd1ygMMoIAzmG4yCEHAtZDjLf1A4yLO84NHJgcWghGJEiUYk0r JBE1agApDGSiOl1oUrtmVlkqEQalUnPYPVX6l/6y+ttb/nqXz5Vs06oenn/C785tP6DJl1/6ebPO1b8fDU4WUZGbLKgRRacRUQ1qICohNoFZ1jNwydklWeqW/yPnt2nDVfpj5Xv/ecDS648jJzEkZhCHjRVH9tJbjxUvCxSbUuoamHX8F8smwXJgoD 0YRFZlAQNCXyRgCwJo0vCSH0cqQnOWTa0sJ1Z4tm/7x376786+Ejk+VWX97ZGTs1fOfDwzpNbhK6On7euGX3e/Wvn/ve8C14+uKwlMm+tV7tnZdHJhXhYBkSCDM1SDDwu79qsf+0V7Y4 D2DMt6NObmk7GXh27WvLMkKRmDDUPz2lLKpeFJItdKvfm+eJjB 391yrbvZWz587INmzQvv6jq2kcdeoHseYHs3iHv3Kmw75R3dcj t2xX27fKu7crODl3Pbq1zt9y+XWbfTnW1y7s7qM5tss52eWe7v HO7smu7vHO7omuHrLNDYd8hs7fL7FuVXR2qQzvknR0q+0515x5 5125114sLmCM1a4/rqmLl9ecVKw8sjK3WRpVAlKIJqTQqkwga2fDc4gNtpo0js17o1 Qz8jIhocAGXChgaJvUjRc98tKZmtE4X0j90w2QZrasVni/3tOj27qkdeqX02MPFxx4q5w8Sjw5XWT5+6qXPS17dXTT0lPLEQ 5qTD6lPLqVOLZGPLKWGF1PDdcrQo5rQMu2JOu2pxeRIAwiaZWf q9Wes6tM26nSdfKRGHtEgMUQqoERYUeorX+tphAO9POt3dPd8/OGtfD7/Vf6/Tv10ExI8iC7wdUshz/OQ5yF/t3YQ8pwXsqyPZ1gWQpr2Ow8GX1pwZhE2IsdECghykFRjAiWLyf TxCm14vj5WS0X0clFBHMPXfNjs/ne9ay+8/vRA6CnPBbN738B/PNn9L68tji7p/y+D7L+nKyIlQCBRUS6LlZAjGkWEUJ8uXnrcbtv0xryV8ZUn/ItTT2qC5dqT+h1ftC+7shQckxvOLFO+vA59cp/y6WPEYyfkq1z17CuH/ni8LtakGlqmPvmY4dSK4mOPG44+oh9+RHt8aenJZwz+dcRLz1A 9S/XHam3RhZ4JbtfP92260LFzdGS19+KzDmHP2NBL776676Odnuwr 9YK12L+I2v+E8uBjRccayKgBFRXa6EJdz4vkIyO44Sau/xAxXDI9dqXCdvq5Tb/d/tJfJcSIpDxYvIWd5+kDPxuULO4pcrVbTq8/eO6NygX91iVXyk0XpPoLSOX7SMVVtOoGWvEeVvwOKH0PK30bVL yDlb4Fyt7BSt4hyt4jy97Bim6Asrexkrew0ptY6dug5CYofgsr ugZKb2LFb4GSt7Hit/DSt0HpTbTkOih7Eys5Byqu4sUfkIZbeOkNUH6jzPqHqnmflc1+ q2xJuGL33oWjT6uiajKhxERApXA8aig6+YSiaVfD81eNLaEiZr U6XIbHSDQhxyKqCqFi7a/WVo3MX3Fj5aZPWtfcXNX6WdtjV1c/cmFT4xf71DGtIkqVjDyp3ubSLDy9+fhb5pE18kgxSKmwhBLENX hSj4lKRVxDxigyIZeNkUQcgIRCkpKR4zqdML8oaFWLNVhcQyRV eIQi4iQmoEpBXuEva6bX+QK9kOFcLtcvP/o4n89/Nf3fpn6i14H8g+wCd0ci5woDDXIcCyHP0TzH8jwDWY7laJ57Lf hq3amFYERNJGRARPFRCkQUhpEGvaNDstKObXpdzT6nilahI8B2 o3bZW0u13NLaV7lVzg+W9fa1/OLVdR9tXHR50VPvPdJ863HbpWoiDDARI8cwEJcog9SCWOOC14f ldYL6Kb+Fb7HFl2gjxbJTWNOtn63/fJ0qWFU0sIp6eqvlGV/RM3tn2/eUck2Lz7a0/ukFTUQHkiR6FgXjACRxNI6iYwiaQsmzCkzQKqNzZYkKSRiUCZW tv9zW+l7r3nfcr53/xd6hf30t9Af6gyvb3j6w8ZPG5z5ZZgjrQUgHxEp5vJwQKCyFK4 XZZfQufMlxRH9NVv0L0noFmxepe/zNmobR57f/0w73F0jtQXXLoTkDW8sP7yKe5hATV/Xy60uOdxx880LFEwPmFVcqFl9BasaIuou4LQHqU5htHFjP4XXn Uds4WHBeah3F6s9idWcx2zmy4TxiSeELziN142jDWdQ2htWN4/XnEEsKNJxDrGP4gvOodQzUncXrz2K2UbIhjtYHscVjUts5WcM5 okGU1If0z10oWylgyw7K1220HVlrPb9AEVWQgoJIKMgULguXlA 48TjyxaVXbJ/VbBMXrTxaHK2UhhBojJFFZTXz2ug+enzMyp/E3bdbRR+cPz2t6/4kVFx+2Rk3P/+ZJlYiBiEQXXSx/4SXNCl/zmXBtZAkZQ7GEhEhgWBSAhBwRgCwuI2MEmSBkowAXMZBQEEKJ4 fjTsva9yLOHVIc6FMF6kFChcRxP4iBGqCL6Kr56g6fJN+DjWN7 tdn9y65N8Pn8n/9X0T/chwYPoAl+PMsKyLAs5BkKWZXnIMRDSHKQ5lmYZyEAvpF8LvbQo VIedIdAoikWl0jAui9RovG3IMoir4rh+mGrcoz6xHBGKQEhBnV aWHFuma+rCy4d1Kwcq/S3aEZMsqlfHFMo4RSZkRNwgT5ZjCTUQtdbRVS2RxGM7P52/+p21R8Z/Ft/Z8vku2416/Lh0Xqhq35/3zw7blM4nqWdftqwd0W7aXty7rPLUnB2/a338xmP4EQIXCGkClcQwJEIgUUIiYlIBQ2MEiBFyUQ7ilESUka c0pUPldceXWzt36xY7dbPhQ82uJ7kttYPW4pOViuMGxWkdKhDI eRmRUmBhmTxSVdq3XvZoQKIaI5aOGOy0tn+PtqtNtnkNsWnlqs jxo3/+o/P9q12/iR78I/P6ZwP7T13b5/rjvuAnrt9dYdLnTK6d5PomzQu7S537i5lNRWyTwdek5dZpmFYt t1Xra1PBzVpfqwq2qOAWnW9r0eF2Nb9FCTcr+RaVv1XFtaj5Fj XXovG1qflWFbdF69uq5ttUsEUDWzTcZh23ScVulfv2Knq3ano3 qPlNmr5Ns0+31RzdWDu0+aHkuorTc+eemy8LyrERHBUJiSDBo3 L9sUWKlm3A4kKf2qv0PURF5FgUoAKOBvHScNWqW6srR0ofur54/e82Pv7+40vfXVJ3afFcof7hjxrJaKU0TCiCJsXeXdQj7sZQvCr 4KHIGoAJCRBA8jCIxVJqUIKJUGkHwJCEflYMoCiKEarhe8cI+a dUwUInoIoeebSRDVdKYEhFIEAOyCFXOFa93reYOszzkHU7nxx/dyufzX03fmXGBH4Pv1AvcfSPgIOcrVBJyHM97OZbxsQykORZCj ns5vL8+aCKDJC5SREyiEAl5uJZ6fZeklm167jerV78jWdqmGlh DJeaQcTkZI/QhU1X3y1JTWDL7ArV6sLi7W+7YTXRtV3bvo9xtcqaV6mlXeTrw Qx1PnrqxdMcHZPWxht1nOt4aXCQ8vvbWusXXl8lPqipDszt+t6 P9k47HzuzWNTolhk7s6e0VgytX/Wpr2xdris6Q1BmMEmWISOBJChcJTABYgpSKiCKu15yyaIZWKAe fUpyor4rVvvh7p/0Xb27xf7Cp69bOgbdfvXlmz69eav1o4+sZ55bf7i8eMVPHahWB xzSDT+hPP1w91EE9H5BUvoEuPFnCvKaIPwLGDYqkSpGQy+Oq2n FT28837bi5tfWd5i03N3W8tXvPOb75tUTzzlvrPFcaz/XaEk9UhGdVJKzq2HzNaIUqVaROVagTVapElWp0ljxRqR2rkcUq tKk5ini1anSOZnSOTKxQj82RJaqUo7MVyWpVapYqOUser1SP1c jj1eqxOZRQrkpWq1PViniFOjVHIdZqUjZSrJSNVisS83XC3Pnj 1jpxaeO1rXt/e9AmLLWMLi8KWdTRWbJIqTJZQ8Sqi6LLyvp2aF950eDdUhpcpo xXEYli+WixLFg6K7Z4/cdbGhK2yjNzLRdX1IyvKDvzM0PXSrDp4RL4vDpkloyQRcHFyq0 vlT57tEkYKw0+jMZkaIrARUDEMJAASEqKpyg0RuKiXCaW4FEZm VKpjq9EVzuKTSPrm3+rNPapX9xiiNdI4wg5BnARkSVUZYcr1nt XcwEvzUCnx/txoddQfjI//dX0T1Q18AC5wNcU5ia6Vy/AQR/HQeiDPAc5hoOMj/VCL8uyDMe+En2tPthAnCGBQFECqhAJZbRG5domXWC3LBw1LYqi T+w1DKyUJ4pxEUGSEmQc10UWGF61I5aYRH6T0n6BFX8uqfg5Vv oxaniLKLoBVG/L9L+UKj+qtv1T8+4/NXoST53ueuZq6zMfPL/tX7dXR+cp+3Wbb7X4J9jBvxw+8f+O7x+9vHz76AYm8epnwxt+v 08bKqGCOB7CyDiJiTgeJ3ABECIgEjgmUPqRxaoDWyXLXpE/zla3dz3MvuZ+99aC9kvWlbd+dlBccfLA0qtr556zLb+ytOnS09 1/cC4701K6a79sEQuWdFXuhqWNKUnRVcQUKurcq4lY0bgcEQlKUJ GCnEzKybBUPizBTknAaUJ2SguOaTSnFhhefF1SdVqijlKrT5ba HTrHZq13k9zVonBvVTh3KR37lI6dKuc2uXMr5diqdG1XOrapXd vljm1y13a1t4NytCrc2yhHm8K9TebcKndtVbi2UY6tCvd2uatd 5e5QOLYVJO/ZqnJtUzjaVI52haNN6WpXOXfq7DvnuF966mjfa29c6rl2bd3p4/WMu7jzRW1Ph8q1Te7aRbrbFJ4Wbc+eYntPUc9BpaNdTW+XOVvV 3ja1fZv+1fY1Anzq9MHSgy3a/S+VHmLV7X1y6+nqhWHiqd3VgbV1NxbOii4lW9rM7cPPDh8zHDW RAoHEUTKB4zECxGVInAKiHI8BPK7ARQMaw/Ek0JxZQmw9IDcN1S+7TNY7DF3r1UKlJIFgSYIUZPKopsJXtcGz 1h9gOOhzud0FF5jKT+en78y4wI9HYW6iwqwkkOcZDrIs6yuMSQ 5ZL8+4WQ+EDM27X4l0LQgtJUYoLI7jMZSKATyiU514SP5Ch6T+ Rcmy7drOjZqQDcRINCbFYjiWkOGCRnfycfnOl7FFJ6ja86RtjF gaJR+KEaYgVRunjOO4KUlZRbSut7LDuyT0QvGIRR2rKL9Ubbpp 0osl4Ijy4esr7NnOJacXLI8/9+K14CvDn+w5eW7NG9u1Ybk0LAFJgAgAjSGYgCCCVCJKEVGCiR JZRFPS9zS2fJttebhp0636x2Iv+/+0B/5x3vJEs+OTLWPHm29ubXm3ZeUbjfv+cOAx8VH7pw74eXzJHt/qLdcfevy8pHhEUvKOtDpStP21klMrQFiJxzA8jJFREhcoJKrAQ kpqRLbs/SU1iar6N2oXXXvooSvPO/8QO3j6lqrynET5Dlr2Jlp5XlJ+Ea28hlRcxyreRiuvYZVXsPLr aOUNtPIGUnEdK7uBlV1HSq9jVW8Tc95DK64j5dex8hto+Q204g ZSfgOtuIFVXEfLrmLlb2IV17DyN9GKa2j5NaT8TVBxFS87D0rG 8fLLaMUladUoVj2qt157uPHzxo5frd5x/dkdb9Y+eR6rHEMrroGq69KKS1jFTbT8Kqi8gFVcAhXnQeU4Wn6 BqLpMzLoIqq5JikaNT1xfv/9PyjlJVH8RK35bon1bUfH+8jW38EU7l/kP+v7j6aXCSu32dY85BJPrdcNgLSWSElEKRAzECFSgkCiOhUks ioKEjIyrsAiGC5g8XK2FzchzL0jq96m2tZUOLSIiFBInpFEdHt HIo1Q5X9rsauT6GchyPY6eW7c+yBe+KJ6acYF/PH87QxnP84WmQZ7nfYUpCXiO9UMvz/j8kPO5Xg6+Xnf6ISpEkaM4iGPyFIEKFB4vVw8/YvA/ox98gjjdgCfL0DgqS5GyOImLOEgCIOhUoaWawbUlfa0lfFsx31 7U11rKry/ra9Ud3qYf3Krj15f2N6uGHqFOVVFRAxqRyQSMGJGo4zgVIZVBZ VHMgI/oNCP1mle3SG1d5Iquyr61inAJHpWDcZU0TlFJBRmXgSQlTZHSF IGlCJWgm3P8Ker5zQtWhZp33nqoMbr/yAe7+q5bmr3dl8+9esv7aHTR+stN2292HPhs76qzz7z+aY/rl8ceeu3Ayn1jjz1zg5oVJB8+pmzbP/dYoyJUSiRxmYDK4yQ5SqJxjEgpkahcGVW2/6l14fllK95cue2fd886Vd327jb42Tl9ixNZOgQWnEHrYuSCN1B LlFwkYnUJvH6UqBfxuii+UEDrovgCEbNGiDoBrxPAAhE0RDFbi Fog4HURoj6K10WIhhioj2LWKFkfB1aBakhg1hheFyfqk6A+jjc kUWuIbIhgxri8fpywBYH5VMmyxCOt11858RfP2O0W7tb8xrOkT SBso8AsKBaME9aUbOEoZo0SdaNkXRy3hsi6lNSSJBedJerGiIU iumig0fP7hs0fSapHqPoEZhsmlh5GFu9Utq6xDq97/uNNs44++kzg2GrnNXXbtsrTD1NxFZIksQQJEgSZorAYIk/IgUihIpAlZIqIXCmq0ZBKE7boAk9r+VVFJxargxUyUY2KOIjLs CimSCjL/LPWe5r5QY5moMvr/uSTwhtBfnpqcqbX0I/H/d8RsBDSkGEghJBnWQ5yPMtDmqN5HkLe80r4gO1MHTECQEIKBAQ XcGkMSEUKTSiIURVIyFFRhokyJIphAoZFMDxM4DGAiSiWwECSp EaVeFxJxXWqhJ4U5XiSQMdw7CwBUoCKUzJRDuIUEsexqFQWQ2Q xFERRLIZhAooIEklSClLV2t5W6UJaMmu4aJe/6sxaebAMi+FARAkBwQUpISJoTIoIEiyBogmEipQp+SfQ9tX6Pe 013e3L+rczn0YPXhvquuXv/uzVPe+1vPzhK/vef835h+5Dv9nn+ktP/cjyMu5J/IVGsn1LiaNd639cM2ymwqVYlMDjCIhJ8RiGR3EQxokwhYUoRVD R8S8bFyYaHr+4YttvWgx9yg2frXroymL5wBz1wJMK/1q1f6PGv0XNb1ZzG1TsRh3fpmE3a9gNGn6jituo821WM806uEE N1+v7WvSHW1XcRjW/ScVvVPs2KfmN6t4WtX+zgr8rVe8WObdR1dui8G2W8RuVIooBMQ AAHBBJREFUfZsVvU1K/1ol16zm27R8axG/0Xb0hfn81keCr22+cXwOs6v+yKEqtqOI3lTMbzD4m9X+jUrfZi W/Ue3frOQ2KrlNar5VybVp+DYdu1ELN6i9q+uP7uj67OyKEx5953 oNu0YJ11De5ZqhBtVpA+lXrTh5aN/IF/rHfPKdrbrTC/GYQiqQqCDDowgRk6AxKRYn0CiBxUliVIbHKCoiw0MULsqwlBxP KoFIgTiFCgATUFwAeARQUVmxv6zZ08QFOBr6nU7HR7c+yOfzk/n8VH6mB/GPwt+MRA5ZCCFfaCaAkOMhW/jWmOEgy0DPK5FX6oMN+AjARCkuIiCGSWMYFseBiGMijoskiOF4 jMDCKB4FRBTgURJEAB5FSRElBISIoSCMykRSPoojgkQqSKUJBI ziaBxFY1I8JsXiAE0QQECJKAoiGBGXYQKBChgex1BRSogK7Ynl qm0eSaWIGhNlBxn9yBNUrJIUS6hYMRHRywQDGdMTMR0hFuFiuT wxRxmr0cTm6SLzNCfnzjvz6Au3PK7fnfb+/mTfn4ePpU8H/uX44L+MnPzrmOufBnZ+8HJJuFYWqtGEF+oiy3ThxZrwfFWkVBX TygUtFS8hYsVkrISMllKxcoVQRUUr1CNz9n7RtfrS5tb3W3f98 oUFp3+250/OOQmr4rRWJZYoxXK1OFsZnaURatSxanWsWivUaCJzNaG5mlitO jpfE5uvCdfoovNVkRpt3KRPWRWxWpVoVETnq0SjUjTKY/PVcbMyNk8p1MhjNUpxnjxWoxDmKmJz5LHZ8ngNKVYrElUKYbYy ZlJGTPqo2Xr+aYuwxnp8w5Lg7vnH1i4Yf6okOFsfrtVE6pSCiR JqZOJ8WXyeIj5fJsyTCfOUcZMiZpYJNbJEmVqsMgQrK46VPX9p lfv2wIYPXqoYbtCM1GoiRsWZ8srT8zre9DlSE1VPxrCnDxYfbs aDJaiIShOIVABYDMVjKBIDWExGhHBCwMkxCk0SiIhLIwiWwMAo ApIEliClIiqNo4iIAhHHowQZlZX4SzZ4GvkBjmH9Lofzk48/yOfzP12PoXz+QXOBAvf3GuJ4nvf38oWOQzwPIctxkIUsz/Gcj301crAhuJAMkngSIxKYLEkhIgZSJEhSqEjgSbk0hhMpOZ4g QYIASRJJkliCwOOELCkjBUKeoPAYTiYoMikHopwU1YSgkiW0eF Qhi6uouBwTcCJJghimSMmxGEGlNECUkyKhSKnImFyVwKmgsnK4 Wb6ekVSFwKKI4cXeYnq/zrOjyLtb79plcO/Su3Ya3DsNnl367t2lzv1qx3Yd3K6CrSq2Te/tKO7ZWdm9r6b71QaaXeB2L2V7lrKu2i7H7Ndfq7DvLGf2aFxtB naLjm1Vu9v1zF61a2cRvV3rbtV723WebXrvdr13u87dXuTdofe 0F/W0rzjS3/nux4fe/nAZwz/Ecs3noqX0dqVzo5Zp07Fb1d5tWrpD5WnTw20aerOWadV62rXuH Tp6l9q7Q0vvVLu2Gzw7Nd5dGnqXjt6h9XbovDvU7nYdvUNP79B 5Ogz0Dq2nQ0/v0HradXSH2r1NR3fo2R1ab7uGaVfSrXrYrnG3670v6D0dOsdWY 2+PzTtEPcZI6p3zXzqxdJAv827Q01tU7g4Ns13laTGwrWr3BgO 7Rc+06JnNRcwWjWtTEd2md2/Ve3ZpXB0G7/biro56pmf/5cvdb13cd2mg/dLAritR19XPXmIylQ0XJUud1b3bVJFZWJLEUhiWkuBJAESSSFK ISBIJjSyqksVkspQcS5DYmAJJyPAERYq4LCEjEiQSB1iKRJMEn qSAQMgS8rL+so10oz8AWbaXdns//fijfL7wJDA1/RN9VvggukBhfAGWZQsPACzLQ8hzPAdZhmW8DONlGIZjOY7nXg0 frB9ZSI6QeAIFghTEMETE0DiOxoA0it4bXgogMQwTARJHJXEpK iCEAIgIwEMoGQNoVIInAJlQYBGciAAijJJRDI+gaBQgAoUJOIh J8YgERDE0ikvDBC5QRBSTRXF5GKciCBEh5COziv0t+PN+SeVZt OQqMvucZPaopHpcUnUWmXUBqb4orb4onXVRWnEOq7yIVFxFK98 EVefx6gRaLUqqUpKqc5Ly85LSC5KyS0j1JUnVBUnpOUnFuLRqD Jl9UVp9Aal6A626iFVfkVZellRfQuZclM66jFRfl1Zfk1ZdlVZ dkVZdRqovS6ovolWXQPHVstovSmq/wHRvEWU3ieqrSNU5pPpNMOsqVn0Jq3oTVF9Dqy6hVeeQyjFs1l m06ixaeQ6d9QYy+yI26xJa+QZWcQGtugDmXAFzrkgr3kAqLxSE VlzAKi+AqotY1UW0+qK06g1k1kWk+oK06ry06jxSfR6ZdQGddR mrvIqV30TLb6BV55HKWMWCn1eaPy0ruTav5n1t5dW5j34Casal s8eR6oug+hpa8SZSeQWpvIRWXcKqL2FVl0D1ZbTiElZ1AZ31hr T6TcmsKxLjBcT4hqQohRnO1S/5/Llnvnz4Z39cvuq2bUFaCt6VzB/W2/fqzswDIiKJS1EBA6IEiIg0SkhEVCJIpAIhjZGkSCgTOIghmIAj URxEABUG8jAgwigoDLsax5E4gQoEEaeK+oqa3Cu5AZZh/c4e58cff5DP5/PTd9sIZlzgH8j9hfv1GwHP8wwLIe+DHAdZxsezkGW4wlsC66d5/kD41YWhejKIowkMixOYQCAChsZREAdYHOCJwqC6BBoDeJzCRAA SOC7iIAJkIklGACmQIIaTcYqMU4SAkyKGx6RUHAUxKS4CXCRwk cTjOBCkeBxBYwgQcTSKESIgBRzEEGJUgogYGlOoo3NK4DbiycP YXJGyjgKTQJiTuDEFasdw4zhRO0bWjhHGOGlO4rUpwnSWMI4St QmyNk7WJinTKFGbwE1JzJwirGcp2zhpSpCWOG6OE5ZxMD+JmxK 4KU6YEqQlBYwibhYIU5I0nSOM44RxjDCN4rUJwpTATXHSlMDnx 8HcOG5M4cYkXpvEauOkOQWMSbx2DDeexY3juHEM1I6RpvOg9ix uHsdNo5gxCSxjwDwKzKNYbRIYU1htkrSOU9azuDFFmMdwY4owj RKmUdx4T6YxrDZFmMeAaRQzjgLTODCNg9pxvPYsYT6L1SZxcxy YgmTdSNUTF8qWjcnnntKaBLV5dN7T71JWATOKoHYUN44CYwI3x YFJwM0CbhZxk0haU8CUAOZR1DiGmUYJcwo3iaQtBUyjmPm8ZE4 KmSUgs05JZp2QzD2NPNyre21vyenFioiOjFF4jMQFEhMwLI4hc QxL4lIRReMAjWN4AshSOC4ghIDhUVQm4kQEIUWMFAEeI3BBhgg EliAwEciSZHFfSaO3kQ1wXtrncnsKLjCZn5rOTxbaCn58I3hQX KBAoXzv70EMIcf7/BzPcRD6OA4yLISQ530c5Gm/55XYS4uCNioIQBwlRCATASlIQAIFSRxP4kQKRwWESOKYiII4hi dxalRGJElMwKgEQYiAjONAxIkEQSRwPA6IBAAigscxTEDIBE4k AEhQaEKGxgFIAqmIYHECFXE0jhEJnEhgslGACSpEVKFxRJWYpT m+QsU/q+lrUvCNav8GFb9JzW1U8xvV3AYt16zjmwy9zWpurdq3Tu1vVv ubtf51Wl+Tztek4teqetcp/Ot0fRsNvRu1cJ3Bv0Hta9b6Nqu4Zo2vSe1rVHHrNL6NKm69xlf QBjW/Xtu7UeNfr+KbNf4NKr5Z7WvWcE363g36w5vUvmaNf72Sa9L41y thk5pr0vqbNL61Gn6tGq7T+Vs0/CaNb6PGt17NrdP61mu4dRp+nRqu03LNGrhO79tQ1LtBA5t0/DoNbNLxzTp+nY5fp4GNar5R09uk4teq/Y0af6PK36j0r1P2Nqv59Rpuk47frGHXFfk3GuD6Em6z6djuRae 6SvZ2KVtfa+jrX3zaUeJr1vublfwmhW+z2r9e19us5tdq/Y1af5OaX6v1r1NzTVpfs4Zv1PFNerjOwK4v8bVo4UYtv1nFb9b 0btbwqw2+NTpfk6J/hS5mJOMkMU6AOEGKBJkgMBEDSRxNFFwAw5MkLgI8TpBJEhNQIg FAHCOSOIhjyCguTeFoikRThDSB4CmAx4BCUFQcnt3IbKCP8B7e Z3c779UOTk9NT/5EnxQ+YC5Q4Fe/+lV3dzdzD5qhaZpmGch4WYZmWZZjWdZLe9z+7leiBxacWCQ7ri PCGjCiwEMKEJHjERIP4SAE8AiOR3AQwQrzaoAIABEKRCgQJkEY BxECD+PYCCoXZYqECgvheITEIxQWIkGYxCMkFsZBmABhHAujRA TgYQBCOBEhiDCCR1BCIEAQJUZkZEgBIgQpKBViCRXRU2GdIqKX hQyKUIkyVKIIFilG9KqQVhHWyCIaKqIjwlo8pKWiejKilYU1io hWHtLKI3oypNGKpXqhTHVGrw4WKYIGdahYHdYrgyp1WKsK6pUj RepgiTpYrAjqlGGdMqJThHSKoF4VKVKGDIqgXhEyKEJ6TaxEJ5 YrQnpFUK8I6RUhvTJkUIUNypBGEVarIzplSK8IFitDpYpQkSKk V4X0ijNaVVCvDhlUQZ0qpFcGddposV4sUYW0yoKCWsWIRhXSqk JadUinDuo0QZ0mqNcG9ZqQXh3Sq4J6ZcggjxjkYb0yXKQKFqlO lxiC1ZXRWtvZRxamVi5IrasbW1UtNihPFyuDJfKRElnIoAjrVW GDIqhTBPWqsKEQlo/olBG9IqJRhfTKYIk2XFUUq1GMlMmDJfJIGRGskIVLFCGtLKQhI zo0JpfECIkgR8IUESLxIImNEEREBsIUFqHQMImFKRAiqIhMHpN jQQAiBIjgIIJjEVwaJZEIiUUJPApAGKHCmGyY0pzUVrvnruvZ7 BmATp593dV166NCf4Hp6ek7M20EPx6fffYZx3H9/f2BQGDgLoGhwNHBgaOB/qHA4NDhgYH+/v7BQB894n2OX21yWs1eU53HZGPMJtZkYa0Wus7stZlpm4mxGRm rkbXWMpZaxmSkjSbWVMuYjKzJxFlMrKnWa2zwNdT3LpzvNRlpq 4mpMzI2I2MzstZa2mxkLEbGamTMZtZmoutN3gVmZqGFqa+lzfO huZattbDzTd75Rtpq8y1q8C8wuueZGYuFqTO6LRavzeKtM3usZ rfR6p1v9RotHpOVtpi9ZpPHbKEtZq/J6jHbvBaz22ymLUbG2NBb3+Cvs9ImM2My0mYzbbUyZpN3rpmeZ 6FrTR6T2WuxMGYLbbR4aq1eo9lTa/EYrbTJ6jVbvWYrbTZ7TRbaWMdaLB6j1Wuy0WYrbbLR5jqPrc5l qfMYG2iLzWOxemw2j83qMVo9RpvXYnEbbV6LjbaY3UYrbTF7TF babIUWM2M00UYTbTTTRqNnfiFg8pqMHqOZsZhos9FrNjM2M2M1 ei0mxmJizbW0ycyaTR6jxWNuoOsb3A11PXULeurr7YsaHEvqvD aLd66ZNpo9FjNtNHtqrR6z1W22eax1tM3msdo8Zqun1kqbTLTZ 4rVYvWYbY61n600es9FrNtJWk7fO7DHb6HkWpsbM1s71GE1svY k2mbxGE2sxMRaT12KmrSbabGLNtazRyBpNjMnK2+r9DUbGZGTM RsZsYs1m1mJiTBbaYqOtFtpsoo0W2mTz2Ba4Fi59ZdmL9L4jJw Z7B/vYXvrzX/4yn89P5acn8/9tOj/Ta+gfT8FrP//8c7/fPzQ0NDQ0NDg4ODg4NDg4NBg4Mjh49MjQsSNHjgwODQ4NDQ0NH D0+fII7yjr7D7kOv0b3dzIDXc6+g67DdveAwz3Q7Q7YXQNdjv4 uZ8DuHLA7DttdgW5noNvR3+Uc6HYOdLsDDtdADz3kpo86HYc7H f1djv4u54DdOWB3BbqdA3bHQKcz0OkY6HQO2J0D3Y7+Hkd/t3PA7gx0OgZedwW63IPdzgGHo9/tDLg9Qw5Hf6c94OgadHUOOO0BT8+gt3vQbQ847QPd3YMOe8DRP ei0Dzq6Bp32obvqHnTZA67OgKNr0NFz1O045u4M9HQOOg4NOuw Bd3fAbQ847QFn14DTHnB3DTh7Bt09g277gLM74OoOuHoG3d0BV 0/A1RNwdQ+6ugZd9oDrbqL3IvQMuu0Dru4BZ/eAs2fQ1dnf0z3o6h502gM99oCjK9DTFejpGXLZB51dAUf3kMs+ 6LAPOrsHXfYBR3fA2TXgsA847AOO7kGnPeC0DxR2pJCK2x5w2w fc9oCnK+DpDLi7Bt2HBh1dRxxdg87Ovh7XIOPs87p6ne7DLme/wx441H30UOeRzkNHug8d6T4U6LYPuu0DLnvA3T3otgdc9oDLPu i0Dzo7Az3dQ077YHfPoN15tMc+1GU/2tU51NU1aLcH7N2B7p4Bh6Pf7TjscfY5Pf097v4eT7+bHvC4+5 yuw07XYae73+Hs73b1dzsHujxDPfRRp6O/8+7BHbC7Buzu/kPew12ewz2uw86ewz2OgMMesHcFOl39PQOD/LHB/iNDAb+f//UvC7OSTE9OfzUzysiPxyeffNLV1eXxeNxuN03TXq/X6/XSNOv1MjTN0LTH63V5vbTLxff1Dh7u7YMsw7Isw0AIfQzNsgzL Qw4yDAdpyHo41gtZL2RolqUhy0CWgQzDsQzHMHzhF7I+jmMZBt 6vQgtFIT7LQIZlaZZjIGQZyNCQ9ULWzUEvx9KQYSHD+jifD/KQZgsvMAzDsizHMBzDQIZhaZpmaIZjOEhDjoGQgZCGkOHYQpiB kIYcw/Es74M+SHN3Y7I8V5ijneEgy0OWZ2hYCEDGx7F+yPgg42NpnmV4 luEZmvcyEHI+n6+XZXmG4QrxWYZj6MLbFcuykPbS9162WJaBjL cweIsfMjxkfCzDQ8bHQT/P+VgGQpa7V2YQQh6yHENzhbQg2wvZPpbpZZnDkD3M0r0szTEs9 LKMF3q9rJeDnJ/zQzfLeSHPMCzjZlkPC70MSzMsy7A842UhzbD3xHhplmZYmoYsR 3shQ3MMDXnI+X0+hqEZjqYhTbNumvXSDMt4eUj7ecYPacbHMj6 W4WmWoxnooTkvw9H3xNAsQ/s4jucgZBiOZTmW4ViGZWjI0ixDszTLsT7I+hiG9bAeJ9vDsC7e 44UeL+Oh7Z3dH37wUT6fn85Pz4wv8GPwdWPsp59+6vF4mEKPQQ g5joOwMGuhnyvUE0IGcqwX8r0D/b5+nxt6aD90Q9bL816e80KO5vxeyHuhz8PyDO9jOJ7mOJrjad7 P8r0M52c4P83yLOdnWJ5heYbjPCzrhdALIfT5aY5jeJ7mOBpCG vI056M5Pw39LN/nZXma8zE8pHkPwzNeyNAcpDme4XnWx3tZxs9zPMv4WMgxLPQyk GY4muYYL+9l/IyP80A/w/cyPj/N97G+XsbnZ3ie4XmG97G+gr4O+/lejuU4luehj2N5yHCQ4Xjo4xiOh5yP432cz8f5OAZyLORYyDGQ Y1gechwLfZDzc7yPgb2Q97OQY1iOhTwLechB5u5HGZBmIcNCFv IQcizr43jubhjykCukWHCiQgZ46OOhj2ehj7vXfstyHMPxrM/H+XnWz7Gcj+dZli589sVBhvF6OYblWY5jIM9zkIWQ5XxcL8/4/fCwj/H5WcgzrJ/leIblaaYXcjzN+lieY/0c4+doH8/4fWwvx/o41g8hz3IMAxmaZVnog6yfg34IOZ7nIAcZCGmWYSDDcgzL0ZBn aUhDHnogpDmOhpwXQob3eSFkON4Locfv8/h8bo6jOZ7lfCzHMZBhfQzHQZ7leNYHWZ/LyXzw4Sf5fH4qn//J6gYfHBeYvo9/+7d/S6fT6XQ6l8tls9nbt2/ncrls9q+3b/8/2Wwum81msxPZbDqTzeRup7O3v0zn/pK+PTGRTadz6YnslxOZdCabS2dz6exfJ9K5TO6vmWw2m8tMZDP pXC6bu50u/JvJZjK5dDqbzmTS2XQ6O5HOpdPZdPZ2ZiL7ZSaXzuTS6exEOju RzqbT2Wwml83kshOZdDo7kbmdTme/zOTS6Wwmk8ums7mJTCaTy05kJrK5TCaTyWSzmcztTDqXyWSz2W w2m0lnMpls7st0JpPN5QrrZG7nChvN5bLZbDZ3O5vLZbKFVXKZ TDab++tEOpvJ5jLZXDpzV5ns7XQ2m8lmsrlsNpfL5rLpTCaTza QzmXQmM5HNTmSyE5lsOpPNZm+n07ls9nY2e7sQJ5PNZrLZu1nI ZjPZbCabyWTT6Wx6IjORyWXS2XThdyKTTmcy6czd1DPZu/GzuVw6O5HJTaSz/5rJTRTWzeSy2VyucDAyt29/mcmkc9l0LjuRnfgy8+VEdiKTzUxk0pnbuYls9stsLpP7azqTy2 ZuZ7PZbC6XyWSyua8zls1ks5lMNp3NZrK5TDqXSWcz6duZ7F8z 2b9OZG+nc4WDlkkXToJsbiKbTeeyX2Yz/5rNfJlJZ7LZ9N1cpdOZL7O5TDqbTWey6UKxZHMT6Uzh9JjIZSd ymYlsurBH945mLp3NTWRz6dztdCb35UTuP/3n/zI1NTU1PT05NVM7+A/mawuY+gkngpphhu9jcnJyenpq5muiH4OCBUx/H19H+HpBwTEKfbmm7mN6ampqanJqaurev9/SVCH+9NTX+noj9/H96/4PdHc7+el8fjo/NZ0vLC5MbTd1b8l31pqa/EaTk9OTk1OTk1OT34TvZvBu5G/Hn5q8bw++s9n7Fk59R3+z4t2Fd6am7kxPT+anJ6en7kxP31vy3 Zjf6F453yvze/Y9NT15r0Amp+7P1eQ3+qZ87pbc5NQ93Ze9yampO1OTXxUy9i3d TXPymx2c/jpX3znu0/n89LefMr97nKem85P3aerueTU9lZ8uZGUyPzWZ/yZbMy7wD+c71/z9jpD/voN592jnp6emp+9dTHfuTN/5nlPnnqby3698/m6ErwP/U/3Apu5M5ae/0f0X6A8kfW+t71n+dVp3q6i/0Z379MM5/Fa0O1N3r/bvaDKfn/pOieXzU/n81N/E/Frf79RT01M/vIPT36uCWX57vwqBqa+9/ds3g+mp/OTU9J3Je5qavnNfWf1AaeS/+n4VHLewnfzkZMEKCqfS1Nc7Vdivuxn+qS6NB8gF/m7utdtM5/OFU+FO/s5X+a++viN9j/I/oL///v+925nKT03lp6fv6dsuMPVD+qFNfbPq/14O/1f1nSeg/+kz0Q/fW3+oeO8rk++o4Dj3fOdbSdw9yN9ygfx95Tz1rfD/aAd/yMenJqcn7+Qn7+Sn7t0Mpu/2D/rJrvfv58Fygb+v+AtPfHeD04VzYnL6ztTf37Xjh07S/1Pu29b0vfz+rX5w1R9e5TtX0v9StB+8EH8gbz984f5NzG89xP0 dxfP36/8i0/n85PT0nempyfz03bED/iaZuzv1j0j+7+HBcoH/H/Cde9cMM/yfM+MCM8zwoDPjAjPM8KAz4wL/H2PmjWCG/+vMuMAMMzzozLjADDM86My4wAwzPOjMuMAMMzzozLjADDM86My 4wAwzPOjMuMAMMzzozLjADDM86My4wAwzPOjMuMAMMzzozLjAD DM86My4wAwzPOjMuMAMMzzozLjADDM86My4wAwzPOj8d19+g3l BrWQwAAAAAElFTkSuQmCC
http://www.longrangelocators.com/forums/ a+0awAAAgAElEQVR4nOy9d5Rc1ZXvz++tt2atN+/NmnljpK5cdXPOt3KOXZ2TOkitHJFEkEDCYHLOwYBtjMgGAwZjG 2MMmGybYJywAWMwJgoMiCR1V9UN55zfH1cSAiMPY4s3aw39XXf Vun27Vbqn6u7P2WefffY5CM1pTnP6Yuug/+obmNOc5vRfrDkKfFZBCP+rb+H/qSCEn9rkT73uXTkgH9G+b/JF+8z/qzRHgTl9uvZngftSYO853KP/N/cwpwOrOQp8VsF9hNB+LWTfP9z34t7r3vl/dHzG2/i8BCEEAOxr5Pu05VNu4wDezyfe6hN3MqfPQ3MU+Fv6677ub1jg/v4GQgihu/dACOxzuAh94gpACEAIPou1H1gi7Ptuew1v78knWvRXlvk32v5J gnz229h7D3Mg+Fw1R4H/UBAhAKELIfQexY9+AT86vB8/cdF7biFECH1k/97JvlDYlxH7XPH+r092xX9tq97rP9DAfemzW47juK77n/uY9n8L8COH4lMCChBCAFwIAdpPS8E+QgfU75iTpzkK/G3tRgAALgDAcf5zhvH5CULouq5nqP+wSexFwG5TdF0AAJidbb3 55luvv759+/Y3Xn/9jddff+Ott97esePdt9/e8c47777//oe7ds3OzrZnZ9vttmVZruuCz880bdv22vsJX2NOB0RzFPgbgns 7cNd1AQCWZT/y8M+vv+6Ga6657uqrr73mmuuuv/6GW2659Tvfue2WW269/fbv33nnXffe+5P77nvg/vsffPjhnz722BO/+tVvfvOb3z711O+feeYPzz33/PPP/+mFF1586aVXXnnltddefX379jffeOMvf/nL22+/vePtt3fs2PHejh3v7djx/rvvvv/++x9+8MHO99//8MMPd+3aNTsz05qZac3Otmdm2u12x3FcCBEAwMPTAfEFIHS9jt Z1AQDw1ltvX7x42dTUoonxqYmJhVNT04sXL12yZOnixUtWrFi1 Zu26Qw7ZsGHDoUccsfnII7ds2XLMsceccNxxJ51wwsmnnHLa6a efedZZ55577vkXXHDRxRdfevHFl1x22de//vXLv/nNbVdeefU111znfXQ33PDtG2+8+aabbrnlllu/853v3n779++4484777zrzjvvuvuee++559577733gQceeOGFF7 zPf874PyfNUWC/gtAFwPFA4PW6z//xT8uWrsrnyoV8OZPOe0c6lYubqVQym8kUctliOp3PZUvVanet2 l0p16uV7lq1u1rpbtR7uxv9Pc2BnubA0ODYQP/IQP/oyPD48NCCsdHJiQWLJsYXTU0uXjy9fOmSlUuXrFi2bMWKFatWr 167YcPGQw89fOPGQw8/fNNRR23dvGnrli3HHPPlrzzyyM8QQgdiwPwxX8CztXff+WDjhi PyuVI2U0yn8rqW0LWEoScZRuB5WRQUWdZ5TmJoQVWMuJlSZF3g FYFXBV4ReFkQJO+QJEWSFJ4XvR9FUZZlVZZVSVJUVdd1U9dNw4 jrumkYZiqVzmRy6VQukykUC+VSqVKt1svlypo1a1566aW9jT0g X+6c9tUcBfYrCAB0XQQAQtB1AULojjvvLhTq2Ww5mchpakLgVV HQWEbEYhRJsCTOUgSHxSgsRtGUwFACjtNYjCQImsBpkqAJnCZw isBpgqBJksFxCscoHCMpkqEoFseoaIQkcIaheZYRSILBcZokGJ YRWFZgGUEUFF1PJBLpbLaYzRYOPfTw9977AB0A29g7hfERUJ7/08sDAwviZs40M4Kg0DRH4DSO0ZEwHgnjoWAsHMLDIczvC/t94YA/0jU/OH9eIOCPBPyRgD8cDIQCgVAwGA4EQuFwNBKJhcPRYDAcCkVCoU gwGPb5An5/MBgMh8PRUDDq94UC/kg4hEUjeDRKEjgrCmoqmcvnysVipVyu3H777V5L50DweWiOAvs XgN6xt6u99ls3m4lCPJ7T1ATLyATOYTEax+hohIhFyXAIi4RxL Eb5feH584Lz5wXnHezv6vL5fAGfz+fz+f1+fyAQDAQCPp8vFAq HQmGfL+AdXV3+rq7A/HmB+fMCB3/J5+sKeRbl94WDgWgoGItFKYoUJFHPZgrFQiWXK/T29j/77B/QPhH7f7C5+w65f/27P9Qag4aR1/W0ICoYhmMYSRIsgTMEzpAEi2M0x0qxKDnvYL/fF/Z1hfbgIOT3hzxrD4UiPl/AA8Fey+/q8vv9Qb8/6PMF5s3r8vkCFMkSOIPFKCxGx6IUTQmSZPCcEjczxUKtWKik05 lt27btvcl/sJlz+mvNUWD/gh4IPsLAN755tSjH4/Gcoacokg+HcAJnWUaiSI6hBYYWOFYSeCXgj8yfF/R1hX1dIb8/GAiE/H6/3+8PBoPBYDAQ8Hd1dQUCgVAo6PcHfL6gZxV+X9DXFfJ1hQ7+kg +LUQKvUCRHUwJF8gwtampSU9Mcq6aShVKxns+Vm82+fSlwAJq7 DwV+8avf5QoNXc8lEnmWFYPBcDRKiIImChrP7fb8JVELhzCPAl 3zg76uUNf8oN8X9vmCnsH7fIH58317jd878a77fIGuruC8eV1d XX6eE2iKZWiBoUWWkQVe17U0RYqamsznKvlcJZPO3XzzzejADH/m9Cmao8D+BRF0AXQBBNCLf3/10stFJZFI5lUljsVoX1eYocVEPBs303tHzopsBAPRrnkhz1ueN 8/X1eXv6vLNn9/l8/nnz++aN29+V5fP7w/4fH7PHjzb6OoKeOb0pX/v8vvCPCdzrCQKGs+pomDIUoJjdDwmJOPlXLaaSRfGxiZef/119DHb+IfMY19/+2ePPZnN1+NmQVWTBMn4/UGSYErFeqlYL+Sr2UypkK8U8hVVMbu6/KFQJBLGAv6o57n4/XvZF/zESSAQCoUigUAoEAgH/dF5B/vmzetiGCaRSMbjGUNPJeL5uFFMmmWKkEXezGWr2UyxUKjce+9P 0BwFPjfNUWD/ggi6LnC9aUKIEDrn/K/KWtowM7Jk4BgT8EfjZqbZPVCr9pZL3aVivVZt1ms9sqT7fKFIB ItG8UgkFonEQqFoKBQJh73zSDgcDYUioVB0z4l3JRoOYQF/xNcVCgaicTNVLtVLxUax0F2r9FeK/bXyIMfEdS2XzVQy6cKSJct37NiBEDpQs+i7J+QhRAg98PCj6Wz V0HOKkmBYIRSKcqzU7B4sFZqVck8hX6uUu6uV7lKpGgpFQuFIJ IzFomQsSkYjRDgUi0RiGEZEo1g0inlBgVgMj0axcDjqXYmEY+E wFvCHfV0BhmEKhVKlXK+Uu7vrA/XqYH/vZCHXI4updKqSy5arlcajjz6G5ijwuWmOAvsXRBC4EDgQOJ5tn H7m+YKSUtSkKpsUyXfNDyXi2Uq5mcvW8rl6IV8vFWu1ajNupnx dQc+8YzE8FsMjkVg0imEYQRCUd8UzDAwjvF9FIrFIGIuEcQ8E8 +cHWFbIpAvlcncx3ygVeov5nr6eiWy6rqnpbKaYTOTWH7Jxdra FDtxQ2Xsfjyn3PfTzRLIkSUlFSXC8FPCHKJKvVnqzmd0tLZcal XKjkC9FIlF/IBgKRaMRAotRkTAeiWAYhhMEhePkXhbgOOk13Ps0wuGoFyyYP9 8XCkUURctmCqlkPhHPm3o+l6k3akOqnE4lS5l0uadn4Omnn0UH jndz+oTmKLB/7aEAgq732J16+rmcGJfVhKbEGVr0KFAuNXLZajZTzeeq+Vy5Xu sxjZSvKxQJY5EIFosS3nPv2fxe2wiHoxhGeLbhmYpHgWAg6veF 58/z4zila8lUMh83crqaNbRcqdBTyDVkMZ7NlOJm+thjj9+bk3cAr cKztHvue9iI52U5pSgJTY8HAmGa4quV3nSylEwUk4l83MxkM8V MuuDF+aNRwvMFYlEyFiO8pnmHZ/leGz2PwPOPwuFoIBDy+QKhUERVdUNPGHoqbmZNPZdNV+vVAVlK pFPFRDw7tmDyjTf+gg7oysU57as5CuxfECK42xfwnrzjTzydFe OykogbaUU2u+aHEvFMIV8zjayqJCXRkEQ9Ec/wnOzrCkXCuOchx6JELIbFYlg0huE46YHA44JnFZ5hhELRcBALB mIBf2T+vACOk6piKLJp6BlDy8aNQjHfLGS7ZSmez1UMPXn22ef uuc0DuYzHe7cf/OheVc+oakaW47l8KRyOMrRQKTcNPSOJphewkCVdFJRAIBIMRr3 5kT1NxiPRmNf/EwQVi2Ke/XvG742JvPnCQCDkhQ8lSRF4RZFNRU6oSjKZLNSqfbIUz6TLcTM 9MbFox4530ZwX8LlpjgL71z4UQAhBhLZ++XhBTshKPJXMZ9JFz xfI56qKHGdomWUUTY0LvEKRfMAf8SbVI2E8GiEiESwcjoZDUSy Gez3kRwOBPR1jMBgJBqIBf9jXFTz44K5IJCrLiiAokmRIgqEp6 XSqks/WZTFeyFcNPXXeuRegA5pIs9vGIEQI3fb9OxUtralZRU3W6z3RK M6xUrnU0NQEx8oMLcbNjChooqCGQ1goGAsFYx4FohEiGtnt++x taSgU8WDnHd5YIBgM+/3B+fN9fn9QECSBlyVR5zlNkRNxM18uNTU1lc2U4mZq4dT0e++9 h/b4KWjOHTjQmqPAfgXh7nU+LgQIIQDRpqOO4UVDls1splTIV+fP Cybi2Vy2LAoaSbCamtC1hCioimyGglg4hEfChJdKsMcpIAmc9k ID4XDEs/+9o+U9eTWebXRFIhFJknleFHlFFDTTSKdTpXyuZmi5Qr6mqfFL L70MIeSl/aIDYRgeBDxDu+W2H0hyQlWyiprq6xuOhHGGFkrFuiTqFMnLkqF rSYYWk4kcgbOhIOZ5AViM8l5xjKZIliDpaAyLRjHP/YnGsL2DoL1xAW+KhOMEgVd4TuE5VZGTqWSpkK+ZRqpYqJhmfM2 aNbOzswekjXP6VM1RYL/yEACACyCACNkOOmzT0QyvS5JZLNTqtd55BwdMI51OFRhapEheU +McK0mipirxUBCLhIlohPRSCWNREsdoAmcokiNwOhYjaIrlOIE gKCxGxGI4hpHRKBYOx8LhWDAQ7uryh8MRSVRZRuBYiecUTU1mM 5Vcpmoa+WqlJ26mb/3ObQghbxkyOjAUQHspcNOt3xOkuCynFDU1MTEdi5I0xRfyVZaR SILjOUUUNJoSZMnAYnQ4hHuhQRyjvVcCZ0iCI3AmFiMYmpNljW WFWIzAYgSOUxhGRCJYNIp5s4Y+X4DjBI6VaUpgGUUSjFSyWCw0 dC1VLjVMM3XCCSfO2f/nqjkK7Fd7x8keBhwHbTjsKIbTeUGvVZtDgwu65odMI20aaZLga EpgGYmmeJYRGVqMRkgvEw7HaByjcYzxsu4okiMJFotRLCMKvEy RHB6jPbPxXIZImAgGon5fKBSMCrxCEhxJcBwrq0oyl62Wit26m q2Um+lU/oEHHkS7UfX3+gIfr2nipUq6LkQI3Xjzd3nBEIWEpmWWLl1FEix N8elU0UthoinBAx/Hyl4zsRiDYwyBs15moXdQJOddoSmeJDgsRnm/xTAai+32CAKBkM/nZxiOpngcY1hGlgUjYWSrlV5dy2SzlXg8e8bpZyGEEJxLH/68NEeB/WofCiAAkWXBdes3M5zBskqj3rtgbKGvK6xrSV1LerZBkRxFsiw jcqwci1Ke5VMkR5EcSXAUyXuvFMntzcPdp+dkPV54mci+rlA4i PGcTOAsSbAsI0miaeiZUrFbFpPFQj2XKz/++BMIIQCcv39E8HEKQIhcgACECKFrrr+J5Q1JTCpqaunS1Z7Np 1NFhhYZWvQawjKSJOo4xmAxmsBZkuBoiqdIfk9LOZriaYoncQ8 KDIHRHh0IjCFwBsepaBQLBEJ+f4BleZYRKJJnaZlnFUUw0smyb uTjiWI6U7riiisRQgjOJQt8XpqjwP61dxEBhBChdsddu/YwltV5Xq2Wu8cXLAr4o5qaMPSUZxsEztIULwqqwKseBUiC87pE kuQoWvAOhhYZmvfo4LkG+x4EzkQjRMAXCYcwUVBJgvPe3AubFf J1SUjkspXBgdGXXnoZ7YkL/J228akUAAghdPV1N7GCJkiGrMSXL1/LsgqBc+lUwQsNUiRPU4IoaLJkEDjrIcBDg+cmeAfHyhwjMaTAU iJLCx4U9m04FqOCwZDfH+A4nmV5LxGbY0VZMjOpSipZ0fV0rdb 48Y/vQgh5A585fR6ao8D+BfZUF4IQQDTbslevOZRldY5VatWepUtW+ X0RUdA0NeE98d46AlFQOVaJRSnPJHavBaAFmhEZRmQZSeBVjpE YWmAZkWVEhhYYmqcp3jshCTYWJb0FdqKgkgTr9boCr2pqKp+rq XI6nSquXnXInskz11sL+Pc08OM5xx4FXIAQQtuuuYHhFU5QFTW +fv3hqhKPRSlDT3GszLEyy0jeXfGcgsVoD1UsI+0dLLCMxLGyK OoCr/KMzDGSwCo8p3CsxDIix0oeDkiCjYSxYCDCMDzD8CTB0BTPc7Is GaaeS8ZLupoa6B969NGfo7nQ4OepOQrsX2B3SMBzBnbNtFesXM 8wGsso3Y3+VSsPCYdwnlM8X4BlJALnGFriWIVlJCxGe6bLcyrH KjQtsYzCsYrAq7Jo8LzKcTLPKzyv8JzCMhLLSJ6FUCRPEmwkgo dCEZrmvbE0x8qSqCuyaRpZXcskE/kjNx89M+OFzd2/f/nAX608AHt8ga998yqGlQVRU9T4xvVH6FoSjzEJMyvwKsfKHuAU 2VSVuOcC8JwX4d/bFlngVVkyREHjeIXjFI5TPIJwrCzwCsdK3vorHKPDQWxvWJGhB VFQZcnQlHQqUVblxOTEwueeew7tM004pwOuOQrsX7spsLvc3c6 dM9PTqyhKYRi5Xutdu2ZjLEp5c3iewdOUKApG3MyqioljDE0JA q9yrMpzGsfuPhEFQ5ZNXlQ5XuEFda9tCLzqGRhDiwwtETgTCoV xnIyEcQJnvCwdSdQT8ZyhZxXJPOvM8+DuesdembADUn30oxqKX 73kGxQt8IKqqvFDN25OJrJEjDa0pHcboqAJvBo3M3EzQ5E8gbO eg8Cxsrfu0GuOIhuyZHK8zgsaL6gcJ3vrEb134FiJZSSaEiJhA ovRWIzGYhTLCAKviIKmyqlUoszS8qqVa9566y00V2Lk89QcBfa vjwoOAoTQBx/smppaStMyx8q1anP1qvUUyXOspMgmy4iSqImCqiqJuJlRlTiBs zQleH0jz6myYIq8LvC6KBiyHJcVU5R0UfIMRhEFXRINUTAEXvO WElIUGw5HaJolCIokGK+HFAVV1xKmnlZEfdsV27wKSHuiFuDvG jbv919ddPElNCMIgqoq8XVrDk0n8jTJyqJKUwLLiJJo6Foqmcg beoahJW+ygGUkgVcEXhMFw2upJCRUJSVJCUmKy4ohSrogarJoK KIhC7rAKzwne2MKiuREQSNwhmNFUVAlURc4I2EUJE49dP3GmV0 fIOjsnQ2Z0wHXHAX2K7hPDWyE0DvvfrBgYpqkJYaRq5Xm6lXrv UGswKsUybOMLEtGOlUwjbQ3l+71e96ryBsCp4miIYmmIidULaU oSVmNy7IpCpooeIDQRcEQBdUDQTRKyJLGcZL3v6iKKfCKJOqGl lZE/fprr0W785q84gIQQvCftxGwv5jCeedfRNE8y0qKbB66cXM2VWA oXuBkbzzPc54jkOM5jWVknpO9wY7AqwKviYIp8LokxhUppakZV U3JckJRkqJk8rwmcKrAKgKreFwTBY2mRIoUVCVOkRzHyopiSJL OsaoiJmRBX7tm7cyuDxECELhzq4k+J81RYL/aO1MIEEQIvfHWjsGRCZwUCIKrVZuHbtzMMRLHKhwr05RMUzLPq V4ZMi9Y6PnGnvcrS3FVSYq8rohxQ89oWlrR0rKWlpWkJJpe5+n VLxMFTeA1STRIguMYmaVFjpUFTpFFnaFEhhJVOaEr8SsuvxwhB PdMoUP4yS0M9qePNxHsW2UM7lOh4NTTziZIlmVFWdKP2nx0qVC lSY5nZZ6TvRCgRzeaEnhOk0TTa6ksGbIUj5s5TU0pctJQc7qeV fWUoqQ1NavKaUVKKnJSkeKyoEuiLkumJBqSGGdohWUVjlV4VuY EhWQEkuAFTtMUc+nixe+9+w5CaK9T9hkRMEeKz645CuxXe0uMe M/T9u1v9fQOkZSI43R3o3nk5q2ypImCuidmLlCkwLEyz6mSqCtyX JFNWTIU2VTkuK5n0qmSqWUMNW1qOUPLKVpGNnKantPktKqkVCW hKnFZMhQ5ripJVU4oYpxnFJ5RRE4TWJWjJYYUGFIwtYyhJc45+ 2wIgeM4+6PAxxryGSgAd5ct2z1AOO6EU2IxiqZ5QZC2bvlyqVD lGEkRDZ5TaEqkSM4bBMmSocgJRU6oSlxV4pqaUJVEKlmKx3O6l tGVrKZlZC0lq1lVzetKXpdzuprVtbSuJXUtpWtpTUmrckYWkyy jeQEURpBpXmZYRVOTumr09fa8+KcXEELAhfAzhD/mjP/v0BwFPtIn+00AgOtA10UAIoTe2P5Wo95HUiwWI+uVxqbDj2JoU ZFNSdJZVmQYnqF5hha9YL63psDLKdK1pKGnE2Y+qedMNaOrad3 IylpK1TKamtW8K2rS1FOGljLUlK6mVTmpqxlVzvC0SRMKS8sCK 3sjgoSe0ST9iMMOa7V2eeVPvI58j0l/ZMn7dvKfahsQeXEP5CK0u/wwgAggBNFXjj81itMExbGssHnTllQyRxGcJOgcqzK0yDIiz3sF hXUvY8I7TCMdNzOGkVWUpKKlZTWlGVlZS0lKSpbThpY3tIKh5k wjaxpZTcl41FCkuKokJSHO0ApFCjQjcIIiiIampQw9kc1mH3v0 ZwghCD62UdJff2t7f/ycH5P/hpqjwG7t6Qw/wQEHQtubPdv++luN7n6coMKhWKlQO/KIo1laEnlNkQ1RVDlOkGVN1xKqYupawqtBZujJuJmOxzOmmTG1 lKEkdTWp62nVyIhKQlVSqpwxtIKuZjU1rWsp00hrWkLXUqqaUG RTFpOKkBZYkyEFnpVEUVOkuKEk4mp84eTEW2+9gXbP7Xme/N7djT5Ggf14AQghZCNoIWjDvWVWXYCgt2XaMcedHMaoCEaSFH/01q8M9I8aajJp5pKJvKYldC2RiGfi8VQykY2badNIJuLZZCKXT OR0LWmamUQyF4/ndDOrGGlZS0pqUtUzupkzjKyuZzQ16YFA15KmkTKNlKGnVCWtq SmBV3lBkRVTU9OamorHU5lM+s4ffg8hBIDruuCv94Py9oD6VED M6TNqjgIfE9xnPywIIYQuhDZELkLolVffqDb6ogQTCGHlcvfxx 53SrPeX87VaubuYr+haQlPjppEy9GQinvFAkEkX0qm8ridlxTD NlFfbX9WTspaQlLiupxPxYipRSZglSUpoakrXU5qR1I1UIpFOp 7LJRNY0cpqSViRDkQ3TSGdSpXyqWMmVJ8cXvPTibj8ZAOhtebh nd7OPQmh7zeNTGws8L9tFyILIcpDrQOACiFyEjjjqy1GMIkhOF PWjtx63aHJpvdJTr/bUa01FNmjKSxmSFdngWIljpUQ864VFvQiiqsXT6YIsGwwnC4oh awktnklnS5lsSZR0hhYFXhN4XVUSppky9GQykU/E85qaEAVVEJR4PFMt9zVrA81aT2+jftMN16LdBdE+2gfNW/i05/U/4N2c/rbmKLD3GfpoX2Hk9TAAQehAZLnAQgg9/8JL+VIDI4UowTf7RrduPb5WbXZXe6r5WtrMUTgXCeGxKOllEHq LAhTZ4DmZIJgoQUWihKqYhp7ESJZgBEVPqmrC1JPpZDZhpgmMw 2MMQXAkxWt6QhQVkZc02VSVJMPIJMmxDJ9O5XoaA72Ngb5G3+j I8NNPP4UQAg4AACK4e1Zzz7hg7/5/n74CZ08zXehC4CDXho7rOMCynTYC0HHg+o1H4DhNUbyupY7eel xPY6BUqCXNdCqVoSgmHMJCQSwaIb3VE6FgDIuRoqASOBOLkeEQ RpGsLOuxGBHDSFVLqHpc1QyWE2VJIwkmFiHwKIVjrCTqPCfiGI 3FaJZRGEokcBrDcJFXitlqvdDsqfRUC8Vrr9qGEAJg96ZJ3rHn C0IAfALccxT4T+uLTgG426sE+wbYXOi60HaA67ougJYLZhCCz/7++VSygnFiiGD6h8Y3btxczFayiWwpV6qV6yTGRkKEtx9B3Exl 0vl8rqIqJsdKOM5EMDwSxRVF53nJFwiRDGfEU4pqciwnMLQmK1 gUxzDS285EFFSa5nCcJAjGy9IjMAqLxjRJSSdShXSxVqyODA48/8c/IIQcGzgAAui6wALABtDZvWfZR0FDzzsAH2s0gBBA5ELoAAfAD6 DzAeoA5LrQcSCwbLByzYYQxZGcnE0Wjz7i6EatmcvkFgyNbj3q y7oWx6K7V0znsuWFU0vPOfvC4487OW6mGVogcSYWwQ3drNca0U g0EAypmmnoCZ4TFFFcMDykShJDsgTG0CQv8mq10hgbnervH0un SxyvspyIxXBVUnrrzUahWi9Wyrn89269DSHkOMB2XACBC7yasA 7wvjIE5ijwD2qOAt6KIXfPNsHIhbADrI7bcuwOBAgi14Y7EUK//f0LRrxMcjzNcosWLlu35tBCujgxPHbhOWcf9+WtFE6SOOP1/4MDo2eecd5jj/7q0ksuV5U4TfEUSeEYPjUxuXR6CUNSBIYbuqGpmiJyq5ZOb1i7 SmAYlmYInBJ4pd7o/drXt1155fVHHnlMtdwjsgpH8kwMXzDQf/zRR65cOF0v5BeODb+5/VWEkOtCF0CAXBd2ALRcYAFoQy/HBrgQAAQgBC76RJgQQOgiAJAFkOXCXcBtI/fDV7fveuNtgOBsx1m8er2fFWKc1Kg0v3zE1kq5MjoyfOqJJ558 4sn1ap3ASJpiaYrLZcvLl635xtev+s4t3xsdmZePL6QAACAASU RBVCBwhqV5LIqXCqXTTjnlsI0bcDwmSpKqqHFNP+yQtScdu7WS z3IkzbMiQwulYu2mm777y1/97pJLL1+0aLmqxiVBZUi8mE1cffml12/7+roVi4vZxE/u+RFCyAWut1MUAMAFruNaDrQBcgH04gX7dXzm9B/qi04BtGc/QgBcxwG2g1yAbOC03RZCcNerLz/4revaf3kTIfTkr57VUkWK4lmaX7xo+dqVG4rp4qGr1y2bmti6+ fCeRiMWwWlKoCkhnSr0NAcXT69Yt/bQuJlhaVFkRRojJoZHrrti2zFHHkmEQnFNk3lhcmTwmM2HLp8a zxi6xHIsxVIUP7Vo+TXX3nz+eZesXrm+kK9yDM8zNIOHpxf0fv uay+667eal48NLp0Z2vPOGt4uas7v7t1zQdkEHQAtCG0DHBY7r 1VAHEH0EAW8ogKCDXNd2XbvjOggh+6nnvr1g5XO334EQ2jXTXr x0FYazDCXUio0jNx7ZXWwMNvq6y9XFi6bOO/dsAiMIjGJIXhJ0SdQ51suYyqWSWVlUSJyURWHtmlUXXnCuLAui IOqKXkjnVy5Z2lMrL56a0ERFYEWCZGXFGBqZqNX7arXedKpAkz wRo0SaziW09csXb/vqhWefdFy1kH705w8jhBzgOLbrensXO47j2i50XOi4wHbdvTOm c77A36M5CuwecDousDvQbkNgAWB3EJh1X/jDTxYuvypbs5/9E0Loicd+aZgJnpE4Wli0cMmqZWvL2XItX0wZxhmnnrp2zSEEz jK05M2fi4LurcMvFmq5bJlnJQpnEro5OjAw0N1gSSJhGKZmlPL ZbNIc6etdtnARi1MMwRIEy4saw6kcK6dTBUk2CJImCELgqEY5M 9QoHL/psLH+xmHrV+yc2eFAx3Jdy3JdB7iO7Tht2267wHGg4wDXAcABw PEmA/c4y7uH0y4CDgCu67oWmPngrXvuurfafWOE2v7t6xFCb83smly4 WMA4iRDLxcbmw7d0FxrlZCGbSE8tGD1842GqrGty3FTTqXje1F JJMysJZjKRLxXrCTMtCYqpG6osMxRBEYShmqaWymfKpp5IJdKL phaZekIWdZHXZMlUlKQkJTPpaiJe1NWUwKuqqOYT6Wa+0psvjt Rqoz3dzz/7NEKg41ht2+k4TtuxO8C1gOVA24WO7XQc1/JA4Lrwo9KE6KPpkjn9bX3RKQAgclwEbAht5Fho1nItx0aO9d6v fvnDkfFf6PlH6n3Wc89AhO597FHTNEVOJGlm8dIVq1euL2QqtU Ilm0wvXrSkp2fIMLK5bLVYaKSSxVSyGDczyUQumynlcpVUspDN lPK5IkPToWCApihNMwwzWSyUdc3MZ4r5VD5tZlOJfDpdyuYq1d pAvTFSqw+Xq0O5Qk8qXUkmcvVyvVGqlbLZYjp98knHurBtu47V AZbl2gh2ELQRsgFwgAtcABwvSIBcB7iO45UgcF3ouhC40AOB4y DbRa1XXv3hIRtfOnbrfUONP1+zDSH08vvvDU8u4gieIbhSd+/GzVsrhXq5UEtlCoN9I0sXrswmq5XiQKM2XMjVM6liMp5NxgupR Llc6i3m68V8tae7V9f0aCRK4KTAq5qazKQrqVTR0FOCoOZylUq lt1Lp6e8eHuwbGxldODg43tu/oHdwoqc5Uq00m83mYG9fOZevZPNLF47vePtVhDoWsNoOsPe4NQ hB13Vc13Vsx7Y7rusAAF0HzVHg79AXnQIQQNdxO45tO8C24KwN 266L2vYbjzz6x1u+8863r7tpcrj9wtMIoR/d/7ApGzzL4jS5YvW65csPyaVrhUylXulesnjF9PTaSmWw2Rgp5Ls b9cGFUysWTq3o7RnJpEuVck8uV61Ums2efk6QohiOkYwoGbKWT KZK8XhelhOiYPQ1h3u6h3t7RkaHpwaHJscnV/b0TjaaC5q9Ez19493NkbGx6f6+0VKhVkpVrvza1xCyHde1LYBA B3Xea730Qnv7a9CahbYFLKdj2Zbr2i7oOLbr7o4LAICAi6CLXA e4FgBt6FhodufO9958A73+yq2Lpv5w7S0IoVffeXdoeIrB2RhG lnv6tx5zYiXfLBYa1e6BiYkVa1YeuXBifX/PkmS8WsjXL7zg0ptvuu36625ZvGhNMl4pFXtyuUpv70AymSIJN halGEY29XwiUTbjBU1PcrxcKHf3Dk7U6kMD3UOjI+Nbjz3uK8c cv3zFIZlGX6E+3GxODAwumF66rFBqZLK1DRs3tlrvIWC5DnBdx 37pD09defGT55zxlwd/6ratTseesTsd2/a8APdjC47+0S3bvjj6olMAuS5wWrOwPYvsVsdxWwBYyHFcCwGE 0Ms/ue+qyYnWH59FCP3w7vtlQWVZmWLZww/fvOGQo0qFvr6esYVTS6cXrly9YvPo0PLu+mjcKC1bsuGhB578/VMvPv27F1cs22DouXKpr14f7O0bkSSDpPgYzvKikUhXkpm6ouU kKSnLiUa9v1HrbVR7m/X+Cy+49KGHHr/zhw+eeOK5hlEqlgYrtaHJhasmp1ZUCrVStvSd669DCM66wEaW+ 9bzjxy75cfjC28fHv/jN69GszNt6HyIQNtxbMd2XHvP0kPkutCjAHCAY7k2ADMunHUhQ gi98uaN08ufueF7CKGX33p7aHiBLCtGPD42sej0My7s7Rkf6J8 aHZ0eX7B8+dLDRgaX9zQme7oXjAwvPPWUs66+6oZ77374W9fe1 qiNdtdHBvoWjI5MpFI5iuJIkqcoOZGoFIt9up4VJJ0XlWSqWCr 3FgvNcrX7G9uuevmVN5755fM/u/vJBaPLlHiuXl843Ld0/bpNjcZQNls78qgtHXsGQggt2Hn+uTsmx59cPv30MZuvLxRfuv0 OZDmu1XIdx3Nz9hkRoDkKfHZ9oSkAIXQRtIEDbQsBxwKg7ULbQ bbjdiBACL12zz3XjI1Zzz2HELr1R/dk89V8uTtbKJx4/ElHH3XS0ODiRmOkp2d4dHTR8iUba+Xhgd6pxYvWLZpa09czPjK 0aNPhx37lmNMmFiwbG1k6NbFiZHhKEg0C5yhCkKREuTxQLPaLU orjNEU2ctlCuVjN50rr12184L6Hv3XdTVdtu+HM0y7ubYx3V0c He6eWTK9evWpDudhMFIvf+d7NCCHbBWjm3UeOO+J7kwt3PfnY6 zfd9I1M31uP/MIBELRdxwE7od0Clu3s3mENeDk2LkIAQQcC12nblgVtBAF8+aU bpiefvf5mhNCrr70yOTFdrTdy+fymjZvPPv2iBePLG7WRYqbW3 ejfuP7I0eHF3fXR8bEl69YenstUSVwkYvzkguWbDzth0dS66YV rFi1cns2VcIIhCI7ntGb36OjwdDKRZ1mB48RMutDbHOqu90xOT 1140XlLF6+o1Ma66wsXja5asXj16PCS8bFlGzZu7u4dM5OVE04 5pePOONBGtvvEuRfcPr0K7ZhFCP3ykgt/ec5XQce1Xcd2bK8+irs7h8rTgSm78EXQF5oCCCEXIuAiZAPXdV sQtBzXadtWq+XCDoKzr//glhtGBtpPPYUQ+vb37sonSs18vVmpnXPGOetWb2o2J7L5ZjpbH h2dOHrL8T3dIz3do2Oji5cvXV/MNxlKlaXEhkOOXLVi4+Kp1UumVi2eWqZIeixKYDEqky4tX7Juf GyxqiRoiuc5obfZM9DfPzAwuHLV2uXL1wi8SuB80igcvenEQ5Y fMTm0aNmiZRvWHFrNDRSrPXf/9G6AIIKg85tf3zrQ88GDDyKI0M6ZZx98+C/PvwhsF7astmW1XGDbruvsLkPgAui60LGB1bHttuO0nPauTrvdQ tABf37uxsmRZ665DiH00p/+3FvrN8xkuVDZumHLMUd8pVzsrRR6q9larVo7asvRixevKBWb/X2j4wumly1ZV6sM1atDa1cdsWz60MnxtRNjKxYvXl2pdmM4hWO UIupT40tWLF1XyJQ4mqUwrF6pLRgaH+wdGRkaXj61tNS7KDK4V jvs/NETvrn4iBOHRsdHBgc3H37ExOh0Klm58OJLIbIQ7KD3Prh7asm bX7tk108ff+n79+98+SVoQ7vjup0Zx+7spgBALvioqPIcBT6jv ugUAC6ANnA6Trtlt1pWq9WenZ2dac20rVnktt74/ndvGB7q/OZ3CKHrbvquyqk5PT3cHDj5+FMXji/PZZv5fDObrfb3Dx9z9HE93QPVSu/I8MKRoUWT48sH+yenJlZML1o92D+1YHjZYO/E2OhCw0xgBI4TZCFfmRifHh2e1OQ4Q3I8xw8ODvb09AwODg0MD C+cXDI+Ot2oDq5YtO6IdVumx5ZPDE9Ojk5+ecsxzVp/f63nid887iIAAHz3zp88WG++efk3frhu0/fXHf7uk48ihFwL2Far7bYdF0DLmycAEELHBbbt7to1O7Or1W51 2jOt1ozVmYWO48I/v/zd8WW/v/p6hNAfn36xpzogi3q10tyy+StHHnZsKddbKvTm8tV0OnPYoYev X394qVSfXrSy2RxuNocH+hcMD032NseajQV9PZOlYk+xUCsWyj TD4hhpaInuen9fcySTKlAEjRN4pVYrVqvF7npf/3BfcyI7fRz9tSf+1y3v/9/rXqfPvTu7/vR8c3rlsvXLJxZlkpkrrv02Qsh1AXr9nfsrg8/09z+2aOwn9cG7BhbsfPIX0LEsq2N3XGAj4HjZE3Om/5/WF5QCH6XZQ+BC2O5YO3fOzM62W63ObKvdallWx0aO+8pdd184N LLr93+EEG279gaRl9KJzMjg2FmnnzexYFk+11Mq9mYypUK+csa pZx22YfPi6ZWLFq6slHtrlYHe5lizMVop9TcbIz31UU1OZdJFw 0ziBEWQdCadz2XL9WqvLOo4TnGc0Nffn8lkc7lSrdqslpv9PaM jA5PjQ9O9teGB7rH+xlA+VVi5eNlws3usv8dLHEQIvXPXPT8OR Z4aH376G5c8eeSmWyvVzpO/coDVArMdx7Id5DjQdhxvotBxoe3CmZlWq9XpdOxWe3bWsna1Hc t20Bt/uW3zMU99/wcQoaefeq5aagqCWizXv3zMiUdu+ko2XSuWevKlumkklyxe8c3 Lrz71lLM2HXH0grHp8bHp0ZGFi6dXjC9YPLFg+cLJNWMjiwr5a iqZxTEKxyhJ1guFWiHfSCYLGE5GsFiuXB6dmCrky/lUoZYrGvm+6BGX/fPXn/qfV7920I07/vVbLwdPvyuz+bKRJZtyicIdt34XIQCADd969Ufl3GODfdaLv0P bX3to6ZpH1q6H771tQdB2oGUj10bIAsiBCCCAkIPgHBA+o77QF EDISz1DluXOtjqW7XTadmu202k5VsuBHfDeM8/9/MabZ998D0J09bU3JMyUpib7ekfOP/eSJdPrivneQr6ez5UNLb565brrr73plpu/d9aZF5x6ytnHfeWUE44/7cwzzj/h+DNOPOHMiy/4xmknnVXIVRlWjGEURtD5fKVe66mUu0VBxWIkhhGNRnPtmkNWL l87PDg+MjA+2r9gweDC0cFFQ30To4MLFy1YumHVxmsvv3Z8YHL B2MIXt2/3HvC37v3xbZLY/sHtCCH07ru3LVz2xGkXIxu0oO22HWChDgSu4+xOkHSh48JW2+q 0bdty3JlWe7Y9O2u5sxZ6b1f79TdnP/jAgug3v3l20YJlqUS+VmmefMIZZ5x03kB9rJRv5PPVZCIv8OrK lWvvuONHDz3403vveeDuH9//ozvvve++B358170/vOPeB+577BdP/HZsbJKmGByn8BiV0FOTo9P93SMpI0dESRwnaJodHh6/fNtVV1539Zknn3fuGZefcurFx3/91qGbngrc+sr/d8Mr/3TTW13feoM69yFu+tg7738EIYSAhT587/sjg69dcBGyXITQizfeenXPkP3nly2I2g60HeRaCHRcYAEEkAuA 7aVMzqUSfQZ94SlgQ9BBTgd2ZmyrZbVnWu2ZdmumY7ccZ5cNds 4gB1ht4Djoxutv6a33NxsjU5MrLr7o8sM2frlaGSzm64VcydAM AqP6egauveb6++978NGfP/Hoo088+vMnHnzgp/ff9/C99zz4xKO/vuyrlyuyQdMCSXEkxfU0BybHp5vdAwKvRqN4DMMxjBgeGv3Zw4 899tNf/vTBxx99+PFf/PxXD9736E8f/uXPH/nVrx7/3Z+e/fOpx52aS2UPWbLyvR0fdFzkIvT+k49+u6dqPf4YQgjNuD/YtPWHx5+B2sh24AxAto1Q2wGWDV0AHNexXMd2Oy2rM9NxZu3OT GvXbGvnTMf90IYf2HYLdFousNFvf/Hs2PDSZu9o38D4scecduJXzm5UhoqFZqnUTMQzLCOGQ5FGvbHl qCPPP//8r1781YsvuuTMM8846aSTTz35rNNOPXfD+k3JZEYUJYpkKYpPx DMjQ1P9vQviRiYaJSIYHo5isRi9acOWH93xw4ceuOcXP3v814///smHf/Pow89e//ALpet+/X+veuGfbv7wf9zW+ucr/9C45fHb/vT6h9BGzuwjhx/10NFHIbeDEPrNpVfdOLkcvPWmAzp227E70LF3rzVwAdp3WcEcB f5DfXEpgABCALk2dNsAdKAz41g7rfYH7c6ujjVrW7NOpwVnZzq zrdlW24IQff2y6zKpeq3SX6/1nXLK2QsWLMnnGsVCM5+vGmaSpplgKMSyfCqV7unpqderlUo5n U5nMtlstpBM5jQ9nognGIYlCZqm+Eqx0az3ddcGRF6PRLBoNBq NxmJRstk9sOnQo0494bRzTjv3vLMvuuDcSy86//JLLrri9FPPXbNyfa3UnS9UDt+8pb2rAy0HuhZ49fWbxpf87MzT 0ez79i9+d0tj7OXbboFwpu3abRtaANiObTm2CwBwAei4yEGg7d i7Ou2drQ9m2rtmrc6s67RAZ9bdNevMztoIoscefLyYbZjxAi/HNxy6Ze3aTdlMPV/oLhS7k2aWpQUiRkYiMb/fHw6FgsFgMBDw+7r8Pp/fF5p3sJ8kmHg8LokyjtMEySfixXJ5oNkYM81cNEaEI5EYhkWiU RzHaVLQlUwqUUjnC9lSoVqpD/RODQ2tSgxtJI+7/t+uef6fbpw96Ip3/unKZ4p3PX3ZL5/73a0//l6z9qfzT3t52zduq1ZeuvIKaLddqw12WW4bOA5ou04HOA6AECA AkAM/fVAwh4RP6AtKAQR3h5Bty23PWG4HOC239WF79v2Z9s52Z7bTal kzFpjpuJ2OY3dcBNGZZ1woqWlBTSSSueOPO7m3Z6iQr5eK3YV8 XVMT0QiOxQhvl26/p0DA7w/4fIH58/2hYExVdU1TWZalKZahpVKxXqv2NhtDAqdFI1gkEgmHIzhOR0J4 oCsUC0aiwSgWpUiMYxk1lSilk6VsstBbHyhnu08+8ZxOB7Y7dr szg6ydb9x9zx21sT+MrnqsOvjkkUei916x3Z1w1gG7YMcGHdex XQcAAFzQ2tmydnXclm3PdNofzu6abc92nFbLabfdlg1nLLftIo TQffc+mE3lzXhakI2Nhx21fNkhuUy9WOjJZRsJM0vE6GgYj0ax WAyLRCLRaCwSiYTDoVAoFArFQkGM5wTD0FmWY1mRooRsqtqojf T1jJtGNhLGwuFwKBQKR8JRIhqL4bEwHQngGEZSFM9QalpvNBLD 1WRPNtcdH1mvHPeD+ZdvP+gb7xx0xSsHffMZ6qaXNp37wA3LTv jp6iNevu5mtGtXx+l02h0w67ptaNmg7bo2AC4Aju0ACG0IdheK +ljNlTkKfFJfRApA6NXWQQggq2V/+P7s7EzHatntXZ32rnZ7tmO1bcuyLctyOo4z46JZiNrw7NPOUW TTjOfyhfpXjj2pt2ekUGgU8vV8riaJRjRC4RgdicSwGIFhJI7T WIwKhaLBYDgaxWJRXFEUWRZpmqZpXuD1armv2T3U2z3CMUowGA 6Hw+FwKBbDsSiJRTAiFotFoxwrCLyiyvF8plotNauFRr1YLyWz l551ng3hB8BuWx3b6riu0/7jy9tvu/P9Bx5EH7zTdjpO24a7XLcFXMuFlmPbjrcGf+eHM61dLaftgD2H 1eq0Wx3Hdl0b2G3HbrsIoXvvuS+VSprJhGYmNh2xddni1aVsvV buLxd6NDmJRxksSoXDGBYjcZwkCJog6FAwFAgEoxEi4A8zDKvr GsPQBEHRjJBOlrrrI/29E7qWCQWjoVAwHA6FIxGMIAL+YKgrEPEFSByTZJHjuLiRKBca jXJ/tdwdzycn1k0/tP319Q/94d+uevaga98+aNsr/+vqV4Sbto/c/uytf35rJ3IQQsixYNt1OsB2UMeBtgNdFzqOY7vO7tDAx60ezHH gr/SFpACCcA8FbAvMzFpW27Etx2rbVtvutG3LcizLcju7gGW5FnIs ZFvwhONO0pVkwig1G2NfOeb0nu7RcrFZKTXTqQKJs+EQHgrGwu EYHqMokotGyFAQ8/nCAX/E7w8GA0FJ5GVZIAgCxxiO1YqFnmZztF4d5Fk14A8Fg4Fg0B/D8Eg4Ov9LB/sO/lLX/IMpimZYgeeUZDxXLtQblZ5GsVFKFa674hqEkG27bsfpdOwZx7Y QQgBBF1kAWRZ02o5jOR3Ldi0IOtCxHK8T7HRs23btjuO2HdBxQ cex2u223em4NkJevSKEELrtO99LJhNmKpnJF47eesySqaWVbKV eaKTNPEPKIT8eCeJ+XyQSxr391L70712++b7587t8XaGurgBFk bzAYlg0GotRJJtKFBq14b6ecVk0QsFwV9e8YNAfCgX9Af+//O//9a///E9f+pf/HQ2HcYphBEVQtEQyWS5Ve4r9tXjtqMOPdizXBegPO2aveXZ75t uPHnTVcwdd+8ZBV7/2P694Onf37y949qVndrzvfa2uA20bOA50LGh3XMdxbeD+NQXQn hHB/uIFX8A4wheHAh/LIfEW3iMAHQdYHdvpWLZlgZbjzrot2207tjM7g5x258PZd7fvA C6cbe06dMMhpqmZcX10aOKEo0/v6x4tF5qFbDWTLNAEHwni0RAeixA4xqSS+Uy2FArjXV1Bvz/o9wcCfp8scSQRDvrnExjJMXKp1NvfP1ksNrAY5ff7QyF/MOTz+ef9+7//27/+y7/8n3/+50g4SJM0Q7EcJcickjGz5WylWW7Wc/Vbb7kdIWRbttu27bbTdt2dyJ4Ftg1Ay3E6jus6wLFsu2PZrmO5 ruO4AEDoQqttux0XWgBaAHZct2M5Hce2AHrvw1dv/9Hvz7/shRtudV5759rLtplaPJkqZgr1LVtPWDixuJKvNIr1dSvWl3NVI krROMNQHEHQo6MLLrzwki1bjmUoJugPhX3RaCBiKFIqoXZ1/Xs4EqVIrpCt9DVHm/Vhidf88/2RUCgajgb8gRgRrndXdVWXGDkupWXGFEhdoPVSstrId/cVm81s5bhjj5/ttBy7hYCNkPt2x7nx2e3Zb//ioG++cNBV7x607aX/8bXf4Vc9f9xjr9330mszzixCbYRcZANoW47bcdwOBA4E0Cuj5m 3b4BWSchF04ccWI8M9w0SAINhdx8h7Vv77BxK+sBSAyKsybkG4 C7izbttyHQvaLdBygO266P2ZF6+47pHR4d8M9z61ZsPOux/buGSjoKQkIzs4MHH81pN664PFXG392sPOP+fiQq7C0qLASSIvJ eLpr1502W9/+8xVV1/HC1IoHIlGotFwcKC3USmmw/75eDiqCEazPtxsjPT2DGmqEQj4KQqPRoM4Hj3mmKOvuGLbooWL KuViwowbihZXzIyZOmzdxuULl/ZWuivlyl333A0Ranc6ruW6bRe0XLvj2LZtWVbHtju2Y1uu23Jh C4C261quZTnAhdCFdscBFgAdF7Qd2Hbd2Y4z24Y7Zx49+ZxbS9 1Pb9l098DwL1Zv/vF5X8sky7KcM5L1rceeMTm1IpetTC9c9rVLt512ypmqrEuCrMq aoekrli2/5aabH7j/odWr1gV8ETLGYMFYPpnctHFd0lTnz5sncHJ3ra9e6Z+eWjkyOE YRJIFHCRwLB8Onn3rm079/7mtf/+bA0Egmk9fVRCFVyhq547eecMt1N69atDSfSF584bkAOm3bsi0 XdFzoQAeh19qd+1/ZccTDLxx81a8Puur1g65556Btf/4/257K/eCFTT974ccvbt/V3omQjZBjI2RB5ALo1S8Gu5caQAdCB0EvdviJnv9jFNh7eY4C/1308XzS3dt0I2hBMGM7HWvWblvtNpjpgJk2anVevuOeK9PFt7/+DfTg3U+uXvrI4hXfP++q/r5VxfLo9MKVp53w/7P3nuFVltn6+J4550xxZpyxAVJC+s5O723v9N5D79K7SJUOUgU UFKQXAQHpgiAiiGIBbPQSIHRCCglpe7/v08v6f9g4w5T/t7nO76izrnx48zHXWs+d9axn3fc9Pz+7OC0lq2+fgYsWLJ47e7 7NGhweGhkdERsXk1hS1HHE8JHTp89MiE9s397L38/q2bpdSV7u2JeH+3u392zXPjYqMSerKC+nZMSwUaUlpTZ/fz9vLz8vz9ioqM2bNq9bv3HQwGGZ6dlxMXFx0XGp9pSOhaWb12 3cv2NvaW5hfm7GufOnNQCiwmQMCcqEEExLpiQXlHPMOWGCE8Ww YFhxphkTf+0FOOUCu38Ew6CUar5wZnNBh+r9B4ARfebKR1kdrq 9898NdH7696J3X5y5ZtnRN7+59Ux2pBdkFpYUdlr69IjsrLzgo NCoiOioiOioiKjQ4JC46Njra7ucbHOBn823vGeLn36dr17iICM 82bUICg9PTcrIzCnp0e6lXj96pKUlt27Tw9WoXZLV2KuzSrVOv jMycpPS0lKyMqNi4xHh7dmrOmFfGLX5zyctDhiVFx+14bysACK YZVswUQgF/Ip3fP8TrrzR0+ODkMzvKLBsfWtY2WtZUPL3mrP3j26NP3j72oL qJGgACk/KB9gAAIABJREFUQLrN3JgGojVXXComtH6sv6CkVH8TcX8CAp5o E37ud4RfLgpoqUCB4pqbjBGKKeGIgiGUwTUWZ7fs/uqtlRorDeD8+NP9mXnOb76rvFt9+cLVU19+u2zx8qz03PTUbIc 9tbS445BBQ8NDI6LCY+OiHJFhsWFBkYF+QTb/IKtfYIA12NfH5tvWO9wWZI+L8fH28PT0joyMy84uzMsryc7KLS 0qCg0M9G7XNtDPNzw4JDQkPCoqPjrWUVzcLT09LzY6MTYqrkuH rn269e7fs19BZm6nkryK2zdBAkYKcW4Ig7tv8xIAQAMwSgTjkg mO2I8zDuFW7KSYEUQpZu4JiERSMGVWPKz7/LR+5NSSwZ27u0uKbm/ZDADANUfi44+Odu3YNT0pNT0pLS05vTAvPzkxKSoiNsme5khID QmKCAoMCwoMCwmOCguJsPp6+3q2sXq0iwgIsvn4+Xm2C7L5ZWR k5OUVZqZnxcfGhQRbvdu3DrH5hwYGBgba4uMSk5MzO3Xo2bVj7 4SY5PgYe3pyRufiLplJWbmp2elJ6QcPfgwAlAiJlaIcVd2v/vyLR4c/rv3kYM3XX0KzCwBcgp1pdE788lrAe+csa+5YNjRYNtdb1t/5y4pzqfuvjT11/djDR43YcNeA1IpLIiXVXEqupAImBddSgBTAmWLqsfDcv4j/5Xr934xfDgr8g0f3YxSQTDKTIyxNqjBTlHKEGTYFbaS0yWBYgl DXFi09UthB376rBQBIZ3P90sVLM9MyM9KyU5MzkuzJmelZCXGJ 8XH21LQ8e0JqSGBYWFBYWFiEPSklPCrWxy/Ap613kJ9/eFigr5+Xl7dXeGRMTm5Rfn5JUnJqSEiwl4dHkL81NCAwLCgsKi IuyZGRkVncs9fgoqKuDnt6bIwjIzU3P7skJTE9MzW7R4+elbUP teQEUyalamq+uWTxlc6973bt/UOXnmXLNoBTaK4ox5xjRgWiilIphFJSU0yJSRhmHHNBhMBMuSh BjDDgTAFuLFs4f3d2rrh6VREmMdNCHfjwUMfSLmmpmSmpWQn21 JzMvNz0nPjw6MQYhz0hIzgw0uob6O8XFB2VmJqUHODnYfVp6+f pFR0eb/UL9PfzCrD5ZGRl5eUXZGZmhYeG+np7+Xh6BlkDwkPDbCHBkeER 8dGJudklPboPys7qaLdnRSU48vM7ZqUUZqcW5mYUffnFKQDgXA kqgctLi5e97xt5OCZzd0zS+126m9fvaKE5UyBACH4TmTtu140/WRn27jdPrbtiWV9n2WBa1tb+Ze11x767409WflpbU08ePp4dKK EFU5wowYRWXCku3XpFyq3YKt0WLfpHdecfXR9+lmDwy0GBvwvt JqApLRmjhskQY1hQRCgyGDKJQQlRlApgqnb/B9vsCZXv75JEEYMJwhvqG5a8+VZ6amZaSmZKUrrDnpqfW5QYbw 8NDQ+PjIoMj46OiA0ODAsOiQiPjg0OC/fx8fPz9g+0WsPCg/yt3l4+XpExcZk5BbkFJfEJjtCwcB9vH39vv5CA4NDAMF+fAB9v m80WlZVVWlzSLS09JyE+LcmeU1zYPSOtIDU5a+iQV5qakKZSGV gRKa7f+ygz72rPAY9mzi6f8dq9PR8rU3GhCaecEUYko8CIFFxp qSkmFBOOOcecIkExE4YQzdhkBCi/vnzDuqTUiv0HASmBuCJSUnXk8LEOpV2TUjKS03LsyVmZOcUZad lRIeHRoVERYXEFBZ2HDh01YsjIwpIeHn7hHr5B3r4Bvt7eEaHB wbYAb1/vwNCwzMy83NyCtLSM8PAIq6/Vx8snwD8wwNfm6+kfHRKZm5GfnlWYllWaGJsdH5MZGpua36FbT l5JWmpOXk7xhbNXQAPHilMFjejr/iPvzXwTKhtJ9UNcdZcZLkoEJ8AJaKyACgApNL1Jne/fqpv87YOIjed+v/62ZU2NZVODZc2tF9ZfSttzfdx3DcsuV55tbELAARRoCqA0k4pK IZVQUgFI7ZZreqzhLKWSSiuAf/ni8DOIXygKwI+anIILbBJhMOUSwsm5wSiihFDOODBZvWf79vjo 2yuWa+xCnDEXBaQa61zL3lqZnpqbmpKdnp5nt6cX5neIj7GHh0 VGR0aX5HdcsmD5/g8+PXTo67Fjp/v7Bvt5Bfh4W318fMPDg/0DfL18fWITHRk5+Vl5hbEJ9ojwKC8vH6t/QKA10M/bPyerYO7shUvfXj1q1KREe3pIeEx4VGKiI6tjx5cy04vtiWmjx 443kaAcnExILeu/PrWntDvcqHL/WRqAC2EIxYiSWFEmOGYCC/UEClDCGOEUC4KlSbAgEpzk3FtvbExOrDx4GAQIgwknlUhxDIcP HS8t6eFIyk1Oy493ZKfllObkFoWHx0SGR5cUFE+aNnf/h0fOHdlXvmPerM72SE8vf9/gdu29w0L9w4N9vb28Q0OjM9Jz83KKkpPSQ4MjrP4B3p6+Af5Bn h4+QwcMP/n1D9+euXz485NdO/VyBMXbwxyRcZmlxS+V5vVITs4vKO5efu0uaBAG00xD5cOjJcVV Sxa7jn/jvHAVJCcaGFWccMIIY5wzyYjQgj++HQGrxE27b9WM/+ZhyKYrv11TbtnQYNlCLGurfrX+msfa0/2O3lt1ofa0adaQegACwBVIrhVTkiuplLs3kFJJLqWQbu7yz/Ni8EtFgR/bO8EVQVwYXBqKIDCRxkRRjDRyVmzfvT0x7f66zYCllBoRylxCm rqpzly8aEVGamFKSn5Kan5sbEppSbfUpKyI0JikuOQeHXsMGzR 87IRX573x5r4Dh/JziwO8An09A7y8fMLDQqxWP28f35jYxIzs/My8gqjYxJCQcC8vHx8fP6vVlhCfePSTY1989vWBDz5euWJ9SnK GPSk1Jj4pPjG9S5eXsrOKku1pc1+bKZiSVGHKtRCPduz5IiKq7 pUx54YMu7Vipa6ploSYVCKqGFGEckQoJVIKrZUmCFNMGGYMM4o EMxRFFJqcN95evTc9x/XJUZAAErSJRRPmTq4YfHTweEFhd0dyviM5PyYhPSuntLioY1Ck IzI2qSAzw+FIiwoKXt4zni9IYEsLJucEWNu1ae9liwgMi7QG+L f3CguJzMzIy8stSkxIDgoK8fcP8Pb2tdlC/PwC576+eM68JT269Bvfa9DgoKjBz7QZ0S6gi1dor7QOnQt6OJJ zevQf/LC2ATgogwEHdP7SrqjI4ymOU91e2pWQdXrBYt3gElQwzBjFjDF KFSWcMyalePzP+/GZZTeNR9tuPnj1VE3MlnMtNp23bLhu2VRr2fjAsuqK98ZrCe+d m3Km7kDlo1pCAABAaSU4w0oyJblUgknF/4MCP8N4bG2lBBcUEYGoQJyY0kAKU6ERbjj0yYfhcfdmLlDXb5C bd8Tth6S+mZiGMoWrgcyf+3ZqckGyIz/JkRsTk9KhQ/f09JyY6ITEeEeCPSEiItjm3a7tC8/ERIQmJsYHBwb6+VitfraI0DCrj5+fl29CnD07uzAjKy80LDowK MzXN8DqbwsICHQkJvXv0z8qNCo8MCI2PNaR4MjJyYlPsMfFOTp 16pmTle9IdKxcs0yDlBhzhICIS8tX705IaJw9vXnBnP1R0Wemz IBmk1GFmWJUCJNRwimRQio3CjBMBOICMWEwhjkQaP7y1Lb27U6 n5N2ZtvDMnDlfLphf8fW32hTKEIrofR8czcnvmpicn5icG+tIT 03L7tShS0R0UmxCZmJMYkJYWK9ojzszHTAn4uas3D4J3gEerSN sITG2iHCfYH8Pv8iwuOyswtycwpiYhABbkM0W5OvrH2ANDA4MT 4xNDQmKDvcNym/lPfZ3Ld+yPPuO5Zm5//XCqGc9BnrZOvnbJg8ZAgAagDLJmWi4euvEgiW1Rz6F+1XVm7e8 lxBX+8kxrTUlnBLNCHAM3OSSMa240lwqKRXl0pCKuJVZAdR9Z9 NXTte8C3WdP6n2WHfyqXfPWNbetbyLLOsan373umPrt4vO3r1s EKYIAAdF3UwsoYVUbhNHrX6OOPBLRQHQbsceIQRBlCFOTc6bOU EKCwGYfT3mtfde8PsgOXN9WtbK1Ny1XV5yni+TmDEs6uqM6XPe SMoosGfkJqZlR8U58vKKc9LzwgLCwkIiQuMSAuMcsSmFg8fM7D VsQnBkYpA1OMA/ICIsIjwo1OZjtXkHpCSkFuR2yEgvCAqKDLCFWK3B3l5+wcGhMR ExSfGOpDh7ZHBUfGRCfk6Bw+6IiooNC4vq3KlHUUFJUqJ917b3 QWuMhYG5aeL66tqKGxUgADRUb929MykNXyuXEijVhErCFMOCEe FWHqSYMsI4YsJkyhDUkJJCzfGT3/QfcqnPkFO9Bhzt0WdX/2HXPv5Cm0oZXBK9c8eB7JyOKWn5KelZsYn2pNTMjsVd4iNiIqM cMbEpfRzWq9McMCeAvpE0t8AWabUGB4RFBYdFhcXarCG+7a1R4 Yn52aX5OaVREfFW/6CAgEDP9t7BwaGxUXFJcSkZqdmO+ITMsMh+wdHDn/Wa9ts2C37daonlz8ssz86yPDvLM+LkqnXl35w2KFcAoEAREBIo B6ivP9Cl+Ozi5cCBUEwYJ0RyApxoLqTUXGqqFdeKS0GFokxRou njsw0cQEiFLj2q3ltZPfrLO/G7y3+7usyy9p7l3RrLuhseWy71OHTpyINGBAwAhHarngu3X6XS +ufXEfxyUODvva4fzwW05IogyZGUTiabODGlybikqO7suQeHPq 36+NPKg0cq9n/y4ItTqLbRdArhguY6PHnKa8nJqekZ6fHxcf42W15Rp559R3TpO 6LbK5Nf3/nxW8fOLz55a1sN31dHOo+b5usbGB4clpacEh8dY/Ox2rxtGclZRbkds9OLgwMjbQEhfr624MDQ0OCwqIjoZHtyuiPN HpucbM9KsqeFh0QmxDpioxKLCzt36tA1OTH5s8OfgQZiCGRKjE XV1ZtNtx5QKhiAPPndjpQ416VvlFISK0o44pIQyYh0C/JRwhjmzKTMxaWLC0MgRDGlijBBmEQcXAJMEKamLkENLoXeuWNf RlpeWkpmSpLDHh8XF5v47votg/r0S0lOz0mK2zc8ChYF89nhHwxNzIvwj462h0c7OnfrnZdfavWx Wr2tjrjUktyORbmlkeGx/v42q9WWm5sfExMXGBgUEx9jdyTFJiRFO1IiYxPjbGFFXsG9X/Ad/4LXjD+0XGh5frHl6SmWX0/5k+cce87pdVsvrN767cLVUEcBACoqPyoouLFmAyjAUhMuKBHuI SKXggMXmmot3X6GSmuuJH9s0CDdDmdKulVKOYCsxLW7KiuGHL8 Vv/P+r5dft7xbbXmv5rcbyrocuPrFvUYADMCFlkJpqZVUbgO7H7cN lPx/U87/1vjloMAT+wLqb2wixRTBAiMuXYw3c2JIaghqYMkpCAGMa8pBKq p0M2EukymsUINr2phXE8JjE6Lt+SXduo8Yv/TAZ5vPXH/vZu3GGrzqgXNdhWvTbefGqw/33Xo4ZtHSpJTMPr36TXx1amR4tI+nn80anJGaXZTXISez2GYN8/L0i4uxDx44NDUlLTHeXpBXWFRQkpdTnJtZmGpPccQm2qPsWSk5 a1duHDxwZFJy+olvTmkA5qSAOZjoi8nzPus7BqqqwGgom7tgf8 fOsrJCciwJllhwIimjjAo3ChBMKWLUYMzFhUsQkxLkxBi5iHBi Qk0inJoY0jCoYVBkUsHU7h37MlJy0hyZWWmZcdFRAQEBM2fMPv/D+UM7d3369oS6eYlils+jt0sPLZ218q0VbyxY+sbri2fPXmS3Z 1g9fWzeVkd8Rkluh9LCjlGRsV5ePt7evl27dpv46qRXRr4yecL EmTNmTZ8+e+rUWRPGThk1fGy/voP69B+4f/ee1weOHNQ26HXv6Km/ajnN8tt5lv+aa/nvBZbfvvlUy5OTZ1UdOnpt5oKPu/aXN+9xoQmRjArOJMeKIsmY5EoJrf5qavyvzM6VklQIQZRGWgJw AAoA1cj15sXb+R9XtNl02bK+zLLhQYtV19784d49hDVopbhQgk shlBCac8W4JELSn4HrwS8KBRSAfrwsLt3Co6CYQogamHKDM6fA hhROyQ3hwtSkzDQoMiQ2NDEBOaXpYpSp+iZz1qLlnUZOmr3nk9 Wnb+6oxFtq2ZYatvM+2nO3aff9ugP3a46U3z967sax768d/eLcV1+c3bJ5V35+SVBguFd7P5s1OCM9pyi/NDer0Oof7O3l5+fr36GkdP2adfv27Nu/d/+H+w4e/fjTw/sPHdi1d8+W7RveWfvJh0f37vooN69DVk7RhbPnBWhMBDWJJMh5 4ts9OR2OvjTg69Gj38ssvr/zmDYAMWZyLLHWSDPKGOHuGwFGFBuUOClzcW4o7FLc4NQlTAQux KhJmUsjU5kmwy5MDAxS7dm5LyU5OzUlLzMtPy46McDfv03rtgP 7Drry4aZHK7obc0Lvzk89uXry5wc+/OTwZ58f/Wz3tvfT0rIDgyNtfjarX3BiQlZBTmlhXmlkWIyXh6ePp5dPe89 RQ4f/cPK7M9+c/uHUD2XnL5edv3jtwqVLZy9cOHPh4vmyDWu2ZOZ1jEnJ2r5515U Pj6/O7zO/fcRIy39PsfzPbMvv5lj++Iblz2uf8z/9+jJXldOdWiYFp1IixZFiXDOthQQt3MbsT64B/5UZoKTmTAuhlZSKSY4FI4qCVgBKg/ysqq7vkVstNl+xbKqwrLvr2H72igsBKKG4VFIo6TZ+kZpyzdR/UOCnE+qJItCP9wU0CC5NkxJDUJdkTkFdjJgMIWGaEpsSY4WRpI aULilMcGJ1va7p0M37W69Vbr7bvKUOttSoLffNWcdOzD9wqMOo 0d1GjhozfuLUMROmvDJ+7Mixo8dMHDdu4tQp0zt16BoWEhEWFB 7gExhmC8/NyCvILcrOzPP3tXl5tPfxbNu+bcsRQwZ+uPeDXdt2frjrg4N7P zj84b5PDxz84qMj33/xzdZ338/NKUpKyigu7ny7/I6S2qCqgShElcbceeHyhRVrzi1eVv/Vt4AUoxpxTbBQVAiqGVYcc3d3jE1CXZg0E2pwihQxJHMJ6RSym XOXICbHiBOTUScVzZg3G5qrnXv2xydnJqcVpCZmJUckB3kHt2/tGe/Z6tSEGJjVki+JWT0gyebrG2QLDfWzhtmCwoND4qJjw0MjAvyD/X2C0lNy8nJLCvOLI0PDvNq18W7b2uvFlkHeXn06dR7Wu9fQl/oM6td/0ID+I4cOGjNs6KxJ0yaNmeRIyUxJyclIzD28/3N3vmpu3zm5+f0VJd0XekeMtPxhpuVPb1qefu1Xf57mE/vZio13z5exH/cmKVOcaym0lJIpIX7UHHuc9ycdS/TjAbFSwIXCgmPJsKRcYCmou1T237wbuf2sZeMjy5o7adtOXTSR AlBMccGUVFpoBYJpJf7/aYs/lfglogCA26ZHgwbJJDYZQRIjhZFkSHAXE01UNXHmFMzkHFOBMT bI3YfNR8ofbLxyb/nVBxvuNW6/07ji5OVR67Zm9x/m7Wn1bPViixefb92upZ93m5AAT+/2Lz7//F/+/Myfn33mzy88+5fQwKDYyNiwwLAAn8CI4MjivJLi/OLcrBybj9WjVRuvti96tW3p59k23BYYGRQaGRQSaPUPCgoICwx MjIjKSU7LSE53OFJSklN7du9dVVUHDLgpKJEECYokY+7rLTAAl 1Am0wwp5RIKCcoEFkJQ4XYwJiZlJqUuygxBTclNLl1ENCHZTIS LcpNSAwsDKRdWBsFOIiVs33M4MTk/yZGVlZSWGhVta+/t9Zc/bO8RAQvj9cLwQ0PD0/1be7R5oe0Lz7Z79tl2LzwX5OcTFxUZGRoe4GcLDgjNTs8tLiwt zi+MCgv1eLGFV5uWPm1f9G3X2qdt6yAvjwDPdh6tX2zT8oX2L7 bwebFVqJ81JS45IyktKzUjMyPn+PGTAEDI3zrumoqaTzfu2lDc f9L/tJposcywWGZZfjPL4rm2dNjtE9831TUAAGhQQgslueZCiR+z/Y++5o+t3R+jgKRCUCmw4hQEMCoJZUoC6HuEFR88++t1Vy1rb6Z v/+ZWs0sp7SZmUtBMgxJCaPXPikb/QYH/m/EPPILHvymmqMGoKQjSyBQUMW5S4aLCSamBJGYuxG4+ch68/WD19TtLrz1YfrVu+0209ouyvmNnpiSnJcWE2to8H9qqhfXF1j7 tPII9PaL8faIDfUJ9Pb1btfJu1dqr1YveL7aKCLLFR0aFBAQF+ QdHhUaX5peU5BfkpKfavLy9WrXybdvCu81zfu1ahfh5h1n9g32 8fD3bebdv7+fRPsjbzxEZm5mSlpmamWxPe3nIqOYmJ+WCIwIGp ZgiyjkShCiKpDQFI5RSRrEQSCmsJRaCUEmEck8HEWUm5SbnSBJ DEsQJYtRk2KQIMxciCBNsYm5QZnDTYELC/r2HMxw5OckZjujQqEBP2/NPzS0MRQtSYGHMlyPi7S/8j3e71u3avejVqoV3y+c9Wzzn79EmItgWZguweftFBIbmpuWV5 HXIz8gL9bN6tWzh27qld+sXvNu09GvfOtjPw+rb1tu7rY9XG1/PFwO82kQE2VLsjozkzKy0vPy8kgvnLoECZlCBOcGCE/V4G0jAucOn9k1ZOM07aLjFMtHy3wssv3vd8uxs76iPlq1qetTo zrDkWinQWkspH7fwT/iayx8JhcpNKNKKA3AFWoCQiipGJGOSaRD3Be904NKv1tz49bLz oz6/4gSQnCjFsJZUKiWo+Ffq5z8t+eNfNgpokEwyg3NDcpdmpsKIYU wwZVgog8rrda6Dt2rWXq1edu3h6rKandcqT1U2VjXzceNnRETG piQkpAYFJtt8A73bBPt5hLZvF+LZ1tr2BWub5wPatrC2aenbpl XbNs+3afdCkK+nzcsz0MfXx8M7LjK+KDe/U2FhckyUtV0bn1Yv+Ld93qf1n/3bPWf1aOHfvqV3m+e82jzr2+6FAI+WtrYtowN8HTERmanJaUlJ k8a9yk0mXEyYgmCFsTSJMCkjhHJEOMYUOxk1BOOUaEaBEIkxZZ hJ8SQKCGYKYkiEJEKCmYoibSDRTFgzoobBsEtgl8AmBwE7N23N ikkodiR2Lkp/qWvWmCSPhrlZ6vXIqgWpYxM9w9u1CvZtGeTTNtzXK9SrnbVtyw ibT1xYoE/bF33atAmz2goz80pzigtSMxJCgsK924R7t4rwfzHc2irC9mKQ9/N+7Z7x9XjO5tki0r9thG/rcN92SVHh9tjY7NS07sUld69flYo6iWEQig3OkUZYISwZo+4cN t5uPLh885rOPSf/7i8TLb+aY/njNMtf5ngmfLx4LW4y3CmXSnEhuHTDgPwrDKjHAyKtlHCTCAWA 0CCVJppx7dIaCwmSCwB+T/CsXWd/tepOu82XvnIaoJTmQkjJOGGaCPcU8u8JR/9Bgf+L8c+cMHfehBAIUYI1M8HEqplQgRkX+kpj84d3q1aX3199 rXp12cP3r9WevNtY6SKSSNZERg0ZlRgT06NT4fpl818bNzg3Ma wkJbYwKTo9IbA0N6F3x+xce4Q9yDcp2D/G3zvYs21phr00O9X7xRY2T8/k2PiO+QXFmZkdcjI7ZKXYQ3yyYqxZ0b458bakSJ+4kHbRtpb2s LZpMd6FSYHZUT5FSWHdi7KyUxwpSYlzZ83SVClDMkNQl6QuxZC mSHNTS8QxxQYhAglGlcEkJYISZlCGCZdCK6ndhEKOBDcEN7VBN EaMuzhvlsKkinFCgTgFbSLYSUQz0Vyv37w5OTaqa1riJ+8vP7l mSvnUJDXPn86PW1EaPG1w5x2rXt+6aEbvkszkSFtSiF+sv0dWX NjSedOzHbF+7V6MDw/tmJtfmJbVu6TDq0MGlKZEFyfZOqUFds0M6ZoVPrCzvVdhdOeM4 N65kYNK4weWxvctsS+ZMXrcyAGpjri+3bo8elCppTBNA2FKkBA mMENjSg1GnEy7sGbunCq4dPjknnGzXveLmWD5zWTLf02xPLXAN +HQkjW4yQQAqYH96GoulP5RbgSe1Cj+K6FYghJacs2lplJyJji WQgBsulX17Oozv1l5beSXt5yglaJMK6IoU8Tdc0it/jYd+Kmxjn4pKPBk/JU0DgCcC0Q4IpwhzlxMYtXsEt8+eLT+6p2VN2rev+c8XN5wvtr 1EJkmcxHslAYxmtCYV15JDA8ZM7DnwV1rZ0wc0CUntmdmbDd7+ NR+XT7fvuHUgR0n9u0YXFKQGmJLCrWF+ngM691p3VsL40IDA70 9s5OSuxQUdMjOmDp6xOgB3QsSg7ukhfXMDO+RETpvXO/tK2YsfLX3Kz1SxvVOH98zZUwXx9yXux3fu3niyCH26MgVS94CD RgzhJhhMkwVwgIjTkxBsJQUlKnAJSQSiEtMpHRxaSpKuZBKSU0 wZ0QKLDmS3JTClMLAhBBqIlR2veqTz81L5eDE1GUaToM0m1zCe 7t2RUTHJMUlLB/T7d6buWJBsHoj/OjIkFH5YduXzt0we9zhjUs3L349MyQwPchqt3oXJETPfGV4x6w 0/9at0mKjuxTkdczLHTto4PCenQvtYcWJ1u4ZwV1SAlbOHF72xY4 T+1ZtXjT6tQHZU3rYJ3VPmDOk4OCGee++MyszKWrUoIG4wdREM 4NTLEzECWEUIWRghITAAFRS5KTYpI/BABrrmg4tWDXfK36K5elplv9+1fLriQERl0+ddCddud0ZpRZaS i21Uk8OCx6rC4DbpUYxLYTmSnLBuRBKAlRrlb/n+/9ZddVnw+kTTS4NUknKlWBaih9VCf7u4P8HBf5vxuN8P5F+ABBC YcQY44RwTtUjlzh6s2btpTubbtd8cP7mtjfWHBw/4/be/eB0YSdlzYw6EWkmc16bn2C3Z2Sk5CbF98vP6puV3DszsWdKxNS ehVN6lfRMjXlj7IjRJmR+AAAgAElEQVSx3TulBvklh1qjA73SY 0NTo8Ot7dqE+vnlp2d0KSzsXlzQozgvMdQnI9qna3pIzzTbyx3 tn29b/NHa2Uc2zdu1ZPTUXo7Xejtm9k56Z0KvxZOHDOpaEh8a8v67GwE AYWJialJuEG4iTjCniHFEjbtVZmUdRZQRYTLpJFK5tDQUIUxKr RVQLCgSDEmOJDMFMwXHEpBZ9cGuo9lZ5zp2Oprb6d7WI9KlCSJ mMyZcfHvu3JTX5swZ+/JnE7LY/FBYEHNmjGNkslf3rOgeafGp1jZZ0f49sjNyI0JyIoIcgX5xAb6 R/r5Bvt7BVr/C3KyOxfmdi/PzUhyRvu3i/Nt0SgnpmRnSPy/i7Ql9x3fPGFYat+n14a8Pznq9T+LCPklvDC18pWtyt5TIjLDAy ePHYi5NphCSzBTUyQhmJqYUcSD6/oHjFzfvEY9c3FSISsI5pUJIAACzznVw8dqZXhHTLH+Ybvn9pN+ 32tBvpFIKAJjSWCshhZJc6b+zK3iyThRoAVqBAv2YcuaWMX7/dtXza87/ZlXZ2BO3CIDiREgltFL68V7C/3pF/9viF4QCfz38T6CAllwJk0uTYwkXHjbvKKt458aDdbeqDp26tG7 IK1+MnVT2+uKt2R2ub9irTYVN7jSxiVj51dsnvvr2q8+//vzwJ9vXrOyVndon09EvM6ZvRmjnRGtuhHd+pLU4JjgvOigzyhZ lbds5N2P04IE9OnQoySvs16t3aX5+p4K8Xh2LOxWmJEV7dk4Lf ikrdEzX1OEl9iTvP3VJ9J47KG9275QF/dPm9k1ZMKx4dK+84X26DOjV85sTJ7TSxKQEC4wFMhk1BTcYMC0 uXN3doVf5tt2KcmVqaQLBwJHChBNMFNdaAkGCmIIgwYhkWCDMJ JOk/NrmwtKLS9bCg4Y7S9a8n5nL796SRGOnQC4DUykAXF9vdc5OwHP Dvh7jGJFq65kd1z8/tk9WRGd7UKc4W4dIa+e4sIKoIEeAV++i/LNff/3Vp8dmT585YfS4nt26ZWWmvjFv7mcfH3y5d8fsKM9++ZEvd04Y 1TGxR7KtY6L3kNKo6b2T5vdyLOyVPmdg8b5NS498sOOjXTvP/vCD5JKbRBpEmNwg0kDADa0lwxdOfRDp+KJ0KDzAmgClhBIhXVI YEhO3jiqY9U17J7w2wfLcbMvToyx/Xt6tX/nFiwAgpWZSU6Xkj0f3H1FAP0YB6X5R1loDCK0A9C3BQ947999r rmbtOV1BiNIgpJKKaa30P903f1rxi0EBN1HcvUOmQCtQUinQjE tKJBdwo7px5/n7q68/Wl324Oz92nMfHDo4dQY8qAGsLkydcbB7ZzAbKDFIE3a5JGEalF sHG66dOd0/J7lrZkzv4sTeOdGdk8J7JgV2TrDmJkQU2BOyo4Kj/F7cvHopANy/eX/JojemTZpQlJPXu3P3ihs3ayvKuxcld0gJGtkxYWyXpAnd01/p4Hi5NHFSl+S5vVLn9k55rU/au3NHmdXlzvrqhvoGEzFsYmUQSpiLCOZUpJkTQqG+8XK/4btbeFasWgdEcQQMKUo0phpTTgh1s+wI4sQUHCmBJUfcRNoQwq y5e+vTI6zWCQDowFfvJybi62eJAOyUxCUkcTm/Wl83Kx5NtzrfSF/dO65remjPgpiBmWEDM+JGdMod17O0V1pCQUxQiT3UEdBuQOcCM JzAYd+2vYvnLe7Xs19GSsbxo8cBYM2CuSVxASOKYl7tkji5m2N i1+TRHe2T+mTMGpA166WU6f0ypw7vXPPgsf+iFsCckpmCUkqoi ahBTKJMDXWNl0cP/SLY/9v+o6HayRnmLoaxIlQLLKUhJJFCKQAADbe++m6qb/REyx9nWJ569Tnfq8e+AgAugIvHVwD3P/C/3yN4fPKfPNYaNAfdpPW4r278fsXFNiu//bK+WQOAJFpjN9fwpzUO/If4xaAAgNJaaJB/QwGtAIiUDwn/qubR2vI7K25WbCu7d73WYFjQZhd1OiVp5Ocvfdq938nXZmtCEH P7l0nkJNxJSDMXFK6fPd2vNKN3dkKPtMj+JY55Y4dvXTjtvYUT hnUtzI8N72CPiLG2XrZgFih4eLd22eKlC+bOKcwuGNhncENVLX tUN7pnp74ZUaMKYyZ1iR/XMXpC17hxnaKndE2Y2yt1zktpr/ZwLJs1jDofSI4518SU1BDM4JgIkzCKCaJOUI03Nq06WVx4Or/wzqqNgABjaVKDEIKxxlgRzKSUWmuKOUVSYBBYcZMKZAqDs2agH FBD1a11y79MziubNhdMJyWMGlJycF45cnNOIp7evmZujHFq6zu jx3fLsvcoDB/VI/PAu6/ev9i1qSL5m6PdhnVLyo0Nzoqx9S7Man5QoVz04M4Ply58+6Xuf XPTC44f+RIAtry9pIs9bERB7OiS6LFd4pZN7L731b7v5sVvz4n ZnR29JzN2W07yxbdev7vvg+tffs0lMADOgQo3pwcEksBU2Yr1p wYOvjtt3LERI6C6iVGOTI6polQxLBmRlCkmNRHC3RTcv3rtrdy ur1men2L504gXPMuOfwEAkv/drfBfxz+okiopAGZ9V/5fy39oseHyV80IAJRiRBP502cc/yJQwD0EFlq52SBKKC21VJoD1Aj50Y3qTRcq1l6v23T9wZVGl2Z aujgxpQJVfXDPl7EZx0IdxrGvBFLU4BgJ5NKmk1HUSAyXYnDz8 u0+Bdmv5EfN6xH30fLJzbfLzKo7qLL85ndfDi3KKYoKSgrzW/TaJEC8udq1Y9P2xQveLMwqGtZv5KMHD2V907T+ffulRI8tjJ3Q IWrb/EHnP1p+au+S7Ytentc/e87A7Ikvpc2e0Luu+joXhBBBTalMQREnBucmxwgphpt/OLOn+0Bz78efDRhwdc0KoAgzZhIuTa1MxTElRCiltAaKBTElRy CxEogRjAmS1Kk11mZ5+YmxY4+nFJweOlbfqxam1FzwuvLKDQPr ZgY+mBtt/rCRUzx/+pzS7MTOWfELpw0HelA3Z0LjX0CM3LFqfGZEUEZkQLec1Ie3bg KTF74/t2ndxn69+uenF544dhIA9m9c1ykheHSnpCEFEYc3zuHV52oWzT 3n4XfH0++Gn+9tX2tFe9udlv7lz7e/7Off2KkDKuloFnS+1av//Z27rn5+nFFZe/7Ktr4j6OmbF1euOTh8KFQ2CZckCBMiKVGUSIIF5pKBZkpKpcSP Z/Oj2W9OtPx5puWPE573uX78JLi9SZ6YE/1LfcEnv93CC+9dvvPCitO/W1s28cR1A0AJLjmX+j+9wP/h+LvUPl4W0/BYR05zpRnAN1V1ay/efa+sYs+FO9drDVMAphKbTGENBMyy2+ahz88MHHR8UH9VUSsNK UxOTEINRAyCKQhGq77Y/d34zNsTI2oWJVftmwD1l4WzGnhjc82tcb1KCqJ84gLbzJk4Egy sXerbL79ZtnhpQUbRyEGvNFbXAjLnjR3ZMzVidIeE2YPzaMW34 Lwlm+6a1Vf2r501tX/OjMGFs0b1qLx+FgQjiFIiCeEmFsypqEtwzqHq0eEhUy6v3AaPn PsGDrm6ZhVwhjh1MSENkKZihBPibgWAYoENwU0tsJSYcSIxpoR iIRRxUTCZOl+2MzPv+or1wIA1VDzYOBhN8WyY4t/w9WolMSNiweypRTlxXbJjh3aNO3tiujJLhPOPzoriWSMKC+Ni0 8NtJSnx98suA2EVN+/t3La9b68+RdkFZ058C1qfOLC7sz1odJeUV7o4ThxcB+C8tWrZd 8+0wX/x0s94k+d8zBd88LMexu+fa37qmZrfPl37u6cb/ufp2t8/c7uFx0UPm1HY85Yj5+zAEQ3fnLm6cNFn/frD3QptIkwwI4phxYjChCHOBWilJWipheBcurcLPpr95oRfPTP e8ofZKbnu4y2lVG7nNqWerJgn6+ev30qD0vK2FCHbyy0rr3Y9e KEJQLsVjPXfZIv/F6v73xk/OxR44kqnn9CWBwmglAKptHsErBjA5fqmbVfuril/8N7V8suNTViBMCV3cYHpo9v3m+80AAEAaD7+5Qa7o+GzzzQmFD FkmghTBNDgrHp49K0Hs+NhThDMbg8LA4+Nifl2yxKJDWrSzUtX dbPH9kiNSQoJnjJyhGxyKYNdOXt55dsr89LzXh05Dj1qBEaXzp rSNTVkQu+0Sf3zTh3aCrQJuAuU68i25RNfyp8xoGjGgA7lJz8D TqlBMJYYCYQ1Q8CwAI5vrnn3YFzuo5XrHq1f81VGwcWhk51nbw kiMUMmlQYFg2pMHpt1ESyxKRhWjEhGBEdKYtl4oezbd9aquiYA gEbzg15dvlswXzY8qNwwEE1ub0zyrdj0smy+xynjBC2cPblzfm L/wtReWUkj+sZfvZAO0K78+9CBhe27Z0SVOEKK7FE3zp4BwuoeVB/68ECf7t07FhZeOf0DaH726IFuqRHjemRP6Zs7c1iXslPHoK6q6 ejhz18ZsTU3bXth2saC5M/HDmYf7W3esOlUdo+zWT2+Le52ITP/3jPtnb97vv63TzX85Zl7nl4VQVGNkSknAmO/njsXsAsz7WSAqSJYMMQEEQKAgVZaaCG50kRqAgoA3hs4ZpTlT+ N+/dzmfiO4iwqtf3wqkKAlaP14sUz/i4LSUoNWNwUPe//Kr1dc7X34QjOAUopp8bgX+CnrFP8cUeCJzx9XQTQoUFpT4EwrJ bTUcOnRow1lN5eXV28ue1D+yOQcEOUEU45NUPzEylUHXh4BTTU ArGrP/vfSi5znzmlOEKLMBIlQw9cbKlfk1c7wVNM82FSf21Pjdg5OmpA XM7w0fcGM0fMnT+iXWzowK+ulzNicSJ/xA19ijfXKNCtu3luzfE1OataMVyfh+kYQasOi+X0yoqe/lDe9b/Hkfl1PfLi34e6NM58eXDCq/5whXWb2L5rRv/Ti0Q+BYY4oQsxEzEkENoRyMTDR6ZVrduV1/qC029GM7BM+YR8Gp15cvweIEgRhKg0MiCpKhBRaK2BEUCIo4RS 7dQcZFxxdubIpLe3im3Pg1uWHm7bsyk5tOvDuw02jXDM8nZM8K tYO500PCKWm4eQU71izrG9B7IiihKHFSd0LPXZu8gDuhartr42 wdU/175xs65Ftv/bdN4AFaUTHj3zZvVPPTiWdy89fASFvfXdySGH65J75c/oXzHop9/WhfQ5sWLF369qZU4ZMfLnT5BElYwcUbF4xXwJjAEaDy1XnMpxG c11tzf5DeMP7p7v1vRgYW/XHFk1/errx+Vb3WgZ8m1hc9+33SlHGMSWYEU6RkhS0AKU0ByaUlEJLpd wrBbXX7rzqHTPZ8nR/y2+/2/cJAIjHShMSlAD3zeCfC+pHGWKl1C3GQ7Zc/PXyywMPnzMApAbhljH4z43g/3L8aDulQYKQmoFQSoCCu/XNW8+Xry6v2lR2/0a9AUwzQkyGmUk4YYqL5q+/25uccXvQy8acBZ+mpF94fa4ymoUhCQMumx9++k7d5GAY/zyd1LZmWfa5lf1mdYsfmBMzqGP6sE6OQQWhA7JtwwqjBuXH9Mk O7Z0btnrhFNZQqc1m56P6dSvXZCSlzZ4yXTS7gOKj2ze+0jFjV t+81wcUzO1fNLN/8aJRfeYN7janX/GcAYVzBhZP7pN/4oOtwBDDyDQxQYRgLp0CGphsxqip0ayqElV1+uKlw106X3tzCd Q3IUZdHHOslAsEkhwz/RgFOCOcYkYxpYQzzE3KNUYP9+z9OKfw+7zOxwtK7q5+vX7DUHO Sn3OyT9X6AbLuFmGATU2bDOkyHl09v2nBhMk9kyb1jpw+wrPma jIwz/Mn2r/cvfUrXWNH90zauWqO60G5NpzCwF9/dqJLabfOHbreu3FHY1J3/crqmWPnDS5ZMDB78aCMRf0zZvdJm9kv+7V+mXP6Z8wbmD29X97 WJTNYw0ONKcXMJYBSUAgAQAC4nLjxzKVH67ZdK+1x7QWPxmdef NjS57uA6Du7dwAA0kCQlEhxzpUSIJSUmmuppRBKSwXuF53q85c ntvCdbPnTeM+QuvI7GrRUSmgltBRKMTcv6F+aF4IAJSoZS9zx/W+W/TDi6BUMAErC3x4df8LxM0cBd2jQWgkmJBcAAC7BD9yqWFVWsf3 qg1sNhmCaEkyoiRiVSAmXIlRqk6Gvvrvy6tyrIyfWbd4MtdXU4 AQrzZy1ny55OD0CT/Kvn5+Dvtjgqi2ruvnDnlVzlr7aZ8WkXium9Vz12sBV0/usmNxhxeQeC17puWXZ9Nobp7WzWjjruWGufmdVqj1lyfwFCpnK bKq4/MP+lYuWj+31zqiiFaPzlr6S/fao3LdG5i8alrNwRO68YflLJw+4fupTwIgjZprMRZlJOEKSYk0 RZybVRAIFeGTuGT/5wnvbgAiTCZeQ0gBwAaOMIqae6AUIEYQKSiVBTJiSYU2Zct647/zuDLpy7OG2YcZUX2OSb83akbjhBtKCG0S5sDSJNJFurq288s2x be8cWvfaka09XfdiwPVs5TX7x++N3L9m9ue738HVl8Go4c21mu HT335fUlg8dMCgusoqbSJaX1tT9v2x997c+frQ/YsG7V/QZ/+bA3YuHLhj/oAtM3utmdRty8Kx5T98KowG7TK0iQ1CTSqJIShWiHJMhVswjNa jxm37bqcV3Pxji/pnPC/7RV6f9qbrzn0NIJDkjAtgoLmSkmottHutR0sNTEsA2D5q4kTLH 8Zbnnr35VdBgVCaaC2UllJRreU/X+/dfBOtpWQE9LQzd55660TC1u/KXCYooSSRWv4HBX4CobWWWnIthBSmVp/cfrD8+t0VV+98X/1ISiBYEaKYW56HCEIlEpJyJgTDWhEuNADFihAlRX3NsWX1U6LY JL+KhVnOqx9z0IJKaKpruHPx0lf7Lx/beu74exdO7L7y9d7rX+2+9tmess8/aLzzPeA60VxDmxskYfv3HBjYd/C+3Xskxdzp1M4m/ODG+Y82n9gy78TWqae2Tzm5Y8rJ7dM/3zLt4Jrx+1ZPKfvqA9VYrV2GNDhHiro4cwliKhNrjNxUKE5NwV zU9aAG1zUiLFxMuZikpnJPBykWSmilgBDh1hajVBIqnZQzxDmm LkYpgELVD7eOdk33apriUbmmP6+/gYRyCm4QFyGYI8ZcWJnN2qhxVdyru3mh6d5y8TBUNf7GeNSl4c 4n9eWXcc1tQPXM9choqqPYqK6uPLhv//Ejx1CTIVxENDvBaDTuXLz15d7rxzaVH1tx4/iaa8ffvfbpxosfrf1h/5r7Zz8H1yNlmMyFORYUS4IVwZoTzU0tkMSIuQxKqBIAdbdul0+ fc9EnBP+p1b2nnvmhWy96v04J4ERzLaRmQlEulODwWB5MaqGkB lV37cbkFraplj9NDUyUTqIAuAQlQQvNpJJa/TNJWGstNQjFBcDii3f+uPKH51adPvawEUBzxR8Lm/0/qex/U/w8UeDJV5/HrCGttWRSiwuPmtZerlhzrfLo3QdOLgXXjAhOgRKgWFMiCOEEC 0ykwbWLA6ZATEmJUKyx5tNlldPD0NT29xdluq4eAS24gblhUIK 42SSaq3hjhWisko3VqqFW19eqRw91Q512NfDmR6ypETe7qIs6G 8yqB7XNDU0MIe40ldMAs4lWXq+/8tXD84frL39Se+Vw5cVD988fuXf2aOWlk6K+AsxmZZoCMWYKYg piutUQFMGaIEmwokhwzBXTkgNFgmBJiSKIUywEFhxLd9tKKCeU MyoYFgJLQgTBlJuEc4Ub7j/YNMI11cM5rd2djcNp/U0imNkseLM0iTC4Ipgx05TYAFcjGKbmDRKt5rWerK4Vdc0EWgU mU4ZJnE7kNJALmU5EMQeuQYBAnBmUu5BsblLOOvnoHq8pZzVXe O11XH0NP7hGKstJ9S3dVAeGS5qYuIh7OZISLRAwQ1OkEdXNjDc RYmLuMrWpAQBubdn5RUDM3ZbeV57zPtljMK+tJxIE51xiAlJKU EJRDUwBcBBCURAAsG3MlMGW37/8Xy2+3/GRe/InFHCtmdZ/ey94spxAa6UVZxxg4fmbT6083XL9tc9qnQCK//jM+L9b4P/m+MWggBRa61rEtl2uWFX2cNeV+81MglaSC0mkxFog4EhJIiURA nFOFCZKGZyb3ORK8obao8sfTo3mk1tXLoxvKjssFFBDcVMYRJm EC8PQ7lkc4hJxjaV2CXAK5eLcRVkz4k7CDM5MwbESTHPMGSIcU WZg6TLA1QyuJmhugOYmaHaC0wADgcvUBtImFiZmmFBCCeEUCWo KhiRFmiLNkGRYUSwZUQxrQbRESppSmpIh9yxQsB9RgFJOCGOEc 8wFFhJTTDkDoM13KzYPd03xap7qV7XxZdlwR0mJsMTNSjRLaXB CiEkYpZxRxk2skAm0nLhG0uanXXXx3DyksMlNxgxCTUpMhk1BD EGcgrqYQJwZnLgoNRg3qTSRxoZ0NWkXkS6uTKlNASbTJpImpgY hJsWIYSIxFhQpYWphaG5qhjRBAhPGCGemQEghDlLCo4s3vusx/G4Ln7IXWt9ev0oAKAFMciokV1qBEFpJpUCAFppqpQFqrpW/2iboVcufFmSUAigNoDkwBULBv2gF3FuGGrSUAmDh2du/W37muVVXjz18jAL/zET4ycXPEwXgR6f6v35rrbDWX1bWrrtSvbms5kq9SyouJaaCUy I40ZwAx5oTySlnhHMiBaLSZXL8/7H33uFNXdnauGzJsuRuY5veTQklIUMyyaRM2swkIW2AkEISEnr oxbaam2QV22AIHYybqm0gPZOeSYBASG8EMimUUBOawdY5u+/1++PIBlLm3vnm9907X56sZz1wJB8dnX2017vXXnvtdyFgyrG3a o8WXRq19fqu4vr2PS8AZyqGNirbEcIqIu2EIUoVzBSCEVNVhhR Gooy1M9JGqMpJG6XtTNvAg9spiVIUJUqbiqKUqpxFiVCwaEfsH CJtGLdz1CZQOyNRzhRBFY6jFKkUYYoQwVFCo5QpnLYzpgiiCqR wpHKiSqJKogqKpZY/Q5DASCKVY4Vr+wgwZhgzhAiiTEUME2CC0DOfHwxMPWfvo1oHHq qdT1qPUCJ4u8rb21VEVFVQhakoShAWUUEUTlSQWGHqpnOnLoue S21rncTQlySKaBQxRImC1XaktmGqMNxOSJSRKNEOtC1MVGFMpU zR+I6EGgWlTeJ2TqOEKERVmKpqkQuOVMEUEAqwqCQKp1Eu2gRv 57idqApSMFYIxpQBQPTLg29fem1rWs+PBlxy6OlnAABzxjGXLF ZVTGglqqngPEY/tOLOBxbokgp6DT365W4BUhDAXHLOJf+xLyA7qcelEABVH+03rf qoy7ovX//+HAB07kr6H+vY/zfkV4sCHdRy0EE8C4dV5P/qwNq9h17e/z0CYAITQTHniDBEBcICEY2SmyLMKBKsjamqQoHggx8e8IxpL+7 33dIbW/e+Chx4lFOMFESYiqWiEJUyxLlW7BBxhLgSpShKcZQShRHEVYVp L6kSU6xQNUpxlBNF0ChjCqMKpSrFKkWII5WrUYoUilWOVaZGSc cxR1GCo5RGGW1nTOE4ypDKVZVrmwVVlSEqVCIUzDECrAJWpBoV nArJGCEoSomCGSEiSlgU1JMfNR9efjMr7KMuyDvc8Dg69xXnvB 2DgjlRsYIoQoIpnCCFYQUUzBSVEMnJd+qZ+WprxtkzI5S2RobO kXbG2ilXOFMYaSc0ypgSgzAUJco5jKOMKAy1E+2ZUIVQlRBEVc RUpO0aRlq1SKIyrDKicqwIEpVckUyRWOUKZlHKMBJEEUjhCDGK GUOCIhAI9tdv2d1v9MnkHrtuvwO3/sClZIxTpi0FSgqSCSm55EJQKQFge33ocV36Ql3SzrogADABUSk JsJ9SiWooIASA5BzA9/F+05qPc9drKCCFYL/5Av+J0sk3LiSL5XUJiQB2HDqxYc+hmi+//ercOWBSanvCKCeEYcIQYZgKRAQmgJCgSBLEVYYFOryvdto5S//vSkadfH+LAFARZwoVbVS0MalIqkqicq5wpnCqqSqIwlGUYZVhl SGVKUioKscqpyrlKmUKwQpBUUZVTlWOolRpJ2o7Vdup5ttTVTB VUJUzxKnKqBo7UyPbRlGGtXFVFUQVSOUIcawyjISKuEq0YKcgq lSRjBIZxQQzwjjDFLUzjJGQKgDHP+yqO15yHbb2Peka+cOTbtR 6XAVABON2glRAquZQUKIQplCmMBalVGGYqQS3oOOjyenUtrZJh O3HKkMdwQiCJFE5RYJiQVSOFYIVhKIIRRFWMVYwUjBBhCLKFEY RI5ggpCKsEoSpQnmUMYWwKOVKrLFY4RRJLXarIKFigbBQEVMRQ 1ggLBACjAAAdj+x7tOufd/r2etgYwMAEM45iznsIsY5BkKCNtgf/vzLwm7D83Upz5Z4JGNSSMaBcnZhnC+WYqylnAghOGUAno8PJKz 7NLNm9ys/nAWQWlbmbyjwHyQSgHdkCmnFyaWMLQAfQrjpiwN1u797+eAxDA BUSyyjjFNGOEGMIE6IIBrjHBIUSYq5IMqxt/3fOS8/Yx/wfaSQnftepVRBiKiMRRmNMqpKhARCHCNOVc4VwaJcqFKokimCq YKpnKpalrsgiBOFUoUyhWKVIoVhlWPEkULVKEEqRQolCqMqpwr jCmMK5SrlKhWIcYWzKOMKJ6pm4QIrHKtCuzJGgqqCIomQZhgcK RyrXEW8nfB2rDCiCiYEZhIhyrga/eHkjlVHXSO5vc/B8huPf/ycAKBEKJRgjFk7YqrQEE07IAojCsNRQVTJ2TfRszPxqXT1h+E0 2kBoq4IowgwhgZCgBGK3hAVSOVYpVQhVCFMJR4wjxlTKEROYC4 WzKKMKpQrhmHOVaQ3kUc4UzlRtzBdIlbEEYUWbj8QADqkcaV+k ClXhioSzX32z84qbjiYP/ODW+2hrq5CSCSE7yAU7aSW4kNqkoPbtNB4AACAASURBVO7uRxf oDAXDRgu1TQAIAZKznxp0LP1UMi4oB1j+8Tfmte+lbPj8peNnA AQX/29nDWryq0IBAOCg+X1MSq5VmmVCMoAdh07Wff5daPfBb9qiHIT gRFImBGGCEiwokRQLqkEAFgQLhIUQUv3uva99f2krGfbt0nvQd x8zwVQVUxXzKJPtXCqCI0mRpCrnChdRzhVNBVcEjXKmCqYKrso Oo2VIobhDkUKxwpDC1ChRo0RVKOqYR+B2whTGVcFUxlXGVMYUp l2WqEBUiVWJsURI4k5VJVG5ojIVcaQyrDKqMIy4gqWiSk4JFVG FEQGAz3xzsH6Kau1FbF2/c1976r0nQQJXESGtUY4QBqZIhjhVGFGYNrBrTg1WOSVHoq1u9X Q/9UyycvZxQb9RVYRUTKOURTlTONfgQ9UQUDBVMkUyRTJVMhWoIk iUay+5IrjCuSqYGvtXm0RoF2FIYlViBBgBwUCwJEjQmI8DF6jA iCuYqYoABHsr1n6RfckHPQfvq68BKTkTUlApGMgLeOil1EhMQ1 MXLtaZ7P1GnvnmG5BAmVAkY/Dj8KBWv0IKAMoEQOUX+1NW7xhc88Guk+dAcs7xb/wC/3ESI5UVTArOOSecMpAnVLTls/31uw+9tP9oGwAFSoFKLkBwJjihQImkWFIsKGIEMYw4IQBcPfJC 6Ul7vxPFV53d9RQVRMUqVjBWCFOZUDlXtYmDxEgwlXOFU4VRlW njP4kyonCiTRC0sjmqIJpHEFNt2OckynGUYYXjKI85CKogisBR RlXRoZKqQBQgKmAVsCoJAYxA84cx0uxBKIgriCOVUcSYSolKCC JEJSoTSApKMD709ZGG6acdPZSiQT9U33Xygy3ACVURpoSplGCm UBUTlRJGMMYYYUyoRlKGKaVnMG4+d3I0bTVGz4wmqIViRFRJoo pGahpruMIvuO1OOBAxtyLKNBeDKYKpkqmSatVEFK55N0zlGrbi jqZhBBhJjARCIvbyQhRQuYopQgIJaPvHN+9c+cf96T0+mTARiO CMS8GkYB01aTo6CQAAfLNt21xj9jxd8htP1AKAwjlmlAn+cygg uRQg8A+U3vnsF8aV7z708scnAbQiJb/NCP6DRPstpADBGQdJJUjOQWAMYvvh72v2HAt+sf/bs2cZAJUgNJpJIamQmApKgGOgWDJCGFYxZlLCyU+ePlZ6lWIZc qBxDkdHKZO0HYjCCCIcMYGFQJIh6AzOkwv8806//aeqzXU1vfDNi0+TF4945/Vi24iZh7avVkVMQUJRJVYFR0yomKmEqJQgTCQDwCe3NRwvH42K M07n9z3YsBidPUyBEcoQ5goSGANBlCKFIkRUhqIUUaTSNq5i2S YFimLyhnruVtpmjJ7Io+0hjlWmcKYQolKsavxFF968/CfNJyr/pQYyBRgCcnEzCQKsnoe8DtUetUSKpBgpGIk29f1J0/Z16bVr9LXfv/+BRiMIP7brWKLfV29tnxKfMV9n2rEuCABIAmeIC/qzKCCkBBDfEDqyYbdh1Z7pL32qAAhJqKACfs4X+H8KFn51KCBB cM6loEIKziUnZ6V45h8Ha3cffuHbw1GQWtlJIbgURHDOmeCUES IZAYyEirlKGCOUtx3ZVzuV2C/5vmj0qY83S+AMM0pEO+ZIc9FVwZBkGCiSVDvA8jwKKBd1fe2cn 1P4Jf1XUUBFQkEcIU5UThROooIokqqAMWAQauuXh54r+sF9RdT e93Dl9cdfXUtaT2IJbYRECUGUq5hizLXpN1MRI6pW5pRgrGKGK WXkdeX0GNZqRK0pytn5jOxXCVNJO1Mwb5exyj4KvwC/5AWgcIEiSVSJlV+Euf8DFFBVSVSEEQEBh1uef7/HkLd6DT0YaQEAkAL4TzgBJUghzxw95rzy5sd1CWvvnUzbsZCAB WHAfuZcrZiVYPsoGRH8PG7dnkkvfXoOAKS2uvgbCvzHSAd7AIB kQjIuBKdMgvi2Ler//EDD5wd3Hf2BABecCC6EYCAIF1wywTFTiMRUEMLasVSIBFBPvx8 6VjqqtWTEd6GFDJ1QOTBECCEK5lgzD1UQVVIsGZacAKdA8PlZ+ o+7/i/0+E7955b/3/IFVEmigikUqyyK+Fkk2zDHnIFAJz585ejqh87Z+ipF/Y9W3HH6k+coYEoIb8dCEQIJLb8wBiWqQIrEiCsEIawShTNKCXn nXOs43BpHTqUoZ2dTugcjhrFKMSVRYIogiHXY/IV3+zMN72wp/gWl/zIKCIQEVShBnAo498lXO//w54+7D/6isERS1skgepHfLoFzAQCBSfNm6RLm9h6KDp0EACw4k+JHdGOx YLMEALmfkpGhz3VrPp/0soYCUv5S7uBvKPA/L7FFHQlMgpRUSCIEF5xTIXYd/b5m9+HNXx09RqiQVFIkuBCCA1AuheSCEt7OQGWCEqwgiSgXbfv 21T3Wah/wdfWt+PsPiIR2TAgiVOFa4IDi88M7QUILKOLOWetP7Jn+E6tWJ FHl/w8ogARWGVEJUkkb4m1ESMnbj/3jyJNLTxVfdbaox2n7wKNNBdHT+6hgUU7bKYliFWGMiSBYEgQE AcJCRVRBTFE5IkihKiVIqNuUk2Nw1KC0Zahnp2H2SRsmRCEyGh VRihCLEqyq9J9PZC5SBPTHrTivVAX6k2b+MxRAgqicRQVCoo0D tJMPJjy2N7XnB2PGC1WFTgrhC1hDBEgCEgBq7546V6fPHzpKnG kFAMZjCUI/RQGtEuIBSkYFP49f9dnUlz6JAnCpsRX/hgL/GdLBJqLVHxQUKOccBJwUYtPX+2s+O/D3/YcJAJOSCS18SAkwIjljnBCOKWAiGcYIqVSwE+9vPlQ8qrWw/7GXlgihIEIJ5kThXKUUcYwEwUAxUAIEA0HQ4eJKrIrO1TvN9dX CYBcNdz+1YVWQC2YTGAmMJP6J8VAFqBK7AkKgYqligZDAKicKR 6qMqpwoBCtY5ZyCcuLDp79fOaF9cT9U2P3IksuPv+Sj505gAIQ lVhhGRCFUIVwlAlOJsMBEc2cYwlxRMFU5Q4Ti16Nnx5BzRnQ2V 2m1c3IAk3aMqeb8Y4WpWEFUQYgSVWCls/nyl4z8v9ROpEPnY5+SoJ8ioERqTDESROEkKgkFGVW3T5y1O7P3 Z3eMEW2nIRYbOF+pFqSUIKgUAPBy+cp58Slzcnrt3boNABiHHz EMdJBUSgZCgtxP2OXBvfGrP3ns5Y/aAIRkTBLxG+/gf4h0cgoJIYQUDJhGEfyPs231e/bX7T303pEfMBdUSCK4toiAgRPBOSYUUYyAqUIqKkZUAhzc4mq1 9DtaetXpD58XQiLMEeKKKjHiKuYqkuf9VXzhyB+bDqBYDz4/NfjFHo87ejnuPL7IBn48+qmgdpgKVYBFgSpAVECKlrlEEWIKwL ljX5182nOs7HdqUe8zRf0OND586uvtAkAQwpB6jpE2QuU5JhAj hGJECOYYc6RtOo6tblBMESfvqKfuJK2JbedSW9tmULaXYo4Vhq IYKRQhpipMVRhCHKuxmAJSO7XTRP9r7TwZqRJreVAqVxFXEY9x CqocqUx7vzMaipHQ8ibbMVNVys8JpFIuxJGnXvys16C38wYdfP YZgB9xDAOA1MjIAODYp1/MTe45W5fwVOkSACAC+E9qi8TYxAQHKfYTNiK4R7fus0mvfNyqL Tp2FDj7DQX+96Xj1xJCMpAgJGcSISF2HjlT+8Xhhj3fHFRUCSC FZEJIIaHDlxOMqgS3Y4ERpZhyxqMHPzi47J5We96Butny7FGGB FUoVZmKJFYFVTlWGFK4lr1/QaeMKVK5ioSqpfFp/VjlKLYMFjsfdajWv2N64UV+dIXOK6vaQiAnKqdRRtsoiTKsUEU huJ1QAapEJz9//tjKcWetg9ptww9V/Pnw3zyi7TAAUCkYJYJQzAkSCiNYYMoJZgRzShmllFJCKMGUYsm YUOn2trbbSWs8PZmhnFokydeUYoqBEUkwpYRSyijhBEtKgGJBM aeYUyIIEYRwoh1gQcl/Q+l5ZVRQyjUllBPtmHCKGSGMENb5V8Y4pZwQhihDhHJVaPsKTm 7f+VG/Ie9177+/PgAAF2UAaPsBJGOcA8DB9z+amdxjkc70sncNAEj+4zhfJ0uNxi SyX8qRTV/q1nz0yPMftANwxsn/EQpcuNvtP0F+VSjAQTDgggHnQgBuY/zFPd/Xfn7kue8OneUchIDY8i4AANPGCG0vOqeUC8wBQD3+gvN7+/AjZVef+WyLBIGIlJQCZ0QCFSCpFDRGTyP4T5RJziTnknUo15QK ToVgsZdMSC4k16phURm72gXKmWRcMiY05VwKAZwJRjmjgjFBOa ecEU4oVylVOEcCoPXk/u9eqDhcOopaerRbBx9cO+Xs1zskZ4wKJhQukRQShJRaRp12FMu mIzEVVArgcKRdqcJnf0/PxredNbe3zeJ0jxAqZTFXK/bMz8+gJYAEwTuSczpVO0fIDoWL9PyZ8sJzLi4fKDtn3ecpAWXn mB6LBnEtWyxmiyfe2PZRv8G7eg844A8DAAgZ21R0QWehjAHAvp 3vT0/ImaszvV69AQCIIFzwH/Ureb5aEWz/4cyghk/M6z4u27mXAwhGiCT/KhP5f5T9a/KrQgEBgkmGGeeMgxSnhXzq66O1n+3/+8EjFKCDIbJzhiillBSoChgoF0SqEhg9crx+4ilr/6OB6VI9KIBhIakQAhgHyoFwSYXknfMPeYHELOv8YcxOpOAXl8P qPOVCUwG4mDRZSI0iRwAXIITkWoID40wITohkWHDMokRiCkDh9 A+vrTm+5M6z9gHI0uO475ojr3go2s9BG8OokFgIARygI6dWSk4 l41xKRiTHXHAsqJCEkXeVs3OU0z34WR06lRZtm0fgy3ZAqlA4Y 0JgKamWqN1R3Y9LyaXUCLuYEEwj+LmoKeeHvp/XHz+Y8+93fou46EFBx4JQJyWg4FqxCQA4+fq2z3sP2dk779tAE wBoeKtdVcQ2mUkqBUh5/MtvCvtePktnCs2zcEqZED/PLyClkIIBuHfsSVrxXte6PdvOqhK45CrlmMHPVC7/z7Ly/0p+bSggtHxRyQHgq9a2xi/2Ne7Zt/v0Od6xrHP+I1IjjyBUKEAYp1QCO/PRk987rznlGHF613oAwgSjUlAJXAiQFCQRQKVkHV3/PKzEDjTL5dqg29m7+UXmfWFSu/wxCnRcSnDJRce5UkjOtdGOUkk55ZxyzLkA4Iyc/vLl4+EZrUXDwNK9zdH7QM397ft3caAKCCowUCyBCcEkF5Jr47E AwSRQJrEQihSUC044E0AY/vvZU2OU04n0bHz72eEErZLsKOOCCIEp45wIQS5ofudD0GxRgwB +YZH4H2PfT6sA/fIJ//zjANpOEaFt9JGCa1ygAHDyje27ew3d2XNgBwowKWMuBtPyf4Tk UlDBAaBleuE8XeKcXkPOHj50/nf8Ue+SEqQkAM53vzat+LBb7d6tp9sBuOAq45TJ85XOfuFGf67 H/rfO+h+SXxkKdJifYBLg09PnNu4+EPhi32EVxQKH4vyQooUJgDP BMREcSwHQdqTFfsoy8kjlHejw+1oCudZvNMYpkBxAI7O8YKyL7 V3WimGDEEC54EJIgM7KuBf+5P9Fz+5oEJcsNskQnGnE95Ixjjn DKucYQAJEW7849HL54aLLxeKuOL/b8WW3nv1sC6MnJADmnBHKKKGCcsk4cCFEzOmWHCSTgoLgjFEiG BMgxOFotKK9bRQ6p0dnEttOjsHoBSaiDKQQHDhnDFOBhOzMxr3 I2jub9SP7/3Gr/htm8kvo8M9QQDIpOZfAQQLAide37e41ZGfP/t8EIgAaaaCI0Qdq9yekFFIFDgDBaYsX6kyFPYa1HTyk/eVnbwkkEIDyXV8nr/yk28Y92061a0TkTHCtcvlPO+R/U+SFo8j/kvxKUOB8hEaCEBIEVQV/9cDRDXuPNH958LSqAJwvVXq+SwkJQjBOsOAcAB358LsVd54o6v 9tw2TAJ0BqnyEgGWhdTADXeGehc8qqrU/G7oAzbcualACx0zSH4QJmOtnxwdjL8+gAF74pBONaEiRnHIADU E4IRZiDABk988XJt544vPyudscQ1T7gO8+1h593nTv6CQBgACq wEFEQVDDGOOGSau4ASA4ilurGJVBBsWRccoY/xmft6vd9SJuu/Wxye9vjjL4rhUo5EKBMIi4ol4SDKs+jQAcASrjgoHOyrvVpAXB x3t6F9tw5JZI//qP2mOBi2/iZ44tQgF2AAm/t7jX4nd4Dvgk1xXpHbDIALIYCwLlAggFAaOriOTpjQb+R0UOHA ED8hGsIOlAAAbg/+Cpl5QfdNny+7VQbgOACE8GoOI8CnU34ES78EyP/ZzD3PyW/LhSQICVgyRmIs5Q9s3vfuj0HXznyAwWp5Qx3BMQunPsJyTUeKn Hqw8BB5/AT9gFn3tsAwECClFyjvY0RWcecDu3rfiIShJAIZPvZ1jOHj1KK eezefnZkkD95+0KDABAcONV2tkd/ONZ65CDjXAAQUM59+eyhJ24/a+sLtu7IOvDIiolnD+7CwDkAJyA4YOAEONMcFk4BCIAASQGoAC FA20sBDAThrRQ9Fz01Bp9KY+d06NylFK3k8hCL2agWEBEaDMmL m/KvdFjZ+TPJC17K2OO8eDn/RzHAn7nMj76cC2Aa3bwmJ95467NeA3f17r8vGIl9bawGcewuBA gWwwQITJ4/R5cwv//wtmPHAOCXwnwSJAWo+uibxFW70us/f+10OwAGqXAhf6Fs+T99UBe81Rm20EIfP/vt/7fl14YCnEssKQZ+hsrn9xyu+WL/a0e/JwCaD3ARCkgtOM2FlAgAZPuB0NzTxUOOVt2GDr4Hsaiy5MAEUK k5A53D4M/88BpmCADYWR+sHHMvPXxYI6ynsd4f+z55QY8/bx0gJXABvDOqSIREnHJgAPhlR/HGSdNp67GzX79+vGnmyeJRYB8gSwegJ/7c9kJ19Mg3AMA5ZxKYtvbQUWpDK0zWEZxnDAgFzkBwQTA6QfFH 6jm3cmIYb9MxnIzIRERflpJKqc2sACQG2a5BBgCAZmwdz+48JH Y0pcMh0FwNLoFrCKJ9XEjJOyYSAB0wo/ljUgvja3gQi2FCh0l2GqYW3hRwYRhfxj4kQQt6AEDrMy/u7Z23q3f/A/5OFOBUy/8TUgDnwIFzkAQAgnOL5ujMhb0vw8dPwc9Zoey41aNcTnj+c+Pq 92589tN9hDFgGBjV1p1/gl/a/xwE01ajOt7tXCnhAEzbCA+MCxYrnvO/NCf4laBALC4ggQvJOWPaAsHeQ7W797/x3VECUnKmrZABwN69exsbGiOhcHOkORIOhFqa/eHmncGlZypuIcVDv37ikRcDG5qbWgJN4eYtm5u2bA5GmiLNzaF IsKklGArXhpsbQ82BYMQfag4GYv82hluCoaZQU0vzi6HIFkdZz fSZT9auDm9qaGwKBCPNTeGnwuGWUCTkD9cHWxoDzQ2h5kAgEgy 2hIKbQv6IP9IciYSDkXCwJRzaHA5vDm1qDrW0bAqEAnVPNYUaC/Ofm/XQ0Q0zT5Zfxiw54Mw7W371zpI7XlxftuWplrqWSHBTMBAJhJqa miOhTZFQUygcjrSEmzcHwuGmlmZ/KBRubgqEm0MtLeHmLY11TVualn79j4XnTv6JticB0fGzI3btGB tsrm5seTa4eUukKbQpGNkcaN4cCjVHGsPhcKhpSzASiTT5w03+ cFMg0hQIhvxNzeFwJBhpCofCwXDLpmDTpmBTU2RTU6g5EGz2B5 v9oZZAsDkYiISamiPhcDDcFAo2h4LNkXBTUzjc3BRpjkQiTc3N wXBTqGlzINwSaGoKNQcCTfXhTf5AJBBp2ewPtQSbNvvD4WBTMN QS9EcC4eaWQLglHNkcCjeHQpFIpCUS2vRkcPPm4KZQ5MlApPm5 pqZPCkr29xjyWb/Bbyy0PtvypH9Tc7Al0tgcCEYC4aZIXbgl0LQlEoqENm8ObX6+x bHcmtC7JGXAkyXeLZsjoaZgOBxsago3NYfDkVA4Eg5FwpGmSHM 44t3yRp+a900bv74n+GHj5pc2h0PBJn+gqSEUiYQikWAoHG6Kh CORYCgUbgqHm8KR5mCwKehvCoVbmsORpk1NmyLBSDjcFGqKBJo jweZN/khLfTD46RefaRNVweG3GcG/JTKWLyCZBMGpkPJAu9q894B/9/6PT57lkktBtQUtANj21tYF8xY4bEUOW5HdUWQpsrsK5z9ZMPaM 5xrFN/rV4r+6Fs8rthTbrUUel8dZWmazFDrsVrvN6rA5bBa73Wa322w2 i9XuKLbaHFab3WK1WO1Wq73Ibil25tur7CVL3V5LsXVBkXWBzW pzlDgsLrulzG4vsdntVoel0LbYalvssOUX2PILiqxWh9Vht9lt 1iKbtchS4LAsKrIV2ix2q9XqKHSsyJ/1mnfcocrruGMwlA5sdV/9vntMsPjhKke+vaQov3ih1TEv325bbC+12YvsloISa2GJtdhS6 LTayq2OIqvdYrfY7bbiQkuJ1VJeWDh71Yrb3t9xKT7bHZhOkm6 7P7uqoe7+0qLFDkeZ3VpcZHPYLVaHpcSRX+awlNhsRRZrmc3us 9lK7PYCqy3fbi90OKxWa6HDYbcUFtjtdpvNbreXWm0lFpvD7ig utFptDofNXlxoKS60OGw2R5Hd7rAWOOwFFusim32x3ba4yGYtt pfYLBZHUUG+bX5hcX6BvdBabLU68gtsBYV2W6HDXljkWGy3LnZ YCosti4sWWYqtFmuppbDMZit1FNls9vlFRYscdoeloNhuKSpZZ C+3u+1WR4mtcMtDk77tN/yrASOfGf+Qz1K4oMie7yixWC02y3xr0aKFRYWLi+2LiyyFVnux tXz5lPmWlFybLs1x5S3OIofFbrHZLHa71W632m1Wm91WaCksKn I4Cm0Pu1f1rn0nOXB49PKtU1wVdvu8Mku+3ar1B7vVZrHaLDaH xWortNoLLdYCh91ms9sLrDa7vdhucZRZi4ryC0vs1uIia6G10F 5cYrEXz1+U/9qbb0BHoPM3FPi3pHONgMV2FsOHx0/WffZteM+B7xCVUgqOJXApGADs2L7TZrE7S12usnJXiavM6fGW5 v/deW+779ojvj9GSh/2FJf4SnweR/HyyqpVT6xY4vFUut1VlT6v11NR4a3yOn2esspKT4XXWeVzeT1u r89bWeH2eUvc3qKKCmd5RZmzsry8yule4ixbWlK+vKxiqcNXaa +oKvNVurwVzooKZ6WvtMpX5vWWVPqKvRUl5RXuiooyb4XFu9Ra vqTU4fMWl5eucc1/sfzhY2W3QnE/KM8WFZd+XXXrZteD1e58l7ukyle2xOvx+twVVcUV3lJvpdtVVV xRbV2ytLCiwuH2ulyVZc6lRaVLSjxLKtyuUpejcHnlpHe236W0 DQCpA2FQTvbf/srdPvf0Uo/TVeXzVTmqqvKrq4o8Poe7qtjjK/ZVFHsrS9yVznJfeYW3dElFkddX5Kssq1rq8lWWeivLKqpcHp+z otLtq3B6vM7KSndFZVllpdPrcXrcTmdpWWmZs9zjcpXaqzylVZ XOorICh9Pi8ZRXed1lRXavr7S8yuFa5iipspRWWdxLS1y+opLS 4nKnp9zlcrns5eWWisqiUmdBSZnVXe52lbnKSovKyuzeSptnyX zfsvyK6jJ3lddRUez0WH1Oh8drsVctbJg9+bMhl3yRN/DVRx6s8RaVlltKihzVHu8Sj6OywupeYnMtKfQsKaj2WtZ73A1z FlmSc2269PKbx1cvX+GucvkqSr2+0ooqp6ei1F1R6q1yequclR WlM1f5+zR8ll6/7+bVLy9eudxVWVzt9fi8bk+Fs3Kpp7La6/KVlFeUeKpK3ZWlviUuV1Wpu8rlqfR6fL7KSp/XW1JZWVzhLfO6XW53WVlJmavMa7U6tm7bCgBMCva/V9zk/00U+JnAEcgYSyQILjnAhydaN3xxKLRn31FFlQKEYEISLflk1zv vFzlKXE5XuavcXVzicbmXFi/a7R5DPJfu9f5lg2VWZZHP7awo9xSXLS+ZVWSZOqtqzlz/lFlrZuQvnbagfO58z6yF3ikL3HMWex6f65y52PdYvndaYfn0hS WPL/ZOK/BNWuieWrhk8sKKGflVjy1yT8kvn2Epf2xB2fRFlVPnV81cuHTK XPfsRVUz51dMXVgxe0H1zFkVUy0VDy8snr7INWlB1cMzPGVzra 84pxzz/VE6+0H5IFJ1427nPf55E60zFkwvWPLIQt/jhdVT5vtmLFoyfWHllPnuGQW+6QvLZueXTV3gmJZfPLWgeMoi7/TF7mnzLTMLKu+eWjavYPZzmyec2Hc1oAzgyaT9qh3bbnH6Hps0 pXTW3KWPLyydtqB0RmHpIwvzp1o8k/LdUyyeqYs9Mxf7ZuS7Jy92Ti/0TF/gnb1gycx5FTPn+WbM906b55q12Dd9vntWfuXUuZ7pi7zTFnmmL nDOKvRNmVsxY4G3oMy1NlBXXdOwsLhy6RN1FsfSmQs8lTXh5Q1 Pzpjns1qrajY8M312+fT86kmLqqYUVE1Z5Jq6oHRR8bI1G5pra jZb7BXlS1bk26umPe56YnVzTd2zdseKFStr6v0NJaXLZ81e8vh 8z7T5JdMWeB+dXW71rVhZG1i5cn1piadqTd2GR6btzRvxRf/hWyZOdixweJesWrmmbvrjJXPnLV0wr3r6bPfsfN+UBa5Zhe5Fi yqK71uwOLmvPb7L4mvunrPIOz2/atp874xFFdMXeact8s5YXPnovPKZBUtmzffcbq3vvvEf6f6jV1 e/fe+iNY8XVE+d55lRUDl1Yfm0xd7p+VWPLXDPsPgmL3DOKKiYus AzrcA3bWHl9DmVsxYvnTTPOdVa+ciisumWkqmL5haWFngqvc6y crut6O1t2wGASfYzZZH+p+TXhwJCCsEBGhL7VAAAIABJREFUPv jhTM3uQ8Ev9h1BqgSQkseSAAF27tzlcBS7XOWucpervMzlctSV Tj7ovJ56Rr9bPv4Jh6W8tNLlqijyugvXlvx5zsKswZ7M7L/l9Hq5x9AtOQMi3fKe6z7kmdy8SI+8p3L6bOo+qClrYG324KacA Zt7DtrUNS+UMzDQa/Cmrn2ae/d7snvfSK9B4Z6XRLIHBLoNasnt39Rz8Kbcfv5eA4M9+vuz8/w5eVt69WvqNbg+baA/o8+m/l19j1w9eXv+WHCPgrLesOTKTxbfs/CWx0cOX9Ijr65r/4Zeg5/O6RvpNTiSO3BDt0EbcgfXdslryB3UnDvA33tQMLdfQ87AcPbgp zIGbc4d9HR614bs7iU33jZ+y8u3SOgPQgcw6IPPpt49obB7r8q cvFBmvye75j3ZLS/YbWC495DNOf0D3fI2Zw9uyRnWkjVwU86Azd0GRbLzNnYd2piVF 84Z9GTWgKacwc25Q5szBwRyhkYy8/y5l0QyBjbm5G3qOiiYPWh1tyHhLr2eyepZe/vDW3x1n9uXfj5mwjMW51c33rYpp1/l+KmvV607dv0t6x+bHnntTXbdzbVde6/O7R/uMXBzz/6h7J7L/3hb07LV+31L9tw3afNc27t33r89p+e6v96/vXrNsSkzX3BX7FxX//mMWW9379bQq0+o75CaXoPrUnOfGPvYVl/VwbLSDydPf6249OviyxZ90+f33w64es3Nc64aafUt+br5uVN9R pZn9Vnfe/CW7D6hHgOacvIi2UOau+XVX9l70azkkY6EXmNzJ/Ttu7zboEjX/qGegyLdBgS6Dwz0HtyU06ehd15zdp/6jL881bX2cE7wdNeJO5IG1HYfVJ/br67nkJbuA4I985p6D96c2z/Uc0i4a/+GnoNC3fsF+wxo6dlvU7d+kZ7D/Bl567oO35w+eEOfmwuvfuT+BwqmlFS7S1zOIodj+9vbQEtdkb/FBf4l+WcowKUQEuCjH1o3fn4kvOfAYaRIACk0SlIBAG/veMdqtZe5nKWuUme501O8+LnSccj7+/by0U85JpYXe5wlPl9JaUmp27b2iT/OWB6fvSVe94NedzYu4bs4w2Gd4QddwhGdaZ8u+Qtd+nu6tDd05 ld0CVt1CTt0KW/q0l7SpT6vy3hDl7RNZ9yqS35Dl/2GLvMVXcpLurTXdZl/12W+ouvyki7jb7r0l3XpL+ky3tJlvavLeiPZFPhz3zXN9+e3l/0RygdC+bBD3lsapswYnOPSGZ7Tpe3Q9fhAl/WGLu31uPQ3dCkv6VJf0KW/pEt7VZf+pi5tqy51u868TZ+0TZ+8U2d+V2d+VacPXHr5ynXL89 u/vxIgDkSX/d/8rtT5ULcBK3WGF3QZO3Rpf9elvaFL+Uhn3qdLOqZLOBqfuF9v+ FavO6Q3HNIlfqlLfV+X9ndd2su6tJd16W/oMrfqUt+KS99u6PKOLnWrLu0tXfpWXfqburQ3dBlv6tJe1WW9q Et7WZfyts6w+co7d7lq+TX3bMvOi8y0tF110y5dwuobbnt/nvV0j6H1C9z/qHnqxENz9+jMjbqUV3SpW3UpW3XGyMBr/ubagG8avy13UN20RSf+dMc+XdzGq/64a3HRmSGjQwvLjyzy7bvv8QO65C26pGfjc56P7/qCLilyxd0f+arpH29+Zeg1z+cXHbMOLviy3+8+HTjqyTktDz22 y+49taJGuWbM27qkoC7tNV3K9riUrbq013WZ2+NS3xxsrJ5vvM mTMOQvpqnmpOd0GVt16a/r0l/TZbyqS3tFl/6qLuN1XdrrurTnuk36R/dwa/b6HwzDX9SlvKFL3WrI+Lsu4zVd6t/1WW8buryjS31Tl/H3uKw3dGmv69Le0qVs1aW9q0v+TJf4pc74tS7hsC71E93g6mEP zxhrn2mt8rhc7iKrbeu2tyCWwPYbCvxL8osoIKQUUggA+OiH1p rPD4e/2H9YVQSA4FxyLakEdu7cZbXZneVOp8dV7nKvKi54zztWLR9x3H ONv2Sys8xbXuyrKi1yltut61b+/tE1cV2fNyWfM+iRKZnEJyhJZpJsUvRJe0yXv5Rxb0POg6u63rG 8110b+94byr1rVdexVbljPb3ue6LLnSty7tmQM35t9v3Ls8ctz xq7POfBNRkTqrMnrsy6b2nuxOqs+5dlT1jd9a71A26uvnecMzD 7kTbvFbB0IFQOOuYdvslxywNTHsu4tSBzbHXOhNVZD6xLG7cs8 97qjPuqTHe6c+5bmT1uRfb4VVn3rs64d1X2xI3pE9ZnP+hPGx9 On1CfOab0+scWrW2ZdPrcUIB4gIxzaPiru2/747zJiTetTLkr0vXBcOq4FWkPrUi9v6zHhLUZo19ISP9HkkkYD DQpmRoTzhjT/mEa8WqXe5qyJqxKH1uVe9+yrAmezAedaePdXR5YknV/ddq9VVn3L0sdX5n14LK0eyuyJlR2Gb+iy/hV2ROWZ/y1oss415X2DePWPZ181+yMexY/sv7Nh5a/MWrSqrm1O8dVPTV4RtW9tZuuLyt/pOHlHpOXmcc5Mx6ozJhQnTrOc8nilfdsfCrtgYVJd82d8MSLU1 Ztv/zRZXMa33p49ZP9JlofrHlmYv3mP1f6s8YXZ41zdplQmXPf0tS7 i68qahxX+VTqbYv7PFCyZGXzM7eN3dM375Ub/+RbVXdnbeTGpStvci4bu7Ile/yirLFl2eOWdhu/ssvYVWn3Le0+rvqGqxctTLrMbuh226i7ut1bmfHgitR7KzPur0 6/f0naA0vSH6w2j6vIeHB54viqrOIXM5oOZzYeME0JpY5dmfHAiq T7KtIeqk6dUJF+35KM+5el3FuR/mBlyoTyrImVqRM8mfd7ciasSL/uKVOvvYaE79PNUm86HjeoZcjDheOK5pUsrXKX+krtJdvefgu0f Y/iNxT4t0XGNp1IEEIAvHvqzPovvntq76HTCAup5eHHHvHOnTvtd rvT6XS6XM5S1xrb43t9f2mrvOLj8rtX2ab4yuzlxS5neWmxt9S 6dsMfJtfqcp/Xm47p9Yo+AeIMRK9H+sRjugGhLgvnZ228IXnD0AG1V0/5oGzqO77bn5ky9s1Jv990Q5dlfS5tuWXK7mUjV00eXnWfdXfkd +sW5Lgf7lrxcLfKyV28U7MqpmWWz+hePG7ckjFbll1LfEPBNxg qrjzuvnlz8bUzq+/6/ZrZvcof6Lv0kV5VU7q6ZvZdOmPA6oe6Lf/r4I0PD2+c2XXpI5m+R7OrHstaMrHLkodyqh5P8y5ML8+Pnz0xr +iG8Kd/bo32A0gCSGPnhr300i0PVY8Z4b5mSPUfLll5d7bjvsSChzLXPJ zZcFtW3ajs9b/rWva4cXTYkPxZvOG00aAYzHsNI4Nd5i/IWX9LWu2gtJpe2XWDUusHJfn7J9cNyPQPzQoMS60bnF4/JLU2L6N+cFrtwIz6gRn1eem1QzLqhqRt7J/R0De9vmdyTdeUhl7m+t6ptf27R0bmhIal1g/KaLwkq+7KjJU35VTc2m3lH9LrLzX4LzX7L02szzP5h6TXjs5Yd mPWstvTV9+YsX50bv1l3YOXZTT0z/T3yfbnpW8Y2KVhcNKGvmkNA1Pr8zL8wzL9I1I3XpJaMzShpmti YFBC/ZBrPUMabh/27cCBT/25z83ePskbs1M3ZKes65lZ26tLXa/0mry0jcOSG/KS6vun1A/Nahh+leuSR/snLTKaxozt26P2ErO/X3J935TG/smNA5IbB6QEBiY19EvzD0io+b3R7zFv/tzU8oahfry5dkB64+DE+gFJjcNS6oekNQ7L8F+atHFwauPgpIY Bqf5B5roB6f6B3TaO6lfxsPn25bqcd80GxWg4bsgLDXxw/njHXGelz1XssVgcb779OmipBb9FB/990VCAgWbx8P7J1rWf7t969AwD4JQxITrzVXbs3OlwOJxOp9Pp LHW51zhmHnBfz92jPiq7b4ltcZnLW1bqLSkvLXaXWtesv+axjX G5zycYjyfqsTEBDHpqMB3XdX06+1F7zrprDP4kfa3+kpa8ku/yCz57fMLrt0//etrlf/u9Ybl5UPAq+95ne9y74IqJS194jzxifdM48AnzoOaES57WDX9O N7C+1/DikkcfO111O5RdIjzDjvr+FHl46vXDCrKuXnb/is8eXfP2TQsa/2p/5bIHXoobvKz/uHpL5OsRY5fOqnytKPDpdTOf1Q9aYxzelDi83jiiLm5YQJe3ss tVlscWTnn/kzsAegDWA+l6+MM/F4+b0T9+5thrZlofGW1/dNjECeO7DL3XOHRO9q1VmVPsmc6xqRuGptQPzbZPT7h0dbzxfb Px+/h+r2XNcHdbe11iINEQNugb441+vd5viA8Z44LxhojB2JQY54/XhwzxQb0+pI8PxulDen3QEB8wxjUa4/xGfdAQH9DH+43x/kRDo9FQr9fXGxNC5riGuJQNmd0rbjOMnRl/tTXl3gf7LL/RvDE3sSHR1GhI3pjTddlfTONm6q60Ge6Z3bXq1qSaTGNDgmGjL qFOl9hoNNTEGRv08bU6UyAh0a9PCiYkBRJMDQZTQ0JcoyEhmJh Sm3FV4eC6G677ru8VW24cepWzt6k+1VhnMNSZDHWmhHpjoj/Z0Gg2hIymBn1SnVkX1uf40+6+M2tRQsb9o3MuWZKV6Dfq/UZDIEHfofH+BEPQEFfX3RS2mZv2mCM7DfW3GwK6hJAuzm+KD5o NgQRjwJQYTolvNOqDCfqgXh8yxPsNcSGDwW/KqO3RvXJCwk0b4jL26BP3JvSrG/ag9V7rgrIKr6vYbbXa33r7TYihQGzG+j8vvzYU4FouGcAHJ86s ++TA1iOnBABwKaRkMrY3fseOHXabzeV0usvdviLbC6WTT7uvbS//wzNFkx1l5SXlVb6iCm+pu8Rdal1Tc/Wk+ricV81JZ8wJ0eRkakw8pe++NXVsRc8VdyT7c/SNCYl1SQNCeaXH7Xc8NaZ39eAp++feuOO2rqv7D3TdNbPuwwFX Nk+e/82C6q/zVx7PGhnQ5QTiuz3dp3v94hvcn+Y/AOVXgGM49l32QfnYu6+2G7q06NLD3UdFLGuOz3B9cMuDTTMce6 +7+11d6qqsYTWLKg9fO2azveIbz7oD9898Ly5jvaH383G9/qbLCqX1WzlpcuFHu/4KpD9AKtAstK/Xp8sHrr/6uon6wpt07pLec54aOvSFESPm5vz15kHeP/15Z5zp6YScVwy/W9LT8Vhuw4jM9VflzLEZBjQl9Hoh7UFfztrbkgOZ8eH4+FBGXE OaMZCi9ycmhMzxDcbEUJIxaNY3JCSGkuIbjcagOb7RaAgZDOEE QyAxIWCOq9ebwknx9QmmUGpCQ4q5ITWlISVhoykxnGxsMPVcc2 XWg9Pjez9hzt4c38edM/OxzLXDkwJmc70pd/XV6Y/N1vVanpL9N32P9SkTZ2WsH53gN5sbTIl+U2LIZPQbE4MmfaPeG ExIaIxPDpmS/YkJtfHGphSjPymrISm3+qqef5k8s/fkV4dNKBh17cB5N2TWX5pQYzIGkxOC6Xp/kiGYrA+YDOEEgz9OHzTowrqeG5PH3paVH599X9+M3xXlpjYkxz cajSGzPphgCBkTwqa4hgRj0Bxf+7ukcMAc/soU8sfX/c7QEJ8QTNQ1moxhQ2K9wdRgNgfSDA1JicEkfb0hKWgy1OkTAkk J/jRjg6mL/5Is+5yEayK67JcNQ/3DJ7ofKLS4Kio8ZW5HcclbO7YDaBuc6G8o8O+K7KgwrXFJf3ji zLpP9m87cloAxPb1cAKCAsDOHdtt1sKy0uIyZ1lV8dxXS8e0e0 efdV/3tG2Ks8haXmZxFZfYy712d7Fl1YarHg7ost6M05+Kjz8Rn3BQn/Se8YbVWZUPmYP9DOGU+HpzfL0hLZz6u9dGZC1LT1uSc9XLN9zz zqTfrXg05S8L+//lla63NN2+vHlQ6awbVleOLFx86aP3WOfe+Zn9FvCMBs8AVjHs4 6orC91/GrB4XNKsKVlz81NnL+hXvNCx86lbXPN7Tx43+5VN94ca+s5YOH D24hkvPHvD8or8F7fY/9Y0ObAxa9rjhhlTu82fOHXV+Pe+uB5oDxBpIHO/OzBgc+3vqyb2rrw2w/vH6+7sv2BIYvmMEYU1140K3nLZ46MfGDZ0Xv+rnsgY1pjS73Vd lybzNZU9yx821Q3PXjEu6XZP/HBvbtE008aeBr8pzm/U1SfE1cXraw0JG42JtYmGjQmmBlNSICm+Nl5fp4/fGK+vNRhqjfr6+Pj6uPh6g6HeYKjX62t1xrp4Y61Bv9Fg2JiUs D7VWGvWN+jNdTm5vjFx18zoOTI04cF96b1rDX+Zm7HyD4Z6o6k ms2vlPcbrrUk56yeM/W7QsOd1owsyqsYkbkxNXG801iXGB/Tx9ca4jXp9nUFfZzBsNKQ0Jqc1pCatTzRtTIxvNCTUZ3YrvVef Z8sb/vT99+1J6es0Pjg5c8XVpg1mQ31cfJ1B36DXN8TH18Xr6xLiag1 xDXpdQ3zv9V3vui2nwJD0cN/kKyy9UmqS4mvjDHXx+jp9XK0+vtYQv9Ggr02I33BdUvjNpNA+c 6hMt75HwgaTYUOKocZkqtMbN8ab6o3mRlNcbby+Pt7QoEuo1xn rDIagOc5v1vkNcfXmrDWXdZ+zQD9kdVze2iHjXffl21w+r7u0z GKzvfn2NgAtZ5r8hgL/rnTEBQC4kAAfnGhd/8mBbUdOSwDgFEBKoCApALzzzrtWR4mz3F3qcq8tXfBV+e3MM/zrypsbSma4Sssc3pIyb77HVeJ2+opWBG56uDmx66sJqSfMSW2G 9HdNf9jQo3xe7ppbUyuvS6+6KmvD4ER/SlzQbKhP7lKTlLMxzbShZ27lmOwJHl2vWt0l1d0Xzclac01WTf 8RldmlywZ8tGyEqLgcXCNpxbDPqgfaVvYfvDbXXJuVEOpmDHVN CvZOaeiTG8q77Jkre6/t23V1j1HP/+Hmrbdf1nTFwNrRo569rUdoxOV/u/6Wl/6aVzOq17qek14Z+t7RSwHngjQDTTh4ulvVC9ePmHlztzl39Ksa NnBN7uXVt3a/oyAuz3HJ9HlXVF9x+dq+I5ffkjZtXOL94weVzO5bWGy4tkLXa1 3KHaUZq/7Stebm9PsXx40uy3Q+khzJNQeNiY1JiQGzMWAyBVLMjebkhqTk xqRUf0pGOD2pwWRuMJkbTaYGU5I/ydyQmORPTPKbTI2JyUGzudGYEjAlNyam1ZlS6k2GoDGhOTkxkp hWn9mz+k/6m2b0vKz59ju/TOtTb7ynqEvNTcn+xNTG3NwVY823FKd3rb/l5s/7DP1b/O8dudW3JzdmZWxMTmswG0JJif60pPokc4M5IZhsbEzNCuR08We b61KT61JTa83mYHbW0rsNl9vyBj99043fGvttTH5oUbe1fzLXZ Zn8iWa/wRRMNAaN5kBCSmNyUmOKOZCiDyb2q+/51zG5lvi0SX3Srinul1nfxdhgSmwwJwUyzPWpKX6T2W9IaDTE1 91kDr1tDh5JCVQl1g40N5pT6jLT6lJTGhKTGlOSQt1SmjNNjUm mxhSj35Ra1z+96urkiuszai4zBbqYG5PT6tJ7r77bfNvSuEtWj HzQObGwoLyq3FtearMXbd2+A6Bzy+tvcYF/T2RseSDGPP3BidZ1H+/fdlTzBbgEjWJLAsC2XTvtxcVut9vnKgsUzThSdjN1X/6h5+7VRXO9Lm+Jx+f0OL1OT4XzieKV4ZsmB1N7Pp+Zdjwt62ji 6M25xfZeGx7LnL1AN8KjG+XLXTw3q+aKpMactECXjIb09Mac7M brcgqshoEbEoc0Z8wp77L2qlGrkzzreny4YmC0YhCUDwLvyN0V I0uW9b90TWZKjdlcm5RWl9qlPq1LXWKXeoM5bIyPpJjrUjMaU9 KakpNr4zM3pGfVDsjdcHlWzaW69d10K7pkr0yb/UKvT452FywZWCIQ85H2vk+8P+xqf7/c5cNyVo7Kre2f6U/PbMrqsfHWLo+64q6q7G8r7rbh2oxwl6yWnmn1QzPqR6Y2Dkz3X 5tdZE0YEYofWNtjkWX4iqk59y3SXTc/x/dAZrB3uj85rTE9OZBsCptNTcmmsDEpaEoJmDPCqVlN6amB5NRg SkogOTmQnBJMSfYnpQSS/z/23jM6ruPK9z2pTuwINIDOCTnnnEkQBMEcQRCMYs4JGeiIxEwEI nX3Cd0NJokSlWVFZgVbtmWlsXRtyZIseySNJVtZJLrP+wBKlq/v9dz34c3orXVr1erVdVYBXV/qd3bt2vu/mQBDBxgmKJl5IgtIpQEZE5BSfob2K2h/FBVQx3hLZev2S+LvU6ivgoQzyn27I7k8aUApDaojPVURWw+j5n tR2UuI5nHZyn7V2CxJQKFgCUWAoKdoaUCm4CkJj1NTFBVgIoMR kVNKQqDIICELUuR5qWKiXNJgxywXMMVzaJIQuXe/arKYCURSQZoJElSQxM/i9BSQBhhJUMZMybApMk7QLauPaoWla02yEodRJSiZgIL2y6VnK dkUKgsSjJ+mggTKzSbPXSPPvy055wKciZoipUEZE8SZICL1U5J z0ZJ7I8iAXMJrIidyo5t3IkUOKLctaveumIlSeSBCEpTEeOqo5 f1I1kDamo51ba19R3v6Xfauzu5rV/8vBf5ftn+Rhv09BabFUEgUxZc//nTilT88/vs/fzE9HRKn74i3xdvhO9+JIVG88vwz7a0tToejz9byUPeav/YWfdlb+DPHuoGuVqfD6XD0Oxz9TkeP2+G2jU6UbPRAyocx7N9g 63npgZ2yiWJ571y0cnuEbiTKdAqbtVp1pIKaiMY8AHgxkouSDi 5DZ5+EqEtYHqtxbqo7EXfpSOLXRwpD7lTxWMZvT+a1HytIPV1E D6ZDQyZ8JCZ6Uh8xHIkPUdg4IMdgZBSCPYDwyjFOiXMExUYrTl RiDfdA2W3ogh2143NtT8f//F3T9DcqMSwTRdkfvzTxv1i04OQ9Gc6NWeyK1AsV2eczii/mVD9cmXmuqIg/nLn9fvPcCxX946nsYqkngg4QgENRHwazgPRG606sks8egfQjsm 3thuPrqRW7oOKDClsDPaGmx3FqnMA9CMbDiB+D/CjCYZgXpgSc8pOoF8FZgHlRzIuiPgzz4YAlEC9AfTjsBYgPBz4 CeADqxWGOxHwE4QXoJArzGPApNb1LlXNPQQZBMr9He6qOmpACD 44LJOGJjjw6R7LCBlkniKIT0fbVFBsNBBR4EODDUR8gPID2ILg XQnkUYVEJT0kFCmURwAPSJ0G9lNQbHXG0nF63A0sbQ5KGotp3U 2NWyIcjHIF4MZhFIQGGOQj4AOJDYRaFeFg3GbFwXmQzIlljluR 0RDM+gHAwzEKID8K8GD4hRyekCA/DXB5+4WHi4uuk3wWPW2EWRTkUZjGUZYCHwngGD0rhSQkxoY0+M Q+UNytU98Zoz+I5+6J76mifAmEx2UgFWNQBpToTV7U3Hj7k6ne 67R3tbR1Xr81QIPx/KfB/2v6FJMOPKDAtiuLLH3/qfe39C7/53UdffnVHDH8jfh2+PR36ThRF8YXnn3K0tjudvW5ny2OOZZ/3pPxHf+FU1z1Ot93R0+129PbYBxxuu8Pd1T3EFW8IQoZzUOwly UabcnKWYjzR1L4CztxWPPeppQ0/xzM36ZyLCV80FkQBr1KOl8rXbMdVQSX99Ozcnstty//jSLrYbxZ7Yj93zeZ3biqbt0deayPnd4IF9yS37tnx3IkDr7t3v 7F/+fXF5snYbDZr80trYwUT4cWRAIELSsVIAb3hMKQ8kpvr4tklf/nULIoRokiJovRPHyQf45ZU7dmfc88gk9xGpe2OP7DL2jt39tn6 jddXb7iyJnuw3rh9pzz9NKkdTt9iLxGWRXkiZX6C5CBaQAkfRv nkquF82aoWKLlPsadFN7IRrNkLVbTInY0SQUf5MClHUQKOsBDq J1A/BfwMygGMB0SARDkMD+CYgGJ+FPNjOI/jAolxOO6nEBYQfgqwOCmQJAcwjgBTMiwIEwEYY3HSp4gay1ft3 wHltkg2H4gay2Y8KOGhAAswD4jwWaO6GqG8Vmn9Qd3oLJSncD8 D/BKYJ0CAxDmS4QjAokiAQDicYhmao2EWYAEa89GUX0b6KJrXq8c Wypd3IIXtEbYmRjBDPIH6ZTgnwQQKDgBEwAiBATzA/DgUQLQe5cL6iMMI3WSR5HbHSAUaFjDETyA8jvsxegpgPAN7rST fQp99jTx/FfUuBZwM8CjgSCAQ+JQE40kkgBBnUYyVSXyxyv56qGhPQdETG5 veotMOKduWKdh4wqeMGplFLjgAp9jT1zgaW5tdR1wuZ3dHV/eVG7dEURR/2nkE4e+FZUI/HL1/rLf393l/H/59svgPmdf/oof+N/1/LdIS+kcxz7//ajg8LYZmEgd//dFn3lc/OPvaux9+/VVYDE2Hvw2H7taiePHGNVubvcN93O5ofsq+8LO+3D8PlF6yNzo ctg73UYe73+l0ulzdDrereyhYtCEIGcfw6qPRx1YxPgszodO75 +CV6yJTRrTpXqJ6rfb4HNJnQgIU5YvSupfiWVvzEg4/cHDfn9yzRXem2Bv7VV/l1KY9Ven9pGoCUgbRmAdhla945eWjF/+w69TPGo+zGy4cbX7FaX/HZnvFJnwWXPXMUvI0hLGElNdHH62KmDd3cGjN538uFEWtKCLiN PSn90oc9l5r3CUIeYZUvGLJfMWc+2R03phq1T3rnrYPvDOw/6m17tftrS/zlsZDmpTBtLJHI+oOZIyuiOa0Up6hWJziARAIxC9TTGQxa3dAq d0Ruw4bB+8hGvdAlQek7pU4r0IFGPMDzI9hHAY4GmNJwDOoD8d 5kgoyKAeAH6B+FA2gmIAAHsc4gLGA8BMoiwIBRzkA/CRgCcxHYlMM4kcJP4n5GNwr1XnzE13d8nlxJUYQAAAgAElEQVT HjW1t1vMlMVMGI2cxcFrNlN40lZVybL+i7pRp41HzRA3CIoAnc U6KChTqp1CewgUC41DMjyM8QQg0LTDAC7CZewqBxAQcE6iIM/nSFfvg/FZ5dxPts6Achgo4xjOAB7gAUI4APIWxOMYTkB/VeiMX1EceRiVNFianM0bC0QgPUD+J+HGYpXCBxniAepNofy9z9 m1q6ll0ohrzwcAPEwJNsDQuULBPivESOkDiLEL6lfRIGbJ4XUR 8vyXrNF2+NaanjubUKCdRDVcz9Qfh5O6kNZ0NLQfdR9xOl6O10 3b12i1RFEPhO9P/pIP+X9b+c1vgHyS6/vHJD3PC/9R+/PyHWd8LSczc3E9/r1R5V8f2x99nhv/iv4W/1w77n9YQuqsWK/7q4888r/7x7Ot/+OPXX30/Xfx2Jpvo5lVba4vDYR/s3vqWa+5tZ/b7PTXB9g1um9tt7++3Ox12l93Za3e4HENc6XoWUh+n5thUp6qB hwaTeOQZi+JQPVSxDyppjWhulI0ZUR8BOIL0xkT0NOCJu1akbJ o+s1o8pvnrsbRLtuXVtQcJs5Oc3aPY3knv2YJv3JrXcnLspTdr OlhI3wOpTpBF283dNdUPL9j/SsvuW7uSPHHkBInzgGBVkiNFGbtzbt/eIIq0+FXq0w9sXjq/Ly7uGgS9CUGfQuin0ohPElM/0BlvKlPPRm3YlcPO2/j8xr03tu96Yd/sC/dot66X5ndrykZVTbuTfbVyTsL4GZxlMB8KcyjCRSmHK+lVB6GE HuXWFv3xDdSqnVDxLol9GeGLRHkY4hCYhzEegT0o5IMRDsA+DB dIMkDBPhRlAcoCjAcIi2IchrIo5kMAj8IeGPEggCMwL456cITH IQ6FPAg6CeBJEozL0gJL87o8xnmBjJbjaf4lSWeLqu+vqr5UlH W+KNPbkNU+pKkI5G71l57bRvsUwAOwCYCxAOYwiAUohyE+COVQ 2IcBgWT8NPDAKIsCHkVYBOUxlAURo7mS5Xuh7MPy7nWM14r5UM gLIT6A+RDgg1EPirEE4sERloB4RDupWjQvshmWrDNJ89tjGJaE WBLiaMQPIxyKsATMIZBXRwXbiAtvkOeuIOOzEQ8DcQD2wwiLwi wO84AQSBkvBxM4yhI0GyvtXARXbYfK1yoOrpSfycR4GczhEUMl ZF07lOyKbWxZ2bzPNeC2u+zNbV3XrtwURTEUvvN3kfz/8vafUODu1gqF7ty5Mz09/a8n//Mf/uPo+7f1P77wf6w2HZ6R7v67+PSM4Mzfd/7M5/T09PT034V9/2GpM5EBovjrT/46+eqH5954/0/ffCOKojh9W7wduh0Ki6J444Wb7Z0d3S7XhGP3n3rmiK6sVxzzh zr29riPDDjsR512u6uvs/dYd0+vfVAoXctBmlPUPLd8pAY/K0d5lGalEZ5E6fEy5WCtzJtIB0mMAxIukvJGKUcrZA0terX9aM PwZPOBLbva4iuPQ+aT+LJT2hMNUf40qc+knyzY/ppzxdP3mLtWUmV9upyL6qoOyY5Ssj9+4XObtrywIeIELvHLMY4 BUzIwnqraU9nn3ffYw4MrF4wx2DMQ9BkEiRJGpPCvGeorZfSfM gs/i9ReoVIHUhy7Y46kFFwsXX29aeFTq0zDWYaBQt3BioiNedlDS7 LOlyu9ERJeDnwoE4QJHqUC0aozFZKGQ1BSj2rHYevwRknDbqik RWlfKxP0OIfiARIP4BgHE34SC2JoEAA/QfgpQqAxH0UKUpyjyACD8iThJ0k/gQsA9wOERaggjXMEwzM0S+NeoBAUuqBazUUqJpV6b2LmsS10bg 8aNSCbs9/sXpzhrdp2ff2WK2tL2Xr9gTVIphOovJKsztyR3QpPIuWTSXiaF Agg4AhPkAES5zHSTwKBIPwMxRO4Fyb9BCkA0k9iPIb7KdVEgWT 1Aai4Q9bVFMEn4D4UFwDOUwQPKAEAHyD9DOAI3E9DfkznVS2pV 7WjsvUmSUGHWslLMI7BORkZALQfowUc51DgTaD9bvLsm/T5p4CnnGZJQiCpAEUKJBGkMD9OCQjDo8CH4X4S+CSRvlT5yRLJ yQKlNxGwDBEgKQ5oRsrouTYo5VhSU1dj+6Geo71Ot7O9y3H9e1 sg/FP2C4RC4Tt37oRC019//c1nn3326aef/uUvn37yyX98+ulnf/3r5198+fXnX3z5xRdfff31t7dvT9+5E7p9+/bMFv3/dN23b9/+Zz3v75F1WxTFX3706eRrH0699t6fvv42HBZD4dvh6dBMyYkbN 2+1dXR0u11jtm3vu2d/25P7knvJya69NpfL6eh2Ou3dTpfDbbf1OuyDbEWjD4o+Tc7toU/PgnkGZwHloUgfoHiK4OWIByN4DPgInJWgAiHjYrQD1UzjenrOj pjGY5GLL0GGcaZyQHNsI+OxkgFaOiKrmCo/+G927UBtzO6tmkXHFGVuybw1srZC2YjZJKRt/u3uWM5MjeC0lyZZkvKa9H2NRHYXSjyDQJ+hkEgBEQO3AfktDr6 jkS+k4KO0jOnkyo/j11wqGNmfe39pyv0pWfdnZ92fk3Z/Qur98bmXsoovZpfeX2LlzZJxKc1HoSyNcijqA4BVRg2XSFYdgJ Jcip17DUOrycbtUGmr3L6B8ekBCxAWRzkU4zCCJzAehXmA8AQu MAQvBZM04ZUCL4XzFOJFMRYHLI5wABFwxA+wIIEIKPAjhIBj41 T2k0WLX14y67nyuS/WZkwVZ7bt0WacSym8hhdum3P2QNsf7S2vbD9wa0/vO5MVR3oh87H43GfkuQcTjmyI4LNRL4WxGMrhKIdjPCAEgLMo4 HGUw0mBpnmC8MIYhwIfTAg4ysEYT0SM5UpW7oMLWqSdTRKPBfO iQAAoS6AsAmaMCJ4kWEAIBBRAdF7lonplG5A0Wenc7mgpJ0UFA AQAOApMSnEfhrIQ7imV+x/Ep97CLhxFfXGUlwY+AHgS89GIgMEsSnMRTCACDiLoFIJ5ScIjx YM0HqRRH4lwEMpDwEdGDVWSdc1Qcn/C6u5VLQfcA26bw9baYbt29ZYoitPhO/99icX/kgLfb6rpcFgMTYcv3fvAls3bN27YvGHdpo3rN92zaevWLTu2b9 u1bevOXbv27d9/qLm5taWlraO9u6vL4XT29vQMDAwcO3r0+MmTp4eGRkZGxkbPTE 5Osizr57mA3z8VDJ4/f+7eey/ef+/F+++794EHHnj4oQcffeihRx555LHHHnviiSeefOrJZ5995urVK 9evXbt+48bNGzduPv/8C7/4xcsffvihKP7dIvjRasVQOBwOfSuK4Zf//dOJ1z8IvvHOB19+HRLFO3dFB8OiKD5/80Zbe4fb1n6vo+nTnpIv3flP96wdsB12OLt7HF0up9Pmcrh6Oh 093e5Bb/VaFoo5StR0R56aQ3rluIfEvAQqoBiPAB8NJiWEF8cFFPUDRCBI lpZ6FfLJWMNwg3ZbH5Q4hBaeUPdui+SSFGOZCvt82cblc0+eWu u5rJxlQ1Ja5XM7VTv2kW11kWdSJeMSyaBk5ctNmZcL0FGcZAHm wyXjVqNzB5l3L8R8TNEiCb6h0G9R9BsE/xbCv8XAdzj6LUX/hVa/xeReTLB1xHjSZH6pbCIickIdLUQqWGm0R6c7o47yRih4RslLaU 4CcwQWIICXJMcjYgYrqFUdUOpRxe5D6qEVZNMWqOiQomsD7dVj PArzKMICzANIFkd5COYx2EcAQUIE5AhLIyyNcAQqEDCLkhxJ+H CMw9AADgcwxA+ATyWZSKWPZ2snyhe+vCluKik2oFvyQv2s4Ors 3ccV8Q9IDefoeZuSxmprHp27/cV7tt3Yt/iBezKcW9HcNkJ/RFG+J2tyB8MlQT4UESBEwBA/jvhRjEcAi+EcQHwYGaAkQQp4YZxFcD+KBQDGwRgLZKM5ksYDcG 6zvGs9M2nFOYBwCMaRGIdhLApzGM4RhA9H/TjOoppJ2ZxVyt1Sck2sNNupxwMyyA+jAoIKOOwlgI9EfAD1zaG nbuLn3wAX9sO8BuNkMEcifhTlCcATuI9ifBFUIAI6i0JTCMGSt FeJ8FIQIFAfhvkJzE+hHnnU0FyqvhlKc8Sv6Vh5eJ+912Z3dre 1d127ekMUxZA4/d8UMSSK/zsK/OjtGpo5CPz7nz/ZsW13eVl1aXFFUUFpTlZeXm5RXm5RUmJ6Wmp2RnpuRnpOSkpac nJKTnZBfl5xVmZeelp2WlpmWlpGWlpGenpmRnp2elpOZkZeRnp OWmpWZkZuelpORnpuTnZBVlZuZmZObk5Bfn5RQX5xQUFJQUFxY WFJaUlVZfnsivJZFRWzamrq5sypmzu3vrZ23sGDhz766N/vIur7c8oMBabDohj+ThTDv/roM8/rf/C/+c7vv/h6WgzfDofuhG9Ph2+LovjCzStdHV3HO1uuOld/15P3V3f+ue4ml7PT3ePodXS53W5bT4+zr8fZ0+887StbNwYZjp Pz+lWn5kuESJhF0CCBBQAeQOkAhXspJijBBBRMUWCKBEEE95MK X5KufRuafgjJcagOuQwjqy1H50dtagYpE5BsbMm+383a+DIRfS J7Fhs1b49pYFsEVyrlNLIxhXI4suH1lZVXK8kxmuZxpV+nPbo4 cvFpSHWVkP2FkH2HEl8yktsY8TdC8jcU/xtN3aGJ2zj4Cy35EIp6OrJhRH1iSaTPqBo1lDxUv+jF9fkP1dZ ebUw5VzLr1uKCn82OnoyTsno4wIBzFMlRcq86ZriMXHMYyuiL3 t1hHNpErt4DF7WobJtlXBzKIViAxP0S4MMlAkUJGMFSBEvPhBK hAgBTOOLHsCkC9gPST5A8gQsk5qdRPyXlo6NPFkftuQcqWSddt nfD5XMND9tq/A1rH7BVd4+Yah605L2hSn3cetARy8+K45PnPTV37tML04J5ycN z05pdEUUD8ev68s9vwQQVGsRAAMP8OBbEkSAG/ATGYpRAAB4QAZL04ziLMH4C86P4ORJwCMmTyskCuvEgUtgm71q v4JIAi+J+gPMMxgEyQGECTgRojAOkH5dwRIRHUtVpaDJKdiukt U0qJR8B+wmKZzCOBjxNcTLEwyDcfPLcdfLcq8TZgzCnAQIFeIq conAOSHia9jE0L6F5Gh/FJJM0fgalORqbJKhJkvGgOIcRAYrgpOrhuVR9G5TuTmzqamw76 D7idLq7O7tsN6/fEH+atsCPbewZZY7XX/+3uXUL8vNL8nOLMtKyE+NTYq2JcbFJJmO8QW816K1GQ6zBYNZo dDqtSac1qWP06hi9TmfU6fQ6nUGnM+h0Rp3WqNebjEaL0WAx6M 06ndGgNxsNZq1Wr1ZrdTq9Xm806K0GvUWrNmo1RpMxzmyKM5vi 42KTM9JyCgvKysuqKytm19TUPvnkz8R/9BH+/UQQvhMKh/90O3T2rfe9r/3+hff+HBLD0+FQaHr6Tmgmj+B6a3vn0a7Dz9mXf92X/1FfKd+9rtvZ3e209zocDnuPzdlvd/V3u47bBj2lG89AxpNgzhH5yTqcZVAeRXmA+ymYQyEOxngUYwHp o8lxErA0xkkjxxPU9nWgsBNJcMi2tsccP8is3Y1nn0B1DyOyJ2 gTV7f7qbkHn8BTbFF5/ao6V8yWg8rW+YrBEtmZnKiTmQ239uTeu4wazCTH01VDy2TreqD onyHQJwwZIplvYewrFHyH4t+g4K8A+yuFfM3A39HIbYB+BREfQ MYnVMuGtLsOZDodGy/cn93amtfdsoKbqD1+dAPnW895klr2RHaso4/MZSbjKQ5nPCrVUAnVuBNK6Yze3mo6uZ1c1QwVtsodq6hANCZgC EdCLILwCMYB4CMJj5SckMhYmYSliEmUYjHch+E+AnhIwGGAB6i PQjgGYWnZmEHdVgdyt8cWCNEJflPO01VrXk+ad8la9YDM+rRU/W9JmV+YCl+Ibz+acH6B5VxGQiDeFLCYLhhSzxcVnGzVLToRv2U gSahH/RjKY8BD4iyO+CCUxwEHUA+MsRjCYmSQov0k7kNxFkN5BBYwlIU BC2SjOVTDPjivWdqxlp60Yl4E5RCUJVEWYByGcAAWcJhDSAFB/IiUk5TZTA0W+WGMqatjor0KwNOkhwAsBQQcCAjCo4ivij5/nTn7FhVshj0azEdhLI1zJJgkKC9F+AjglWn85gXP1m/+5fraZ2vkw/LsR9KW/Wq+3hdBjiE4iwGWiBisJOoOQynOuNXtq1v3OwccNkdnW3vn9av XxZ+8LXCXAi/+4lcV1XNy84pzswvTkjMtxlirJSEuNjnWmhRrTbJaEi3mhKTEN JPJGqXSxETrYqJ1GrVBq9Gr1Vqt9gcQ3B0aDEadzqDRaLVanVq tjYnRqNVatVobFRWjjtFbzPFWS4LZFG8yxpuMCXGxKWmp2SnJG QX5pVUVNRXls4sKS86ePSv+4Pr/Yc3hUHj6zu1w+E5Y/Gw6dO9b7068+u6N9z+eFsNiaFqcDs/Usbvx/K3Wzq6jXYeuuZZ90V/4QX/NZPeWdper3eF0251uZ5/d2e90DXQ5BjpPnilZfwYynsFq+5QnK6S8jPTFKMbz5COF5EQCE VBBAQibggFPkF6cYCmZz2TsbyAq3HDsaeVKR+zgTlVrI5nXpkl 8ClVflNWNmloPz5o8cM/jJwxtTcodO1Ur++X5NnleB1V/Epl/LLreuWv0+di1o2j9MbDgFD3nEmK+KZH8mUL/RlJfkfR3BHJbCsIA+RanbqP4dzg5jYNpDL5DoGEU+pbAPialv4 FVTyvTry3b/kn1gpvJhRerl72cX3artu7F7Qf+3ZDzOGK8hGaPRe3fEeNNo9l o1Ugp1XAISnaqtx22nt5INuyFijplzkZpUC9jNQqfScrKAYdhA QkkkGiARnmc9DMUL8UnKIlXSk1SUh9NT+C4QOACTnIY6SchHyF hrRG2udSsexpaXixdchWKESDDOSiOh3RBWHVFEfO7lNRPEoufT W61JU/VxvnT4th4Cx9vntInB3Lyju+PqTuavOlY0mQtNolTEww9RhAjC JjAIS9GB2iCxXEBx3iMDBBMgCJ8GC0QmB/DggTGwiRPyCdyqdX74IIWeed6uS8RsCgQUCAwgCdwAYdZFPOTK IcRUwAKQHKOntNp3qCTHsYkcxbINKwCeCmaxYggiQRx/BwB8wossJk6+7Lk3BsEvw9h1cBPoAIO+1HMj+NBCuYBMc6knEt v/n37igdXdbzWteyR5Vt+uXXDz9cvfK6WHiIYjgQsFj1aSc07hKS 4ktfaGlr2u484na7uto67FPip2wIzi7v+/IsFJRXZuUV5+SVJCWk6tcFoiE1NyUxLzU5NyUpJzkxJzsxIzzH oLapItTpGHxOti47SqWO0M9tbo7m722Ni1DPDmScajVaj0arVG rVao1ZrVapojVqfmpIZH5eSmJCWmJCeEJ+RlpqXnVUUH5uak11 UWVFTXlZdWlL+4IMPijNhl6G7xRxmLgimw3emQ6FwWPzLdOi+t 9/xvPbetfc/mRbFkDh9R7xzW5wWRfHG87faOzpGu3e+3bfwu77819y1Qx3bbT 39A0dPOm1Ot7PP4XS7e3rt7l7XGV9Z0zikPUnM6Yw+URrttUQf r6MatkPlh+U7W9VnllNcInnWSAZ0dNAoE+LVp+fIVx2CDAOyhQ NRJ5bFsPmqvXXRhV2Nu97WL3ZF99RLJ8wG1rL+tabkcxnK4Txy zRrjrFPmoikkhoPoYF7pL7bs+pCK5DHpo5j0KVx5E5U+z0hfB+ AdUvIXUvoVBr5g6C8B+iVBfYlK/4CqXgPqF2jLs0zqI1jiJSr5USLpATQtAGUNJy4/v+jgVdOcUcMcIaqUzd3weOY9j+HZfsL0JKx8Fk1jow4fiPGWyY YqyFU2yHpUu/Vg7GAj2bADKu6Ism9Xj8yTH1yBLFugalusHS9V+ONIv5o5q8fP RcHBCPSsEhEIIkACjqD9DMECTKAQjgQ8TEwhkICQgciI4cTolt rYHTvSDnYYm3crD69VdWxRHtivvudY7OLHMireTMi9nH2gLWVy Voo/Z8mz8xc/vSgrUJox0pCyuz+i8HTS+uMVUztkZ4yJl9KLnyzOfCAr5cF0mp VQLAl8KOHHcQGQfkLqp0gPSnEEyt+lAMEB5WQutXovXNSs6F6n 4BKBDwUCinEUxmO4gCMcwAQK86GUHyACKmXpyk7dOj3TjDAL6q QGjxT1EjQvwXw4LuB4gIImk+jAUeb87+izzyPji1FWggVQ2A+h UwgSJMBZCnAIMyFPCGS1f+Dqer3L8XLbAn7e1hf3NV69Z+ebO5 QjMoYlEB+iGq0k6w+hqe6Upu5VrfvcR11Ot629o+vGtZkTwe2f HAV+aOHw3fIbT125XlhamZtfkpWdnxCXrInRx8clV1XOqayoqS ifXVJcWVE+u7SkMi01KzpKq9eZjQarRm3QaPQz1r5Go9No9Bq1 XqPRa7UGjUb/Q9dqDVqtXqvVazS6qKiYKJUmOSk9P684L7coJ7uwIL8sP7c8P7 fCak7LSCsoL5tVUlJeVVV9/fp1URR/qDsYvlteOnT7bsEJ8eNQ6MJv3/G9+ocbH3xyRxRDoenb4vSMX+DGrZ+3tLVNdm14v6f6296cW47a EefByw8++sClyz6v4A9ODY2cbO1sOeP1Xbr28sItXtrasSd4s4 zfFO2okC7bA2uPE4r7gOG8aum4clcrs3uzbO8Gev8G+d7DsiUn oYQjRHWHpn8ZzkcCQRLZU6BasTFp/Qld81rFmBHnIHQYK32qcNUrC6MHDcz+Kqh2HV59WFnTal0+sI3/ZW7rIFi8Q7rUrlzoVix1ypZ3RSwawxOfJpTvyaRfY8iXCPY5wL/AZK9L8u+LWHlKuu5A1OH1kb3zZUcrmYFZdN9c6cBCxZGFkp45p LOS7q2m3eVSdwnRUwM5qiNOLDHa95KzhyHteSL7hK59a9Tp5fj KTsjaF7V9j/70SmL1Lih/j75zp6FrM5x3AKhPSNMnjE2nInbtkO5rku1tYg4uUp6olnKxCI +hAQjhUJQDMAcQHwkmJcQEifkQJIBhQQQ/AxlPJlSyq3M8dZJTRtprJLyxpNcaM1aU3NEnSbnPkHaZqV6TNF hX8/iinS817bl5z6qHdyQ174OtPRGJ58mCQxkDWzLO1tTfWjz7sdnL ri9d+qtFxosGdBQBLIb6MdRPkAGaFAjChwIvCvtgmMdQHww8QD 6WSzfsh3MOy7vWUuMmzDeTSogjLIJxKMITEAtQH4p5IIiDZRxT 1qVbbWIOAmntPHnMuAL2UNgZGTmsoIdxYgyCxmKZQD958Q3iwm PIWD4+BrBRCTpBEj4aCBTqRwGL4yMRyedLd75+aN1zq5tf3Z50 wjL/4YWtv7dvfW2rfJAB4zDK4dKhCqyuGUruiWtoX9W61zngtDu7W9 s6r1/9/w8FHn3i6bzCspy84uzsgsT4FL3WlJaaNa9uUXVV3ayq+oryObO q59bMrquoqNJqjEaD1WyKM5vizOZYo9FsMJhMJovZFGs2xhkNs Qa9xaC3moyxRoPVoLcYjVaj0Ww0WgwGs1ZjVMfoU1Myqypr5tT Mm1VdN7d28ZzZCxfObygtnpOZXlBSXFVWWlVbW/fLX/5S/LHNcrceQWhanJ5JKfoyFHry3Q89r//hsXf+9Pmd6RkBkjviHVEUrz//UltX+2TXuvfd5d/0ZN90Lpjs67x65cajDz187vy5Rx572Ocd7exocQ0cv/fZX6w/LGTP7b3vrY/3Xxkz7tkIJdgtSQ8urP9thOxxQvEsqnsA1T6CRT0DdM8A7RUo8 jG88ExU1yYZF48IBBOQKIajrafLCyc2ms+U0BMRuI+hJpQRQ9G rf96w4ze7cr3l5qMVlt5Fdexe+yv8kqdbqKFUhk1RerOiJ/NU3iL5eK7mzPzoQy444zIue59CvpSRt1Hqd0zefZr25mjPbAkX xwSjwDkKPQvIsxKKtahGZyuPzYocL6RYKyGo6aAUCCgRkBG8RB GQR/Hxke51WNVpKGpcXu+29LdKGt1Qslu1+4BhZD21dh9UulfbvS+q dSNRtGvR+jct8Vdg5UXUdB9kOAtrg4jpTMSidsvRVYzHRAQpwK OkgMICAQdxkiOUHqncy+AcCfyMfDJ61sU5Pb89uvpnaxNYi2yc ZngpykGqQHRi3w5J3lhSyeN40dqaqT3Nvx9o/nXr/udbXG9PVvcdQw0n0kpekBd1ptgaKy4vnn91ceJIfPX9FYuen6c VophJgvABIkBiAkEGJCRPEz7A8DguoHiQIFiM5mjVeBG96hCc3 xXRvV7is2A+hAgQgGeAAIgAjgkEIpAIj+F+APmBjJNWdBvWmqW tmGz+XIVmNCb+kcSFL9ZXPzY3lUsreSSZGTYyvJu+8A4VeEYxN nvOc6WLXlqoF8yycQXjw6kpBAkCckyacja94eUm1Sndol+snnd 16bIrDR1/7Kh4sEA6iDIcDgRSNVZLzG+D03qTmrob2w66j7jsru72Lvv1az fFmRPBfxsE/g8oMOOEf+zxp7LzitMycjMycpMT03QaY0J8yuxZ9aXFNWUlc8t La6sqa2fPmltaWm7Qm3Va04w5YDZbZyhgNlut1jiLJd5kijUYL Caj1WKOMxqtJqPVaLAaDVaD3mrQWXRa04wpkZWZX1ZaXVRYWZh flZ9bWVFWXzNrcVZGcXFRVXFRxcIFi99++y3xR7FJ39cjmKlOF ApPh0RRfOXTzyffeC/w+u/e/+KrsCjeEcU74rQoitdvvtTS0erpXvNhT9E3/TlXelaM9nRffeaWZ2zCZu986qkn7uPZgc6uU8Nnzj11dbvt3Pr mJ5sDz/W9+VCWsxWK643WP5CX/Sta9hgR+xiRdT9heQFD/0xDX6HQbyH9VPSuvQpPNjQlgwKIhCMjR2JKH6jreq+35GKpaiS aGlNSnAw7wyhHDAuurWr9/UHbu82t/+NQ8zuHKx+voJKVB+oAACAASURBVEcogiUIgcB5HPcDPIAjPMA 5WdR4ZcTOfjT+Cop/SFCfQfIXIhYNa0/PI/xSLIjgfhSfwlEOZzyq6GOzmSW7oIzN1OqlkaeqqVG1lMVxAQdB jOQQ+Rip9EoUk0lRbe1wwgSWfdLccUTZeBpKPBqxs9k4tJ5q2g tVtkXZd0b2zJevWZG//UT8spP0bBc57ySYPSKvuZfIuBexDqob7NrTi8hAJOaHSB5gPA0 HUcwPkxxF+hjcgyk8kUue3+D4w4mOX3XZ37S3/P5Qst8qGSUBjwOfIsnboFy+G83YoNvcYDhWHD9Zsv7W/qYbOzLZsoTudcqiIVh5Sl69r8Sz3uRJnHNt7pIbK3b+bt/sK9VRkzLJOCA8MMHjmJ8g/YzEz5AeQPoIjENBkCQ4jOLIiIl8avV+uKhd0b1GxpoBiwCeAJw EFwjcjyEchvAEzALAYZCAMZykrNvQZJK2otIFcxW6U6pFP69vf Xffrjf2LnpmwbY31iiOpks8pxnh/cjx6wuedW779frZT1YlPBAr8RK0F6P9GCJgpJdQTMo0go44o2Q 8uhg+wSKkZd2XrTiFU+MwJQBcoCNH5pD1rUiKM2V155qWAz0DL ofb3trluHb9eVEUp8U74k/NO/hDC4fC03emRVF88OHHM3MKMzLzMtJysjNy9Wp9QkLqrKp5RQXV RQWzC/Or8vPKKspnlZSU6rRGvc48YwuYjBaTyWIyWSyWWKs1zmqNs1hi TSaL2WyxWme+WI1Gs9FgMRoser1ZqzFER+kMemt2Vn5ebnFuTn FebmlebkVJUU3NrEUZ6YUlRZUF+SWNjU3/8ckn4o+8g3dtgXB4OhyaDk/PVH78zcefTrz2Lv/mH97/6lsxJIZDM6XHxVu3Xups2f+Aa92nPcWf9eZd7F5+xGUbneA7u+ ytXZ0Tk6MXBW64/+ixoSHPg48s3ulLq70QWddZPXUoY2ITvawZihmEKA5OHY7ZbVP 37Ijec0SR/4xS/T9iEq9bN/dEncoGvAzhJagPRHgVG3+9pfvtnq5XbX3v9jRcb5SMyBAegqdg dALHT2HJvsQ5D8ypuL9I49VBowBlAe4DuAfDWAQJQAgHoRM4No rRw3Jr/1pFpQDhv4agP0PUNaa2P/J4NWAJ4IdwAcE4AvOREo9Z2dyAxDqTsp9QlHdJmpdIxlKYcZz2 oDAvhzgpLUilQRL3yKP7GrEiG5rdY+k8LVt+Eoo/Grmt2XhqDbV6B1R0KNK2Jup0RlxfbeGpzWkjDYrT+eREOuXLkI yURtl2Y2UuKLFPtvWgzFuOcgrCSxIcTrIYzgPUT6MsRU7C0ZMR G17bVXL/XPlAVOxk6vrXtuQ+mAOGAcJRiE8adzG/dGpF7sii7GC59aI1/v6kwsvlpfeXF50rLB/an7j6YnQll91uL7u0WDrBKFiZLqDX83p9UC3xkPgkivhgiEdgH iUEigzQMzFLCAsQP4mwGOBAxFgWs2YHXHRI3tlEj5sAi8EsirA k6gOoD4F9CMLhiBfFeAwWMAkvKbMZ1hgkrahsfq1CfVy+/OU1be/Zss7nFz5atu1/7I04uVjKP0gIv855/Ildbw6vubEuJZhtumzEeAgVYIQFmJdkJmWGKZNe0MUHzRbWZGb NZt4S64uLZc2RvkjCSyE+RjE4B5/biiY5k1e1NRze5x5wOdz25o7uq1dvijMlGH+yFAiFQzN+9Xvvu 5yZWZCdVZiVmVdWUqHXGpKT0qur5uTmFGek5SclZqWm5GRm5Ka lZum0JoPeYtBbTEar8S4FzEaj2WSyWK1xcXEJZrN1Zv8bDKYZS 0GvN+r1Rp3OoNXqo1QajdqQlpqVlpqVnZWflZmfk11UVFg5e1Z 9elpuWWl1QUHxhvUbPv/b5+L/lFkghqdF8XY4HA59N+PSfOvTv/Gvv+t7/f1/+/RzMSyGQ7dn1MhuvvBCX/O2m/aG79ylH/WWBewbnU5nu93uch/pdR+xd7fautoGHH3djt7245NFqz2Q6gRRY5Mfq5Z7kpUnqyL3N so2NapalxhGqqTDCbn87uJ9/uSyhwoa7q/3HdX5c2AfSk4RwCOJCyZvfWVtoZCp7VfVnK3c+5ut+skI2o+hf pyeklJ+Ep/EwRkEG4VoHqIEiAwQJC+jfTEywUKyepXfYPSYEzhTnGDKGVyV1 sDHxP7aaPmj1vp0YtNQ0timGD5XKZgJPoIMygGLK4Lx0q4loKh 57saXkjecljnmULyJDspxLwUFIqGADA9iYAoBQlTM0QasrA0U9 ce2j8tXnoKS3KodLdaR7dTK/XBRa4xtteKULmM8r+11Z56QS55EJQElIUgoXh7hy4ju3IUVuOE sd1Rbq3wkVylEABaQPEVN0RJ/tJpLk58xagRD/UtzYs/p0DMAH5HPvTk/9b4sfEKK+QlSAHKOMZ03JF+IjQ7q1ffGxgSjtYLUyluzB9eblp 4ic8bMO4+kTqzQBOMQHwb5IUSAAAfhLIRxMBnAYT8KnyMQHpNw NMUzEE9gUyQsEFiQgTmCFCJ0J+vohYegYltk8261Jwf3YugUig QwjCdxnsQ4mPSTGAvAFI5xmJRlyuzGtQZZKyybX6fQjUYVPVNX 9VQdchQyTMWveuOezIfbJMFb2NSvEh4eypyqX/5CQ8NrK+MuGmkWBzxGClIwTqZOpa7/5cb1P1+78/m1O69u3HZr68ab6zc/v2H3b7ZXPV4jGZNhLBXpmUss6kCze5PWdTS07es57na47O3ddy OIp8Xpn64GcehuuJ0YnLovM6MwJ7skO6ugtmaeQW9JS8murqrN zipISsxISszIyy1OSc5KTcmcQcDMicBkijWZrCajxWiymM3W2N h4qzXuB0+B0WieIcIMCGYchNFRWo3akJ6WnZKckZGek5qSmZVZ mJdbVl1Vl5VZUF5anZ9ftGnjpi+/+EL8p+TCaTF8JxwKTd8OTYfCYfHjUOji2x94Xnvv+rsfhkUxFL 4dEme8gzd7D2650b3ytqv4495Srnu93emwuVwuV6/L1etwdXa7bQ67y91jtw95S9YGIPUYMadPPlSL8nLAymmfhfIl0 JyJ9iml47qM4a2amm592rCiuCvlyGETVyGbsER40pkTuSnjS7f esi9+eFuJUF8XXLn+sd1Jp8pUp7OlgxnE6SR8NAk5k0COZ1Gju dKJdOlEvHwsNXKwOqJnGXVgKbNvcd741sO/7m15/XDb7+z2n18obfJkFT3V0XG7d+B2j/DRwYduxHe0UVtWybrnyEYyCE8EyckVw/mqLfsM8z2x20+rTi9AhEjET+JeiVSIlnPRSj6KFCSAU0e5V2JF NjS/19I2qlgxCMW7I7Y1609vxFfshXKb1a3rqh5eduDV9uGPPS2vH1 xyrU41EYmMwbgfxziJylsSte8AlDwA8k9o2reofBacwwHPSCeS Za1zsRX11IFlas+i2p9vSJjKIE/L6eGopS9uqHxipWTYKucNUj5GwhlkvFXJ62ifhfEl0RMmmUerG pxLrXRD6qNETWvMwEqZJxlwcSSXKBFMMk4jFdSkP4YSjNKADgg KOEgjApDylIxlCB8JAhQk0DAPgIBKPYnKfduh1B4owSnfsk19p pCeZFAeQziAsgTGAkxAMBYDLAbzKOJDpKykxG5aa5QfRiVz65Q xkzGET05PEBQLiEla6pUp/cup4E3ywpu07zAxqJaztEyQYaMSipfhPEaxFDEsq3pi9pwr9VE TGr1Pb5g0GCY1Fm+UdkhT/kj1rOvzyFEa81HyoVnE/E4krS9xTUdj2wHngNPhsrV22O5SIHwn/BOmQPjOdEgURSFwISUtLzOzKCenZN68JTqtOTkpo7qqNj0tJy4 2OTMjLye7MCkxvSC/1GKO1+ssRkPsXQehKc5ijo+1JsTHJ8bFJcxYATNHgx+4MGMX6A 1Gnc4wE26UmpI501OSM7OzioqLqirKa/NyS6oq5+TkFOzds+/bb74V/8kWCInhUGg6HLoTDoliSPxraPr+t96dePUPV977KCyKodCdmTu C6y/ccjZveca56vOBog96S3jbFqfD5XA6XA6Hw+HocrW19di7XAPtT nvnGSF/UwAynCFqeiJO1uM+BcoiuA8ieIDwNMyR1IQm/cRmdXFHWq6gKuiOt7UnjnUw9+xjarrJEqe1YdRx6e2NPQ/tOPK4k/vl1mNXdItP4pWOmCUDhbtGTStarNvc8oZ+UDNE1oyRNYNU9bCs epLKPyIv6KZzdlS3nhp44fzy88vnXFi49+nB7ccv7jj8i01b3i 0q+dW8pb+1DX5mKD0eXWiTla+Vb66LPJMNWCk1ZIzYsbJg40Xd wkFy9xIVm6DkVNEnKqjNi6imxbojtTI2Gvcx0T2L0WIbVuCydI zIlg5Cse6IHYe0Jxvpxn1Q9mFT59Ztb7U2vbQ93zdv8WNNze/bEgKZ6AiCChDMYRRrUI8ukK87DJl7ibJOVf8CkouQeKJUXYuIw t3GrAFJTkd0Q//8oQvVfT0VPZ3Fbe0Hzz9S3z9OLd8maTrArDlMr++gtzrozTZ5U 6u8qZne1Epv7FIu9KIJHrLEpXPsjzq6ljzUQNyzjW5qkzR0KBp bZY0tkvXt5MY9sj3Lo4+UyyaMwEdKeEzK4sQkCVgaYgHKoziHK kYL8ZU7NaVjOSvvw5Y1RZ4qpCakKAdgFkN8AONwhIMxFkO9KMy jiA+TstLiLkOTQdoKZHV1suhJGcQhEAfjAQxjEdiLQhP15NkXq fNvUEIzGFejLAR5IeBlMB+FBlCUw4gxScGDlVmXq+ERBeLFoUk I9sDkOAAnqZT7c4qvVRJncMKDRw7NIud1wsl9CQ0dq1sP9Bxx2 53dzW13I4inw9+JP7Wcwh9WE5oOTU+HRFFk+anElJzUzMLsnNL ly9cYDLFJSRnlZbMSE9LiYpPTUrNTkjMTE9IyM/LMpniD3moyxplN8RZzvNkUNxNlGB+XFBsbbzZZExOS09Mzk5JS LZZYiyXWYokzm61Go8VotOh1Ro3aoI7RpyRnpCRnJMSnJCWmp6 flFhVWVlbU5uQUzaquzcsr7O/rn6kv8k8UCM3IOYdDohgKfxWafvR37028+t6T7338VTj83V08i LdeeLHv8NYbXUu/6yn6c/8swb7D5XA7HbZ+l8Nlt7n7bO297i73cYfD3T3EFmyagMy9sgXO 6JMLGEGH8ATpJwlehvMqiV9OnyEK+XnxWzdB6SuYRTtmnRhN2u qBNDwReQ0C55MKn2gb+Civ9kJ0krdq8Y39jq+ikh8F0Zeqlrw9 b/lLDVteXXvw9+WLf4NKL5MRVyDJ05jyJUR6E5JcSC64rEs7VrnV s+/hwTwuQzNu0LnmbB5/bsn69yT0KxB0I8b47MGOD1MKRgtrLmkKbWDlUuVQJcOZNZ7U+W MHJy//cUf7q6blJ2L27zfbDiuWDaCxY5j1WOSGzerJXMqj1h5bhVS2gn KnuW1QtmwYSuyP2HHQfGYd1bgbKmpLdO1e/fMN2nEN6AWKY/S852ozzmVLhmi5n6EEmmFxaUCmHpqnXNIHxduk23fIJkoivFnK Q6sk+R3bdr6TnfcIox+vXfuLytXPVKx6Wps2vLP7t+WrHobUR6 CYsyD6USzqMqy9CGlYSDMBmS5Ahguo/jIUcQEvOmlwHDKe3C5b74TiT9EGHo06h+gegQyXIO0DiOYqFHk/ZLVJl68wDpVKWTkdxAg/wHiaEqQYizNTEtxLRI4XSjdtil9ydPbOC8ptW2LGyshJORGUoA KBcQQdpDEOpYIUymEgSGI8KfHKSm2mtXpJG8LMr5cZBDksAExQ EH45zjI4ZyGEdursbynhDclot3wih+Ij6bMRNC9lzkqxc6T8Qq LyaIXqwDK9fYt8qIbgtTCHEkGS4WTUuCz90eyS62UKLy3xAM1w DTmvE0kfSF7bvabtUP+xPofL3tntuH7thiiKofB3Ymj6f1Fs57 +k/afewdD0dFgUxQnWn5iam5aWn5db0rRuk8kSn5SYXlJcORPekxC fOtOTkzLMpniLOcFqSbRaEmeCC+Nik+Nik+PjUuJik2KtifFxy YkJqQnxKVZrwgwgZmBhNsXpdXcvC5MS0xLiU6yWxMSE1Iz07IK C0tmz6nNzSsvLZuXl5Q8Onr67vO8x8H1ll7B4JzQdvnM7HApP3 wmL4i8//crz6p/Pvfb7P3z1ZUgUxTuiKIpXXrpxtGX9W47Z0+6i192Lz3TvtjsdT qfD7XT22h39Nofd2W9z9Th7umynA6VrpiD9KFF1zHBkBTUZhQp SjCMAD1Aew3lATVLms7GxbIbh1Czr0W057RPK1LNQlF9ZwykX2 5P3nm557LWm05fLDwuLeh9ovfRi0maHZp17VeCZqLXbq23Du/zPbRx7KmZZt2JVl3RtB7OmM2J1n2y+G6/sBCX7Fw9ObLtmUw1GUR5F5FANPf8YRF1B6F/hmRcT1nHtgRfz1raTpZvJ5eul7gpmMoYeZRqe33Ts6uWDrU/32D9o7/mrJu1pRHUVkl5LLX61pPFhpnF5zGgO442K6V+ElHdhBX3mlhHJ kpNQnFO57YDu9Bq6aS+Uvcdi27DoZlPqhYysB1LjvYZ1v2rKOp 9DDUtwLwU4gj6LUH4yYiRPd/AwlNNGNRyIHCvHhQjmZLHsnr3mhlNJa3pMq1qWn34ydeeIdll7 wgpna/Dmot5RxdKdEWv6FasditUHVRubI9fuka3YJ13cIV3WLl/WKV+9X9m6OuJkE7F2H6S1geTTymUnJOucsvXtyqYO9aphJu9MZ IK/quElZs4uubuY4GOIoJHi0vDRJGbMTE+qEJYGHKDHozSuurimLk uDW9vTwIxbMA+DsiTGEgSLkSyBeDGYRyEfBFgU8RKUR17iiN2s kbUjzNx6aZRXgnII4SUQlsa8MeRAnXxkirn4R/mZN+k1bl3LDol7PjiyiOqZK+0rlfTXqtv3yqq6I+OHjQUesnGj bLQA98lIjiB4khjCMy6nll0rYcZwYoJQna4l6zuhVHtc46GGlr 3ugT6Xy97e3nbtyjVRFKfDt0Ph2z9FCoTD4fB0aMY9ODLhS0zO SUvNz8stWb9+c2xcUmJCWmFBWUJ8alJienxcygwOUlOyftj/cbHJM2iIj0uJi01OiE+Jj0uOj0uOi026262JM1yYYYHVkmAyxu q0Jq3GmJyUnpSYFh+XnJiQlpKckZGeW1I0Kze7rLiooqS4NBDw iz9KIvgHCkyHQuHvbofuqiG89h9/5X7z3tRr777z1ddhMSROT4uieP3FWydb177bP/ubnvyfO5ac7jrodPe7XC63y+129vY7epyOXqfD7XT1/D/MvWV0W+e2NSxpk1iyzAyymMGyLTNjYogxMYWc2I6ZWZIxZGahK Uxt0kDTUNsU0p72tD3tOe0ptynctqeQNmDB/n4499x73zHe8f36vt5n6NceW2M8f9bca80111z948eii9dxHqt Yrtm1usFtQQWY8LAFgk0EwAwiywBhEcc+FsCZ55fc7FdpDnkmW YgiI5zR4TVeRpuK5qxs6/pyqeB8bcUz7b33xrr+MiKdTvY5EpN0tTLvzoH8y/ur7rZlPldCnxRRTCHk5TCyUUXTK51mJW6zSvphadr10rx7hZRx PHGO6D2VRMkcxrgcJ6jnPFr2SRaKqv96SGzJpk6oKPNCktkVWk So0+7FLzVsn1uUxB2LS3yzrsEh4HwDYT4BgPss4XeK7Ze92oto en+iycVrMAdUd4ChI4Ed8+RtRzCcXpfqWt+JQmJxDVbZEtC9K/NWaca1/MJr25pe32N4cDjhnBqZIMAWMmQCwVUAXEOoU8F+dftxomEkbYQ xmQUfI0ELNL+x+NCpnbKjmdzDEdlXGvKud++63V97S9v79lTGM 7vpUwrCQgjdEO5sUrsbY3znollLmUrL3nD9fulCPmcpibeYxe6 p8089wo4bV7X1cudLXBaS3A0xzgtKr5l0j6Y97imjkSU3/Esb3Y/yETOVtiBh1JVjI5oIhbVuh+NIa1RoHQL0VNIIRz3SEDs8TOuOI M06I2YQZ8HiLACyDCAmBDYQoGUCzgQBZgQw4ul6WkS/304vcidAS0+i+y3ScasgbhUPWohOSxxqa7FTz1m3cz95jn4PBF 4A/S5CrEsA8wrsewUOegYXfBETdBnjPp+d91LejqtI5DavQyqqnoA 3I7CFRJ7EK89Kol+MJiwQQD2BMZ2CZHbjhH38HS3FrXW6wUGtp rejo/Wl27dRFH1ayf6vqgg2j8PhQB0Ou9WBoujUnJ7DkYmFKoUsrLx8 D4vFD2bywsOieVwxmyXYDHgBXyoSyjcnCzYjfxMdNrGAyxFu/tgsfjCTyw7msZhcNpPLZnKDmdxNdAgMYHl7+Xt6+PJ5Yg5bwAo WcNgiHlckFikj1YmhqjiFXJ2SnHbz5k30/zA42tQLbAqJHQ+t9idWqwO1O776/Y8TH3xmfu+rN7/914bDbrc/RlH0xRdfmWnZ8dVI9MMh5ava/LGulr7+gcEBzcDAoEY3otMOa/oHBzUajaa3d2ohumwWcDsLOv0NEJzwb+vynVc4WzyoK354iydt 3Yux4KlcD69+sXvsrZfKD73KzjjpsV3jqkujrPhhFonyUxEdb3 VtNWeGzYlKnktu+2AXy+JDmIM8jW6JFxNVptCwdRXTxGNMy2gD WfjmrR6z8VSTP2WJw5iMpQyGp76wN/eNctIkia6neI4lkrN6MZxDrnV9jAk528RpeEer0pdQR9XEeRF+ NQiyuHnpBTsvje05fFed8sr20m8amh3M4K8R5FcQ+ClY9KWoZN 1/ZBvR4klY8fQaLgQjekD1If/WGVr+OIbb51JdFzRdiuTtx4V2srpqcm9Wqk/FiRYE8atxo9+Nx51LIU8RKKswbEAAEwFcpjDm+KyWeiB4HOCZi RUdPnOpAQvC9DN5I/+cKzy/M2Q+ZNvVor2vtLW9ryl/oWT37d2pz6U7z3m5LkhcBrOJuyvwxRWqQ83dHy32fzU08PXwwP 2DqccLkyeaBs+/pjv9/twbH46/91qIrg+fU07bU0o/HAcbAmgzogBNjrCvRDieyDD4w2Y/l8kIfNIW35BJamQPpSmNtu4LGHHORu/sG00jL9+euPPa3huHRaeioBk8vELGWWDQgsMvw7AZgZdh2ISQD XiSnkBYJTPnfbPVrl0Ao9yPGN3pxjCSkWMUeJniNCf0OFCGKIY FOz5yj3kH43wN8bpDDL4KB52F/M7gmWfBoBNQ4DM4hrGi6u2y+jtITIXnkWS8iQIvI6QlJ6dJquq CLPrFaOISCTaSnKZS4PRunEgnLGkvaW8aGB7q13R39LS/eGcTBewO6/9KFEDRTdmQA0XRyZklDkcq4CoU0rCqqjoeTxzoz1bIw7gc0SYQ sIL5PK6YxxUHBrCZQVwuR8RhCzls4WaOsPkanyfh88R8rojHEf K5Ih6Lz2XyuMH8zQJhMx3w8w3y8vTjcgQctoAZtAkuEokoJEQR FaqMVcjV23Lz/y0c/D8qApsDtTscqP13m2PDZkdRu/03+8azH32uf/erW5/8xyMUfezYQFH07p3X5xuL7g+GPhyUv6IpONLRqO3r1/V39ms1XZqhXs1gn2ZA19+j1fV0Ti2EV8xhXC7ggPsY0vuQ4KRb/qBz+T5K+X7irmb87hZSeb2gQZPebQjJNYuSnuWWLnEP7qBPBeI MVMwcILaIDv9jdP8LuyvfKCx4Nqr6XnGAORCaZkjXMsWa3byma uVgc+hhrV9lN6Cox3CbyDmDLnUHqYVNQMhOnKo4aUJXdrcbf5R BWKC7T+SSt/ZhRB3ujRXkCW8/A7v2JUNAcQdGsg8fX+W2p8a1fl/wgerGuXvx2fcStn6qinyzufmPuKiPMJg3MJhbWws+rF+6GqCJI i85EwxUd20aFN4BKnUBrdPkrDFM8IDT3ibfsVJCYR1G1uTXVZp xp0iyplZY1DHLib2faKLOxBImEUCPA/UEgoHIsLhFXS/aurIoLbgeseUbmuAEI/VQpfn50Yuvdyy+qFl/S/vsy1XGUyktU3Gdc7K24aL5U4rWQXLRTtcdvbBsjBy0SmdORZbN 6q6fjp6N5s2wUs5lNd+a2DN/UrFrKGBvQdLC/obrzwRmj7qxRxn8Xjgv13kqBD/KiFyPqrhbGjjnRZgiOM+LmJp9REWLMuF59/BDhL1bSKZAcBYnP6/o/kSf2jehLD7Ycut44Su7CONE3BIea4IxJixgxOEMIMaAxZpwkAG Cl0DYgmMuuhWkeraDTqUe5MgGP+oSCVgG8CYCsuDD6EmHQ9owy CksfAkOXPYuWXJrayb37CT07qZ07XVurfOp0RHUrZ7Ko2zleWz wJK2qmzQfCq3iCSYAGQdF5wWRd9TEWQSZJziPpeFT+zBcbXBhc 0FLrWZooFfb3djZdPPFmyiKbtjs1o3/z715/m/n/8oOPtXk2R2b7ODh8SkWR8DnS+UyVU1NvVAkYwZxVSERfJ6EyxE FM3kctlAklItFys0P++Z8EZ8n5XLEPK6Uz5MK+HKRUCESKvg8K Z8nEfClfK6EyxFx2UI+T8zjitgsPoctCApk+3gHMIPYzCBOUCC HzeKLhDKxSCGVqFQh0XJZWGlJxWeffob+NxT4951tDofNjjrsT xyODbvDjjocj222ax9+vvDu/Wc++uaHJxtWB+pA0ZfvvrzYWPydNvLRsPIl3baJjhqNtqt7cLB PN6jRaLW6/n6tTtOv7RnsbpueCS9bw7rcRpAfIegnmPQ9QPgaIX8GUf6Jo34 GOt/HEP/CFr9Zvu+jupZ3dzbdzRhdDFqIxhqI2FUCsAAHGfntH2ia7tWVv VYcZVEW3ijwnON6zUZL+3qo4oNO7GME5ilOwptEn3WPgFMh6ns k93Ow+0WAdoYrfs0z+HjITuPem5OUWQZkIvlMZNPTuzHCNtfWM uq0O8csrT59zFsxqop8IZBzCed+EvQ5+8CI/wAAIABJREFUSfZbquv8qXjvr6n59zPy3jl61BYT/aabx9V9VV8vHvvy2Pu3Gt9tDTobBM9RvUezwdh2MFzHbpthZI9 juCP0/T2+RyuRoiaMutm7L2/LS/lbrxTuf/lA0ysHut6vTXw2lDAB4M0kyEwhLOJll0Tb7uwK03QK04+XVW5w ZK8BHqaqnu+lcWcxTjN0zmrr6JcH9b9EZ9yiOc+xxavdQz9KI5/F0CxYp8s44iUO74pQNhW17WDrJZNiWU3XU6mjgQX66bS2k3D2X pomzntGvv3yvE/yIWXkRUHoJUDc59fYkLrWpHvdbPr0eu3NkRhLeWDrft+cJZrXs gc0yVO2+fVsIZo98HNY5XlZwaUuSuIBjO+BsBFtzq3d1Ck6YgR BCwyYYMSCgEYIthBBI4yYQdCEw6wAHibXLVsYHTBluw9Z3eFJ1 hPBFQRag0ALRF8QMxoqkbBhWDbouqvJd2orxehJXKdC6wx4zYt k9HJbFAXqckJqtKLUsxjGCUyI3qmtxflIImWWT5v2Fl+QRb4YR VqgIEtEj/EMQooOK9KxSxrzO2sHRwaGunp72prvvnodRVGbzW773+ZB/F+hZX/KCwyOHg5i8fh8iUIeWlfbJFeEBjO5CnmYgC/dnCkU8KUhSrVSEcFm8VnBXB5XzOWIBHyZUKAQChR8nkzAl0tEI WJRCI8nEwhkAoGMxxPzeZJNgZCAL+FxRZtY4O/HDAxgBQawNqeVhQKxUCiVSUPDQmN4XEl1Ve2/fvoXiqIO1PE//AVQh92B2h2ow77hcGzYUbvNbreijrd+/Hnxg/tr737y+b9+3txNdPOVNyZb9n6ljd8Ykt/V5o511+kGenoGhvo0Azptn3awt0fbp9EMaAd1ndPT6lIj4PI8A f8DhPuFgH8C46wknJ0EbkDAEwKMAphfBOyHcVHfdbWiGblvqqr HuQtxWAMGWgfBeTjALK56r2vnCzszjyeUX9u+516l51xA4LyaW dXA4M3Iwl6Gvc3ByfecWJe93K8KA1529r4ABh/HsFZdlGfJgiPxncuVN47Qx53hBZLPkXRKSiuG3+XUUoM/yuSZIhounmUmHApUrbhLTsK8UwD7Aom/Un3o820dbwhzT1cd/HjqxIYqdU21bb3B8kaSpit+Inv3XytiXo9AZujew3lgdBeoHuC 0TLvmTGC4Q05VXQFjlUhBPSa81auvNO1OyZarRfVv1pc/V9Dwlz3xF8MIUzh4BcIuQ9ASJHmOW3BnZ/yQTpJ5PGvvZyE7brnmDe5YOhFUUUPKraLkVuWNz7SdPT3w3EsH n339yLWXuq+/EHCgnVzQ4JTX5bRlgJKgIUZVJR3q3/Nmm4vZCTHjXWdikeQGWKnz1u2lzXkG6r1qXh0N7xymh/WQ2etYyln/sOsdxp+LGt6Kyrixp/eLA5M/OIlPE2iXRKS1HR5ttVmpUYMsupEMzgOiC+JtzwyQY/owko7Io105t3ZRx2lEIwQZYcSEJ1oIkAFELCTIgBAsEGjGYVZB zxWP9Ax6B0Ao9qXIe/3IZjrejBCMOJIRRzYzkEUxcSqGfkTlPMvCm2nAMoCsYAALBl7H QUYcyUANOilNvVgedqSbGD6H9bgCBz1DEB2kZO33GUqWnY2LvJ FMXqAjRshzJpaQ1oEVaQXFLWWtBwZHB/r7+o52dZ4fGX7r4nN2q+2xw2p3/DlA8P+uIN68lW74YDCbz+dLpJKQffsOKBRhHJZALFJs9gVEQrl MqgpVRcqkYZuVP58n4XHFAr5cwJdvAoFIoBQJQ6TSMKE4hC8KE YpDBEKFUCgXCRWb7kMCvmQzKQgMYLGCeQK+JJjJ5XKFQqFYLJI JBTJVSJSAL21ubn308NEmBvx3G+KnKGBH7fYNu2Njs2toR9H3f/l16b3PjO9+8c/ffrOjjxwo+uJL9+aaK+4PxDwYCLnWVzTS26LR9ff2D2g1Oo22u 0fX2aPr1fQPajQjXVMLEWVGDOMyAHwH4h4CwGMA+wTEbAC4x1j wEQ73CIJ+Dgr6zdfv72npD325t/22jfEWM8ElEDYCpFnQZ8qj4Z2WwQ8GdX/TDd8/nP9GCXmO5joXIDmyFwjfjeXs8yqpUh3pVLd0hKl3hgTlRBTt8u sqpvfkE+pT4QOh6WcPlNzexzNLAtdkgskdIbUGDF8T0KgJv5DP 1gfWv9muGMkh7ImiNmVQ+7dRu4sCuooP3JhNXWgNaMuSDRX2vb qSdqQx9mjVlnPNHjq556B/1Dl1+NVQyrSXu6YAjOwFFL3s5gnnLWMYlo5e1RI4VkEsqMfIWo M69267XS42yXlLPLFZVvjGTsEJJX6KhCyBgB4g66kees+4CwU5 xlluoV68/1hgbydzonj7jS7Z/FanYZnzQfmOu02RKzmK+a26j/XZF0rdJoMYS0zaIou8JCLPR7pOxPsNqbZcKNr+TiVxjgLPklxH M8HIdii0220kH5mjei267n2rKmY1z1+b676rGeD2sOPPFjS9I0 s6zQ85KY0/Udb9rots1j3oSFlIz4QySpNOTdNQ6fNkcMZFcix9z4UTWa1XS0 bO7jjVufONvbQJKrIIQQYIMUCIAQcaAECPQEswYgRAEw67AnqY 3VPTaB04YokvWdHqQjbiARMAGGB4EYaWiICBAloQ2ITDmbCYFR hnokELNHgRBk0YUI/Dz8OBx314x3iC5biA5maEP05ymRdIDSRBFbEkN+J0SfQL0aR5A FyCXcaS8Wk9GGEPr6CuvLl28NBQt65/sq9ndFveRFUdanM8Qv/38gLo5lBhr26IyeKx2UKpJOTAgYaQEDWbxRfwpexg/iYvqFSEKxXhfJ6MwxZyOcKnOT9PxuNKN3MBkSBELAqTytQiWZh QFiqQqHhCBY8n21Qc8nniTSAQ8CWbrUSJWMEK5vF4QqlULhRKu RyRVBIiFMjq6xs3njxB/9Nc4H/qBTb9BTccqNXusKN2m8Nh//TXX1f/9vn8+/+6+sUPv6M2B4q+fePapY6sX0eUX48krPRVDuh6tcOjOt3BYe3Q 4GBf33CPbnhoWHdYozvYOTcfuccM+t7E0x+Q6CjJaYPs9IhM+5 1A+ZlE/51EeUQhPRDyNljMr7w8P6L63mDvnOYZskgWd9IKnWECvZeIgUe Dsk+XT32zHnc2zdXkQVomuR1zE5+KDTqYydYVsmZSRSdViTMBd VUenZkuuzoCeRYP+jEP75M8Fz0r+0bhrhd2bn12W+KVrIjFspr VlwBJV4nhfOdnR7gGv8r39yjOxLqZJK7HubRTbvRjLv7Lfg0f1 ux+aW/pS2W73ixp/Edd0pkU9TF1wav5Oa/np1xL2v5idvaL6a4LwR6jZWDKEBih43fMuOfNYARDzvUtwdNlt B3NGHmPtK+j44PhhPUYXy1FPB1c9bd68ekIooGOrAOENchp3dP JEuQxG+7dVImRV1ILq32OxvqZAjKv5+bcLo+5mci0BO3/a23G8Z2srtyQnv3KQ8XOS0LCMWfaCSp1zZNqCXGZTGGNpuRdqC x9a5/rkpfTUoD34WJCYg8S2+MxnkcyMryNzF3vN0esbvcazPc+ss9DW 6Ue0VadXN23vrJ/2TJ053rb9XPC3mplR0lLS+Z8Cn1iGyZ/EO9rIbgbWKFzDRn960Wd59vOH8s+Wbrr7Z0eS64UE4W4QiGtEM irMGmNTFyhkVeolGU8cQXGnyD5rflsyWR04IglvpToTh9nCx1e IyHrdOIykbxCIa8xSGtkygqBtAJB6yBhjUw20mkWGmEZJq9QyH oG+4RUdFLFPSUKPrIVjtvHjZ8ZGftnZM5B0paC+GOVyTfi6Ysk 8rKn10w+KWsUKx0RlPcUdbcMHRo9pBke6mp76fLpRz/+4NhAbX+6B7Hjaafyv0zBNx9t5gIOFG3v7GUGc1lsgUyqamnuC FdHc7h8Hl/M5YrZLAGHLdokAtgsAZ8vEgklQoFU9PQ7H6JUREpEYRJRmEIWK ZNHiuVqiVwtloWLJKFCoXKTLBAKNlkDuYAvFQpkT9lErojHFQr 4IhaLF8zk8nkSiUi2b++ehw9+RVGH3W51OP6HH7kdddg21xzYr XbHhsOxYbNbf7Ojl/751cx73zz78Y+/o6gDRd+8+dzNzsw/hhRfjSaYeis1gxrt4OCAbljXP6Tp1/XrdNrBAY1O1zuo6ZybjdqzhPO8hCN9C1IfAuQnMPF3PPI7DP8K E3+GCb/ikZ943CdBQZ+4e75B8jrF3DUUZEzGGaigGY83QSQjlTrG9u/LShjtEfWX+g6k+xzODBhP480mK5YyCq42uffHipa2Jw1k1WZFd UeGlu1JEgyluw5tIVSnEPdkZp/orr5aV3guI/XZpPDZkl0Lt1nppr5zLzXd1UjmQhr/Mqwc2kXalU5uz3Q6kko/muA/ktZ9d7b75kLPm5bC8+07rw7FL1SGL2Ruvb5NekriNe695dmte9 +u8JwK9hwoB+J0YJiG3TnjvG0Mw9fQaht9J7dTiuswipaA9pq6 t/snvhgderP14N+7er5sClzxhxcQaAUAVzGEVRLF7Oq7pBYP9Dul HOYfGJEb0j2NTlteTiu/tyf/zo6i58p6XprbOjTpru4MTV1W5i4y92u9uqo9uwoDWys8tjfAEf Vw6K6UkaF9dw86TfjS5l29DyYiSbVQfJfzoTx43s1jib//7oJwXz9GUY1LaGXs7FEdHC49uxCqO8CrL98yPdJx75rkULOgbU/u3qpdEdt2R2bH7SsN1Ba4HdjBLV2Iq7oir2mLNRZtu1Fc8fZOx qwLoidAZgQxw3gLDFtg0ARDJghaBiEziKwi/ha3zExaG45Q5kNSt3nQlqiQhYCsECATBJoJwDIJWkHIJgKih6B lHN4Ek5ZIBCMJMEGIhUCcpwStcbmnZT6nBfTZUMLOHPeo6ux9e r/UMuqutOhj5YnPp9NnqUQ9w20qi5ChwwoPcrf35rU394+MDGm0H Z0tt169iaKozWqz2Wz/Ns76c1AARVG7w+5w2DZDa7P7vpkIbGJEU1N7YBCbyeKJxYr2tu 6oqDi+QCwSy3l8CYctZLOEbJZAJJSLhDKJWC6VKCVihUyqkkpC ZNLQ8LDYEGWUXKaWScOl8giJIlIsU0vkaoksTCpWyaQquSxcJg 2XScM2/yKXhUrESh5XzOdI+FwxnyfmckR8nlguUynkivzcrP/49isURW22jf8DBRwo6nDYNl2FHOgTu+Ox1WZ94EBvfPqF/u9fnHjvy69++92Bom/cuXyjM/OPwZCvh6MMXbt6NYP9moG+Pk1/v7avX9PXr+vt0/VqtT0DXR0T05GlSxin8xjsF1jgAQDZcdiHCPAHCDzAgQ9wwEMQ/CUw6Fc/5uvisJcZnAWfso5gQxw4hyBGBKuHiHpfp65Yp5Qaeeaz3qEnCe JVWLxKCV0M3b28b+q5g8/8Rbl7yb/gjJtsTeK8GEqbCggykWXnQNa6K/MEwXcyqtG059mh3IuFmZe2x47v2zt1ZUvN5ZW7nyx8tJZp2VNz 5mRg9CEvtt4p2ILnrYHyRVLYREHrW9n1ryRXXw8vt1QMvhSYfF i8e3jv80s5L1Qkno858Jf9Za8Wek54uWtycNFdoEoX2DJFzzqC 4WmpNQ0eY4WEgipMWJNTV7HvojT5ZOrcd3PbLuQGLHpS9HhoEY YMJNBEREwAQ08NMRbxd0+4SlfY22biFhqExvAtt3Ok6+Gug0qv mqI9M/ck6c/BTpNlZV9ER96Dnc4BXpeBgHXIxwKQV/2Zl/xFk9LigZobBueJAMI83v1QPJTQAkb2umqzCNPOfnO8/ecXgmM7BaGzLMkZDGXaP+JUfM2rbilG/+RFTuxM48iHvmoTLmCB6nvBhfiMO+EC5H4aG3AS52z0Cj22f/WVfdcGd98uLr2dX/pmOXWCjizgN2cHIBOENeEAC4jT44AVCGcEABPO18hIzaC0QsQd PsTQdhfyPBEwQ6AJhzMCOBOM0QOwGUL0AM6Iw1qwOCMO0UOAAY NdxmANWGSOyDopEZ2MDlxXERbZzkeSifm5cGwmpTTRbVCpPBUX czOBOk9B5gmuk8lIahuWq+EXdBa2NPcPD2s1ve1drS/ceYoCVpvV8aejwNOAf7oayLGZbm/eyuFAG5vaAgJZQUyuUChtamxTKsPZHKFQJOPxJf/WAggFss0YVirC5DKVXBa6yRcqFRFSSahcGiqXhcnkapEsXCxTi 6RhUrlaIVfLpWEKuVqpiJBJw+SyUKkkRCZVyaQqoUDGCRazmJu JhlQklMtloUq5MjE+6r133ty8qs32dK/TfyKBA7XbUKvNYduwOZ7Y7I9t1o0nKPrBL7+a3v9Y/9dP3/v5AYqib7/4zM3OzIe6sPuDkcaein7dkEan02h7hkb6+/o7tQP9/VqNRqfV6Lq7xhfCimZht2Purp8TgG8phA08/IgAP4TABzDyiEiwwuCPEvEjtvBdV78r5KBjgtoZ7mIKZZZGs9B xBpzrSqDTgXhf9eDe3X/4+b8MOd3EOt0k+t5Spf4jrejv6UX3VCn3fEI/gJxf8yG87IW7TKK+iKW/CRJuh0k/DAg4p965tvPyuNgSUfvP3sNvX9lSc47KHsk5eqbv7sWoLt3uob sCyfHkyPc5wa9jqFdwLtcQ94tljY+Kqj/2Zi8mZF3UHP7Nl3OKFXZp78KbOaahHZd2D32qKXllh/Okt/fINjC2B1IfDG6Zc82bwwhGqdVNflNlpKIaXGQrTVtCmBaxJ5K2 rjcKxlNIYy6EFSJoJiAmGmSkEQwETwNLNLKbruqQR591VbUHN5 WFWNJyrmdknc3PXRrd0ny2dfTrmKJr+OBJOtdIlS1QwxeQ0HlK rJEYPktRzblFz7jFdsa39De+eCTxery3xSP6WIN49wlEPlp0Zi z+ahxzIrjh+VnVnh7fxKaA9DFENhicvZTRfSWp52xa3ylVyXjr 5Lus9CVKyFiQdErmMSplLrjIDtMiFgmiKUHFePebp9ve15XdLk g5E7P7nQr6JI2oJ+ItCGJBkBUCbhmE1wiQEYJX8YAJBC2gj9k1 dSu1FSbu8COre9wpeiK0isAWHLIME1ZJOCNEWiMSjAi8TMKtIV gLglgIoAUHrYGgkeS8yBZO7VAPDrDaG2jDsQyLkj6ncpmJdF4U O015K86FRN2Joepp+CW851w8MaMBFPZJirp2tLYNjhwe1PR3db fdvnMLRVHUhtrtf5rPyH9WBJuLghybSqFND79Npg1FUdRuRxsa W/0Dgv38g7k8UWd7T1JSulQWpgyJCAlRS8QKuUwVqooIUYaHqiJD VRFKRZgqJCIsNCpEqVbIw0JVkaGqqBBluFweKleqRVKVUBIqVU TIlZEyWbhCHiGVhCkVkQp5uEIeqlSEy2VhUolKIlbKxCoBX8bn ScQihUQcKpOGKeShMZERN69vGhDb7E/bK0+PHXXYHTbU5rDb7Fb7hs3+2G7dcKDoJ7/9tva3jxb+9vXNr79HUfTtm6dfaM98oo35diha31PS2dM9ODR45 szp06dPLS4umsym8cmpjq7O+ZmFEzfeSK6aic69UlNjS417QAC/AoCv8ZS/kpzeApCPIPBHEPOTO+OXkBCbQPyQFfqJstXoM6cAlwBYjwf0IL JEdtKGE5L3eSsnGOEjHju01N011N310YMnCw/fKh2+tG1gPbx9VlqkTVfV53ErE+LbuSWDtPwWOLkEF5OWPq0tv 9VHHQ6Qr22L6TWTAiyYIJ1H8xCrZtQtZLx64GNB7kFyTDl+615 iRR11TzWtZG/m1NH+yycXXv3L4Zdv7zu97lvQzc40JlXeUB2YjBmuaH6trvTNY vq0r4s2CxfVBYYMspvnXLKmMcGDlOoWz7ESYmENVlXn3LXXZTD DZWdhcEWrb/0u+lEpYCABJghZguFFBNGTnRa5vLEqemQ7V2Wgq2qD+0s4y1EF z++pXptumrqbVH5s79yFLWujtOYt2IoMUmuhy2ga/XAsbSyOOh5LP5RM7UuitkSnr1dVvtFa+naFUK8sPjGWdOBlomS y/7WrpXfLfQ7Sa95qCV/cBTeFkgfCqMOhIkP+tuc6xaOZzP4U9Xhp21/0/PntAYPJhfVJbTHSuvTQlJYY3+EEl4FklbFw58sHMi5mRJwPTbo cnftiptMMHV7E4/QgoAcgIwSYAKwRwOkBrBHAGnCwGfLRO6dn0tohUokPKaTNhbJI BowgZMACBhxoxmOMEGSB4EUAMoAYM4A14SEDHjTgQCOesOThcS iGEF/mIh53D1vBb+301lV5Due4jaTTjsQ6HZSGnYmLfCGMPI/DLwLOk7FIWguW38fLb9/e3DIwcnCgv7+9s/X2S3c2A9D253sN2Z6W1FaHze6wOexWu8NmdditdhvqQK02dH9N vV8gKyCILZEoOtp78/NKEuIzkpMzExKSpVIFhy3gc8UigUwmCdks7ENVkSFKtVik2GwW hCjVERExIpGcK5AJJaFiebgiNCo8MlYdESsSyPk8MZ8nEwoUUo kqRBmuVIaGhUaGKNQSkVIklAsF0hBlWHxcckJ8SlJialpS2jNn z6GbosunS1Oechn2p1vg7XaHzWa32m1PUJvVZnf8arNf+uj+7H tfnvvkvg1F37p95npH+iNd5LeDcebeis6ejoOHDr94+7XLl24f X3/24qUXZueXOto7R0fGT914o7Tn2N6ue2OzTxoaHlLJ72MwHwRy3 0vL/57g9BIMf4kA33p7fMOgfehE/4ri9oZLvC74SCTFRIZNeHgBIhpJ5DkW1JmM2ZlN0WYyjFKyycN V7xtxOmnvy61Dn48nnktSng1NPBTcle92JMKptpojmuVQTT7ke U/iiGfOlZJdd+u9R9XU/VUY9gLGZ8U9b5bdMo/lDzqzVvab3hYbKglHBdRpttNyAGWdRlmmUSfc+YfC+9+dSblYQ ZoMYBwRho40Z3feSG+6XH9qpeZmdf6rGbR5T+fBbCCyDReiC2i dYWRPYIK1Tvsa/cdKKfl1GFWzd3enW0MFMXJffscrQRV9hJ5wgsUTMEFEA4jXI3g TTDPQRavJvgd2YxRlLqUVosUUjjl2x4Xx5BZzUuOzMbqjO29qx cciqEYv8po30eJNsHjDFg9wjQqsEkirAXSDyGVOEH0xd/dbtRX3ygVTym3G8bQDdzDsjq1rI5l3it2nnMve26k6t40yK6Gs +OGXKAGrwfl3i3Keyyq+sX33KzsPfLLP56S35xKyo4d2JB5zZC smvw/yWICx85DoOWnarTQXDZ3YhY86Hb31dgZ1GsHrQdAIQQYIMYKwC QRNEGgBMctYjBmHs0BeJte0DHo7RC3zpqnbvKiLVIwJBE0IpMf jTUScCQRWIMiAQQwgZMbjzAC4DOIsAGQGKYvurj0ZAHtfwtbLq Xl/BT1OEVlXCZwTkHQKiDwIb2mMnetOf6GAMoOHF0iMqWQ4vR0r0n KLOwpbmnUjh3RabXtXx+07L6Ioanf811rOPw0F7HbU6nBYUbvN YXXYnqDWR/aNx1b7ht2+4bDbHz2xlu6s9GdyWCyeKkTd1tqTmpydGJMeERoV HhrOYrL8vAP8vAOD/NlctiCYyfPy9A8K5Aj4UmYgN8Cf5eMdwGELpRJZUBAzMIgrU0R I5GESmZLH58sk8uDA4AC/gKCA4MAAjlSi4vNETCaLGcjisYUclpAZxAnwZ0pE0riYmMT4hN SklOS4xJPrJ9D/dEOzWq12u3WTzrA7bHa73Y7abA6r3bbhsFodNrvNZn9oR5//5/3Z979c/fDbHzbs7750/lZn2uPB0K8HYkw9O3v7ew8fOXL35XtG/Vp/38jz1++YLWva/oEjR6bWr93cP3x6X+/ddu2nDa0PPD0/BXFfuHl8GsT9mEj7iEj6Qir/vqD4d3XUp8lp3/FF7wYp1sqX5zxnZHiTM2zAE1do4IoT0RJMNQsJFjfCMQA2A27r zszjAZL1uKxbtbTDfuxz7LjDjOE8eFaN2VNH81x0IVv8/BZlrsPy3Gv1la+MBtTVQMIFjOspzxSDuNHIiDdhnCzs+PWeFy7 LVipIU3G0RQl52R9ncgFXqKTZAPf6TGl9K3uonLzIws8SEk7s2 L14oVxzZ9/8as7yzqSr8eQ5F7eDBUBEDxR+JLBdz8ibxXB0TvsagycqKNvqM GFdrv1tbtoygrpCEGHxiD/k0l9CWAvGrGLhNQy4hoWWcVQLIfi4j8Aoij65lTUdErwoCFnaX n/uuqJ4xiu7MVHf3PLBsHx6i1PfVsrAdrq2wH1wB6M3z02X5abb6 tVXRj9QRNqdmGZubLoz3vbiaI6+qXhmPbr+HJi5O+5yY+Jrub6 zwfvu9UdPtyA706gd6a4jaUJ9XvnNzvqr2r5XZnNX9m6/uS94OdR/SlzcrhqNDz6YIdrWJfNdlBFmJPITWX2fjVTdriq5srv7c13hG9 tIU1iCEYDMeNiMxy/DgAlHWEHwRhx+FQTMAHYZ9FxxT9zq1ABSin2cIjt9KQYiZh0AV vB4M5lkwgMmLLgGg6s4yIKHTWRkGYBXYWAZT1iBqUY3N10ujn8 gb+eVsr2vA3Qz3u0GzvUqFHgRcL+Moa9Ld57MuKCjLQYiRmeP+ RRCegtOpOOXdhW0NA0ePKLRDbR3df+n7yDq+O+l7Z+CAg50M16 sdrv1ycbjxxsPH1n/sKIbDtSGoujvjzcKd1QEMbnsYF6MOra1oSM5LiNWnZCdkdVYWy sTiYP8ApkBLGYgOyI8uqCgWKsZqj3QKJWpWGwBM4jj7xsUolAl xsb4+3j5+fgpFWEyqZLP40oEvKy0VDGXy2YymYEsDlsoFMiiom LS0tOTkpKVilAeV8xhCYL8g6QiUUpcbGJUZHJMTFJ0zOWLF1EU 3Vygusms2u12u91qc1jtdpvdYbc57Da73WG1oTa73WqzOtD3f3 mw+MHnS+9+9cnv9vdevnS7PXVjUHV/OMrUV9nTOzAwOGQyGXt7u9o72vQqI/vxAAAgAElEQVQG0/ET5w6Ojo9NjJueu5JUOS1Pfjav+Dd1+K8I/CUe+gXAfYHB/h0E75Oo7xeV/MrjfeDn905i+pexcV+W7fm2avpVl4ZS+uEEpykFYUoOT0vpCwq GQUybkjIm5E5jEs/pSP7iftLOakZRnV9PrmAlLGbUr3mbS3+MU2E9M+hwAqVyJxLeg Autzzh8/ID5VRJnEeN0lhJ9UtZy1jlxCetsxopmZB3juheuCYq0OEk7kLq X3plFnRZRDP60/gRIWRW97SJzey+1J4Z41CPx3Lbe5y8n7TJntkw1vzSf+EIOfpb BGMwC1D2QYii4dZ6ePYHhDlCqm73HthPzqrAhTS49ZS7TEbT6P Ay/C+c+45o35Dadi18OJFo8KSZfmjHQ1cDnr4ZHnlA3f7gv9niKdL bYc1ddRsfZI8/8dfq1Z6beu9R9+VXPhEM4v3GYeRwOXIf9lvEBx5DAVYS5BvqvU JgLVHZP4u71vUfuRuwy9S5+tnv0JY89ddSRVOYlteRaaNCYpOm iQZihYQT3UiUjiEIjqzRUL7xY0Hgmdd/ZLW1ndk8/E1jY4ZymlcVPJAT2xAUN8mJGaJlaYqaOsa0rbmho9K8np745ln 2liLMcSJzDQUYAZ8ADBjxoBrAWDGDGgUsYZAWClmFgGfSxuKVm ObUhlBIfWliHJ3EJwSxjoBUQNMKgAcQYsTgzgDFhsRYIZ4RhI4 jXw/AiiDdAyJITdTwKzi1zC+8NTDpI29rgWltNrq+m1Xe5bJ/BeS34x5yKm1lmjCcg8+7O42p8WiOG38suas5vatQNH+rr17S0t 9956kT+Xzu6/3+GAPS/8wK2DbvVZnuC2n+3P/7d9tCKPv7lh68f/vwTiqK/PXhctL0iiMnlsPlpyRnN9e1xUckF2YXDusFBbV+kOowVFMwK5n LZwtjY+H37qtbXTpw792zGltxAJpvD4QcGBKYlJQ5r+3aXbmf6 +UuFMrlMrpSJa/fv0XS0RauU3OBgHpvPYQkSE9NPnTr/xhtvTYzPFBeVScRKEU/CDWImRUVY5qeXJsYqCvITIyJevnULRVG73b7ZW7HbUZvNZrM9s dkfO+w2u91u27RIsm82D+0o6viPx4/W//Hp4rv33/rp8RuvXH2hK+3JgOrboVhT716tblir1fX2dukG+jTa3t6+vt5e nVY71Kfr65ycD9s+j2Eco5C/ATE/k4iPEdBKgmwE+BEEPiJRv8nI+TVz668S8deK0E8TU3/aXvJHTdcvdOU6KcZAjDlKTJ4CEsaIiTOklMNw/DSSsAhFjXukmwRZz9NYa9TgAZe8vAhzftRARmxCnoqTkVRTIWy pxokavMSnGOxjKfmvl+76DAMt4aRG39p1eu5xDGMVw5wh7d3Nn 9lTfeJakGxaKb3izp8gZOV7TEhdTUxKSw7CG8re8QE3/yC5JZ00yVacTut++UrXwpsj5+4MfLymuJIAz9M9D+ZAEV1g+GB g+zQ9bwrDH2HUtvuPleGz92PCm9z6i+mGYJpJ4drVBEpnwMAlR qYBX6wjl/VR8/tpRb3Uok5Z00Lt2j3Ns+/UrdyLbn4GCBnFhFanHtGOv3Ol5MgxT+Uc1mORIj2GD1mAldN4l QFULEOhFkRpAZmrfpIrLPGJyLTnylrvY3wnCdwhWtZe75FEJ70 vYiAjs+TgOUXds0u8xG5l7HFB+BUMZcpXeax38rt2zfvlNXc7J 75rGP2SzpqEvS0ExroLtOpNOkNiHEf8jgM+xzDeqxi/o/GdJ8suzrmPSmiTLmQDHloGAQsMmRH8MgQs4+A1PGAC4WMItIrA q7CP2TkljdQOErcHUJV9PngDEVoFCcsIZhGCzASsCQQWQXAegi 0QaMFBFoRgJhL0IMkMgnoCwehHPxjm0Vjo119KGQujrfogy06E NV/GgppRsi84e1lefZG2+4D70WSPyVz8lh6cqJ+/o6WwpUU3fKhfq2vv6tr0F7A+HYb7c85TFLBt2DesDqsN3bA5Ht oeoegj67sfnCjd9+nzt1AU/fHX37YVbmcGcTksfkpCel11U1xsSnZmTnJCws6KEq2m19/fn8MRsFh8iVQmkciEQrFSpVaFR8tDwgVCMYvJVMnELXXVM2OHh RyOVCiRiCXRkeq9FWVbk5KKc3LEfD6PxQsO4oYoI3bsqNiydVt q2taw8JigIG5QIIvPYseGKhsrd68vzQ10tqXGRL5179Wna0hsm 9/+zQ7nhtX+xGHf2Hxkt29Sng7UbkMd1g0Uvfzp/fn37l/7/KeXXr52pTvj4ZDym6E4U3elTjuk1Q1otRqdTtPX36sd0PZrtFq trk+r6ZrWR5QtYV3OIPAPMNaGIDYAsCHQYwh6CII2EHrg5nU/I9vO4X3j6vqlh+f3VNo/Waz/wBO+gcAfQOy3MPQjFvgZxj6kAA8h4F8A/icM5hu603cC1vfsgPfksXdICRUxC83suiZy8BDJa9A1pzaotxq XneeytdlJXZt+4FTlyFs+KdrY9vnYhjP+0c94q1e5zVrpQn7ie nHPrbNBGfXMtE7XzHJKfSJ9VkQyejgfjaakdSPeY9TUJtfxVEj v7qrnedZsK9Ys6y6dF03FUvQuBAPDayQXimwH1QPMjjlGzgyGP cSobfMZLyFvr8eIekg13dSFGNISwXmBzWirxCiGcK5rAP0c6HU W8DqB8zqBcV8JUj0fueV1SewVeeILzMgLlNhxz6ruwPbekLZT7 MwzmIBuSk6H52AVYzydNhlBnY0kT8XSJ+Ndj6Qw2guIhaW09PI M3dy+9dtO5a3g3kLaSCRN74k3QoiFCCwCHgbfqnuamMED5K0Z9 O2Vbnu6nffWSDr3NJw8ZHzvatacVtDbzNiz36u8Xb1Vl8tvzZd 0huVq3PZ2kyt7aXkLENPsKzeJ9g569qc6zTNhEwG3ggOXYdgEw MsAzgJCFjxihCEzDJgAeAVyNzJyDgQfcKFWuBJj93t6690IZiJ ZT3VZ9vRY9SbP0QPWmR5md7IBj5hhnAmGzAhsxBKWAcAEwysEo h4OWPcLOs1CFmmIHg/rsYQVLNlMdh4WRQ4cDqt4Hivq9mzb6zu2F87swol7eNtbClubt SMH+7Xa9q7OO3c2dxNteuP8qShgtVufbNhtT1Cr1WZ99NPPd67 cjks97h/8/blnUBT99peftubmcYMFPJYgIyG9saYxPjYpSh0TplKVluyoram ViBUScYhcHh6iipDLVHJFGJcvUYXHRMUkKZVhQr4wRC5XisUiL ofFDJJJZQp5SIQ6Si5RRIZGVGwvk4nlIr5EyJMIBXKRUCkUKkL DomVKtUASyuVLRAJhrDosJSpqS0JCTmpyXlbqp5/9w446HHaH3eqw2hxWm8PqQK1Wu23DhjqsDtvGv3UPDtumKanVh qKv3P+Phffvn/ro22cvnn++L/uPEek3Q1Hmrj3aPq1WM6jRDPX1D/X1D2m0A1qdVqvp7dP2dE0tRpWZMYwLIPA9DNiwwEMs8AALPMQC GzjcBgb7Bw54gMX+hMX+CGJ/xWB+xeJ+wWB+BHB/gLjHIPg7DvsYh7HjYSuZ+BiL+x2He4IFHuDpX4mFv7jR3iH5nf AoaQtfbaBXlzFEwyEJ53FpJeSxBMqMhNjNpzaKE1Z29v5jpfPV Y7rzd5p179X0v9d04nrLG/ONf+1ve7+t6a8tokNJcH0IMqyEjGyskQIaQOqSwK2uDRMwiGQ3 U2bC8Hon+gybUpnvmToU2T7lfyQRWSLijS4MbQE2ogVU9PCb51 0zpzD+h6jb+z0PVzBa9mCFfVjxYdeWffQZDrBEpC4wnTsyGdur XYsanUpqybsaXHd1eW5vVVR3V0ybtZfv7ls5F96nDeys9Wuvo2 Z0B0Ze8ZddJcZ2eg1tpen9iHongokIHQOgZTJez0AMVNhEJxm8 nKf806/klb9b4zwbQNa74w007BKMM8PACowsIR5LjNL3doSdjqeM+xCN/ngLBzEGIkdcw8xpO17o8F+Ihsbd6YvewXOskn6JNsGzP907S8N ymQvCG3ie49vxib38mBPx+0+RdmXRJoU4MxGzDIEGGDEAoAmHN QKACQQNIGCAMEYsbAY99O51x4v3cbzaMEhNJqvm1SLyOIVzTHL gswPKZWnKueT69+t2/LXAa4mBn4LxegQ0AoAZB5hAwIwARgiewYkuyUVnldAwhIxBuAk YO43HTkGw1il+sTHmwAVMYKdL/S7fg6VIZgOG38rLa85vaeodGenv72vvaL39dLLYYf3zugRPUWD D4XhsdWzYUDvq+OPjjy+V7/mktuFGeuLXp4+jKPrV999lbsnlsATBbG5aWkZ9bUtMTHJ8bFKk OionK7e4sDRMFRcfuyUpITsqIiUsNDpEGRGijA4LT4iKTo2OSo qPScpI3SKVyP39A4OC2AKBXCoNi4hMCAuLVshDxUJZdERcQmxK YlxqWmr21i35ubklW7YUZmQUpG8pTkzKSkxITU9J35KyJT4iNi Y8Ynd5ya+/fG9DN6wb9o0nDrtjs8WJOlDUYXXYrTaHzW6z2qxWu83msNlsDt umMbnj89//MP3tq+UPfzj+7Pkb2m0PBxXf6dQrXbt02iGdRqfTaQYGtFptv3 ZQ26/VanW6/gFd17ReXWrEuV0gkn6EgEdEig0AH8D4hzDhEYQ8JpBsOPARHv8 Ygh/gCb/D8CMCfoOAfwQCj8hkOwD+SiBtANBjPOkhifQQRB4QSTYc8JDq9 LNKthGl+pWXcCXi4GDYhSKXvhwkZIgQqGeUdrvMJtCW2R5mofc sj7+eGHWhLGVxQFZskaSejWo4mrq8K/Z8uvpUZNTZcOEpgcfJQHjVA1x2IZgZ8BKRuOqE6HkurY04no6Y 0+I8F0kw0lyXlNTKA4yIJU6+0b2jmGYKggwM95EdOLUWrxphtU zT82cwnidwzBXXAxr/o3vc97dhgnsIUf2ug5VEkwg2Ual6L1eDjLIoJpsERKOEaghzXQ oVrMaEH0+peq8n5HgmazWCu55Kq8slhVVvr/ybJPWC6/59DIMAv4bAKwC8CsPHcFgLCK+Q8CaSk8nLfZHtNhaYdDm95G/lbgYPwgKeZCLgjQhhGY9fhsmzdOZiUOW7u2JPpTodZNH1bJKJS dbzPUbTAkqaOYWjQa27nOe44DLRxQzndcNHY7EHtwIZPURPPQV vBN0XeJSSnd4xZvXOa8TyUtc5NWigQssI0UIgmEH8CgwYYLwFD xpx+BUCzgLCJtDL4KW9dKCWHdiKIbUXKAf+3uxyxDX8ZGTHh03 bL2Xtfq5k7NPRzn/Uy1dZ9Ak8cQkhrhBxJoiwQoGMBIqZRpkgR5+La3inefvV4uLrx QXXywqvVpRcKyu+vKvj5npKzTUMR+Paut9/vBLJ7IYEQ9L83uLmFs3oIa1W09Xd8eKLd1AUddhQ+5/uPmrbcNge2+wbqH0DffzDHz99fh/99ItjxSUfnz+NouinX3+TnpbLZPK8WAFpOVubW7qjI1OjIxNTk jOKCkv3V9bnb9uZmb49NCQhLiZ9dOSo0bAyNbmUm71DHZYQG5M aGRGfmZ6lVIYFMTmBgVwORyqXR6tUcUpVlFwRxudLkuLTtqTnp CRnZqRn52QXNjZ01dV2Fhbujondmpi8LTk1OyunqLh4Z0x0UqQ 6qqm+zvr4gdX6+MnGhsNmf/L5xx8eN71pmP7hvbdsG4+tT6x2m30TBKybcgK7Y1MX+fPGxrkP vzV9+MOZG5df0OQ8GIz4aijJ1F2p1YxoNf1abZtG26QdaB0Y6u vr1/VrRnu1o+2TZnXZMs79WRj5AcJtwHgbAG7AsB2EnkDwQwLhCQ73 CEFQELTC8BMIssKgHYIegzgrgtgA8HcCyYYDnsD4R2SyDYD+gP FPAMCGEB5TCT95uHxOE6z7tFcy9AL6RDp+y1GM+zIj+bRX9RF6 bRu1qsVlf4vrfo1X+TgpZAbjNg3H6Hy0RfQJD/I8njRNoM8y8HM0wETGrsCAEUMzAEQDgLMQiAaeW1M1LlBLS+7y nIlBjCT6Qhg2s0qYfC51z3XKjlLXeSXeSHUfzcRH6UDVYEDbGK 1wBuP2PI70Fk5i9mhuY43XUfM1mKBxfMag19HteKMXzoihmEFI D0ErINEI4Y0IxegUtKrizuZGrzQHjqUEmqWeKyJnbSqSuN03ot N9a5WzLhpvYeCXEXgRJBoBggkAzXjE4kqflNIPbCWkVBBjd6cc Orr/xUXPCQUyR0dW8JAFBI0AYRnBL3r7z6XW3ToW2TAEhZQT0io9q+ vYmi7X4j6fkOWt5e+65DZRhsORNQ+XFUJhB346AjeWAm/tJjnPIbAeoutd3HWZuIgmLKfDpXYPfUEO6omwCSYaibAZBFYgn AEkmvCICUIseGAZAs04D4Nn/6XqWo5/CwbfWqA49HlnsCko5Hho1V/21v2lctfz5T3v9tR+UCs+LSBOg4gRgFdgrBGGTCRAj8AmBJkiK I+FHfz64Mw3R49+fXDsm6mJz2dnP52Y+WLy1NdvZlU/jwnod22s8R+vQTJ7AcGQKL+nuLmlf+SgRtfb3t18+85NFEVRG2 r/t3fWn9UjsG3YbI+ePLHZHtocTzZnCD75/FhR8UfPnEJR9LPPvs5IzBYL5GKFpGh70ajmcEZi3pbMgm2524s Ky3eW12RvLUlPyU9NzsnNLhw7OnXqxPnXX3nbpD8WF52ekrg1I z0nOytPFaJms4XBwQI2WxoWmhAdnSaThQtFMpFYHhYaGRebFBk RlxCXYlha/uKz7/727qfXrrycnlEkU8QkpmRlZOXvqjyQkJQeGRnd3dXusG5sWK02 +5OHn/z9bFnh3ZL8t/bvNKbE3799y2FHbVa71W7f2GQIHHa73YHaHTa7Y8Nhv/7ZD0t/+/bK67feGC//aTDuHe2W6Z59vf09mn6Ntm9A0zuo6RvSaod6NZo+raZbM9AxZQ 4vN2Fcz+DAL3HYhwD0GIfbALEOCGsDcX9A0AMAeACAj3DAExCy AqANBzwBwEc43AYI2kDoCQBsYLEbeMRKJtmwwG846Fcc8BCAH4 K4X3HgZxifVee6SvpCEG2By6j+f5h7y+c4zizsu+G+m4Y1YmZm ZmY0W7JkxtiOWbIsGhDLtmyRBTPTPTOS7cRJHCcxJHESU+LQhj awG052Q5sN2paGp58P3uetev+BN29VV1d13dXfuq46p891ftc+ xH8Wk94gXV6F8heh9wu4zyXc+zlCfBshroPYaa+eXRJ9BOBIoC GJORrOEoSGBFoC1wHAklBLULOYQEswujDhka1I1JCgesjtdCmp YSSzsYJtTaKEw17Zh9x2NbhqkhlNuKfyEZh6Ak0aCDp8Rr5yFp G+TOA/A+YDmDzp2bHPd3gXU3kM8e8VNHSIT9eiWimtJak5GuVInIU0S7 ud8c+c3OK7ohULe5Qu3xg3tc7dGE1PhIo6qoj1NZKjheKpcEwn IDiCmiMFM0A4+zDU3Fc6UI6m7/DwP+/nczW7+uWmodvMtuXMaCwyJ0Q0GDINwaRc0J9BNa9vGfggOuuSf 8RVj7CXgc9jkpincU/ONcCQU39R3LBNPJAHtTIvLdHcITidh42UU1UKQqTBUJ0QsDLpm Rx6zR4kfr9L2wbBTDCuxTENBudojCVQFse0GNTiQANwLUT1ABh Juc5t1cnsLUGSdpxaV+mx/Gpp6otpvqx/ySuFiediorUxFdcbEq9lU6wY02HYPIoaEESHozoSZQHC4sgUnX mloOZKVdBJL/8JD48pN99ZT79JD78TAXX69vydzyBhva77H/Ua3AmrO5EoRfSq9rWHD/YM9ir6ug53HX75znX+4QIP/5dvE9ntFofd6nBaLU6r3eHgnfYvvzq/dt2XT17kef7TL75e0dBUUVSTl1tweN+REeWJxhWbSovr83IqKs tX7d7V2lDXVF25Yu2ajTu2P5qZURAWEh8RlrS+ede+vcca12xZ 17RlXdPGrMz8h3zB2JjkyoplDfWr09OyIyPioqPjs7PzKitry0 qrmps2TY7N7Ni6d9Xy5tUr1jev3dbcuG3F8sY1a5r37D5QXVWf nZU7NNTvdPBW3ua0/Xm3r+fC+k38Lw94u/OGqvNvp0d5q91p560Op9nhtDmcjv91BHaHw2HjLe/+94+Zj366/I9P3jt37PvewlcVK0a6D6pUSnVvv1o1qFYNKRWDKvVgt7pXqVY r1D3d45qM9Rrc82mG+QGDixRjA4SFomwUYSbgkkhkhcTvQvESI O7TAgckrCRpJSkrAGaBwAGhmabtAJppyiZkbCRhogVWHC4KxBY MWjCRCQt83vdAm+dcpEQjdhutIFYdJVKnBLELRNxZIuk8SJxns gwgaYbOPe7+6COemhRygcYMJGEUAJagjTShJ6CBBAaCNJC0nhL NAbmecdH6u3e2oAkjIGnap3OPSBdOGoNFp4pE+xrpreVe4xnMv J98vMJl5QjmoyUKxgI7T4lXn0LcbpLwnoi8hwtuURUTbgOPBPT tpvN6kbBB2daD8slSUhtKsC6UgYYGQGoYj5mYqL4NorSj0WmXX VL7Qo9tDD6fAnViZl4uPOdBcXIB5w7npOS8DOgZSkNKNCKoE2N GL8lEPrNyizRp0DV2tGrDC7v6vnYtG4hWPhKpzwk66xO+4Jekq fTduder5MT+/p/S6p+UJo+6ZnJMog6kGLDk8zBujihqE+9f4zKbAVip34xg0xHX0 TzBYI20XClw5wiCw7F5WqJLZdbtQdPapJ0bRFww1GNgHmJ6Bhp oap6GHAmMBM7iNEfiHIUuMGKjS8YRl03+ZBsqW1YUEjSaLj0TK pqTIrMYM0cJJmh6VoLMkaieAAsMZqTgAoHpEWIBAg4QBgbOypK fzky6lADGcNEcDadRnEUwDQFPi7ONe7P3XUailN5HdgWf2EXV9 KBx6uh1XY3tB1XDPQq1or27+9adl3met/G84y+fETgsziWbY8liX1q0WsxW3mm3f/TPiw2N35x/guf5f/zzi7KCmqzkvIL8ktZD7a1720vyawoLqvLzyivKG9qOKJoaN5cU 19TXrV67dkPzum1FBTVFBbXbtx7c0LKnae32tas3bVi/oyC/NCggNDAgLCkxfV3Tps2bdmRnFYSHxYSEhJeWly9bsaK+ftmKFa s3tGwuK6mKiUpMS8o+tPfYwd1ta1Y2L1+25sD+tuXL1mZl5c7N zfC8g3da+B9/uLK68Ufd44vvfPafV950fP2Daemew2G32e1mm93h4Hk7z1sdTr vDwTutTt7pcP5osug/+5f+0+9ee2nh8+PltxR1I51HVOo+lapPpexTKNQKhVqh7O1R9y l71Qp1R9fYbNbGeVR+FWK/YJiDwG0A2DBgwXEThFYAbDhmA7gDw0yQMOP4Eo5bMcyC49aHFw B2FLXQlFNIOwBuA4QZxRcBtGC4E4FWRP6uaNm4x2g1NcsQrJyZ i2VGE0UnCujREupkvmikTHCiXHi8UHwqRTQbTBil0CgktAKSJS ELgJ4AegJnAWAB5CBgAaHBGAOkWKHbcD5T1oO4GajsSU/lHsGpQtmpEteJGpexcvlkufdEi3STEgmeRSImBXvavE5uEq5qR 8Q3MbCIEXYc+wlxOy/cts19osyzezuerkLCBl13tMmmMjAtJPUk4AiKFbtpwqJH1wrzd sfmPS7P7IjqagqZT6BmRQRLgXmIGSDOEriWhCxNaAmoxXAO4Bw AWpzRuYgmUujOXLfDeQ3jnSMv/f3w3EetF+70vD9/9HNl+8d93a9eOqC7oTj/9sjt13KHdwl3p8g6stwGc6UjOYKTRcLjhfLxTNFMEK4V4hzuf4 bafMTleC5Q1eKlStJ1hmRmSajDXTTRgqYdaPJRcccWShOEsRiq x1COQlmAcQDjAKaHkKMIHYWxEJ8HUoMg85hXcwDdgfuuDKn3qW mVPLJRPh4PDALMICB1DGAluE5CaIVQKya0YqChCR1FaAlax9Ba V2Y80bO/Jnh8hWA8gtJIAEuhegAMODlJZC9szz7wJBLe7npos//wFrK6E4nuDms8turoQfWQQtmj6DjSefflGzzP2x28/S/PIzAtOu4tWh8sWsyLVpvJarfbbP/4/Nzypi8fe5Ln+Xff/6QwvyopLqO8vLrtSMe+nYfzsysKC8rzcktyc4oP7G/bvm1PUWHluqbNlRUN1VUrGuoalze01NU0VVWsrq1eW1RYVVRYk Z9XEhYSGRIckZqSVVVZV1e7IiM9Nyw0KjQkoqyivLC4qKKiqra 2vq5mWdPa9atWNG5s3rq1ZdequsaVDWsqy2p3bNu7ZnVLdlbu4 4+d/9+U8NtvrhQUfNm07q3Vy18sLHm5edeDf37lcDptdpvd7rA/ZLpaHE7Hw1mB02l12J38S998N/vxj8+/8/Zbk1tfUSw/0X5ApRpQqtRKpUKp7FEqFapedZdKqVCpFSp195g2a70OkZzHkK 8w9D6O3IO4iQROFDFhyB8I8guC/Iyh93D8Pgb+wPA/AbAAaEVRE4Q2DDNDaMMwC0XaxEIHjtkBYcbAIgBWgNkBcGDMD0 jQc7ItA66jxaROjhggfg4D5wCYJ0kjwbAEoRdAvYjSC3FWgM4L 4AJNazFag0MdAEYS0xOAhaQOAB3ADBDTUbheiM2TJOvnotyApZ 9C3C4KYi+Js1lRhhbmn4Klw4KKGUnek5jHRcRTL2zskYwul02U CVcfxcSv4tCEEk4cvYdJrkiaj0inc0Szqa4HD6FRI1i82rV9q1 QXxnAUnAO0lpBpXDLOLks51CmNPxqxtqOU2+bHxZDTcqgT4gYS 5TCoB5DDIYcDFuBGgJ0FgCWEWoqYBQQno3WernPyUDYqc3R7RO PJkFUn88aOZi7U5hvXxxw4Fljfl9/bl2xs8GRDpXMeojmhgKUIHcT1BL5AUhwBWIBwOKLHfDXMug5JX xGmqsPKFKT8DEHNQKAlJDOx1NodWMox0bHNjDYEYzFEjyJTlOo AACAASURBVKN6GuMgzgGUxVGOwDiIL6CYHmFYgcecR3qX34pIc JB2r5BsoshJNFDntV3pd7LRZbxYPpYjnkgTnEkVT6eLp7KFYzm SyULReKFkslQ4WSo/2SJa1wozeiTVQ6J9zbIzkVAHcSOFaSA1CfIWtmQ8eh6JPOZ6eE vA8e1UTRca0xO25uiqtgPqQYVa2dvRpnj1lds8z1scTovN/hCc/ZepwNKS/YHJZl602h/YrCa7xemwfPc9t2v3Z1eu8Tz/+rsf5uRWxMakFpVUdHYq9z3SlptVXlhYXpBfkpqSuWvnnqnJuY 5jit2PHFxW37isYXV93aq1qzc21DWtWNayetX66qqG7OyCjPTs kODwoMCwpMS0/LySgvzS1JTM4KDwoMDQ4pLS+obl2dm5OdkF+TlFhXml5cXV1RX LSvOrSguqyktq0pKzNrZs27xhR15WwfOXr/I8b3XabN/985m05L9V11g+eN/x2SeX1yx7q72Vv7fotNptNpvV4bTbnTaLnbc/XDyymBwWK89/8vOv2o++u/CPb29dmHhO2Xjy2CNq9YBKpVapFOreHpW6W92n6lYpFb19yt7+ jrHJnC3DoflP5uT/x83rq0D/P0TMLwzx3wCfez4+X8Um/JCY+oub58+A+IWkzCRpISkLI7DjYFEotAO4RDM2gjSTlFkgsEH ooAQ2DN6jGTvAHzCMnWKWgPALEPaEx44j/nOFNOdHzHuSZ4W0kRHoJSSL0WcRQo+IOILSkZSeFuoZ0Rko5wR Qg8MFGjOQtJGhdSTQQnyeQeYpeE6E6yjKIJFp4zzaNmPJA4j30 8D7OiK9hLq/gLg9jbo+i7k+j3iwwrpj8lNFYjZMdqZA0NgJ5bcJeJ9meAz/L+p3XbC+y322COpc3Wfy3He0IpGDsHhEqm6RcsEEy1AGmtEzQY aMgjGV/6r+lPbB5IU1EqM70EPCSJBGQOgwAUcTOoIwktBAEkaCnCehhqH 1LjjHgLMSzCAgF2ha5+GlbIBZx5CEdvfuDczpINfRbKpxE5Kw1 b2tkZiTY2dxQgcFLGDmIeAgYaRwDjIGCuhwdB6iRuCnpde1C4+ XoMfr6fJu6K7DIQtQg1g4l0k27ccyO2VdG8VsCK5DwTyB6wWAo +h5BnAExQloLU3P4zgHACcE5xm5ziVjT2Z8QFOwqyEs8q7E8zk y9Al5nl5SMSwo7hLVjFCVvaKKXnH5kKhkSFp2Ulg0LKscE5Sck JXogM9ERv4z6fXnQGWT52gBqZHCBQHBQtE4WbqwK3ffRSSyx/PwztDR3VStAo9XxzR1rDu6Xz2s7FQp2xTqV1697eR5M++0Oh5W sH+dCphNDuuSddG0+Kd5aem+xbZot/x5/4+vP7f8+ovTzr/15t+XLWtJS88vLq1UqQd7OocqS1cU5Jfl5Ranp2UnJaXt33/o2tUXX3zhxnPPPn/p0jNPP/3M1SsvXnr6ypNPPPv886/cunW3tn5leHhkUFBISEhYZkbOqpWNVZV1qSlZgQGhQYEhkZGRa 9c2TU3Ojo2e6TqmVPUMdHeoFF19nW2qno6+gb6Tevbs1SvXt27 ZUZxf8vqt13met9ptzh++ulhR/sOZmYdhrx9r9foVTfwPv/B2h83uMNucdovTYbY7bQ47zzutTpvVbnbavrGauE++f/yjX2+88txjQ9tPdOzuVqqUKqVapVQquhWKbqVK0aNUKFW9CrXy yKmB6sOKg+MfHhuyFFS+17Rh0c3tXW+3uwMD5uWr7z564MfRST 494wcc+RnHLBhqxVArjlkw3ISDJRw8AHAJxe4TlIURWnF8CcOt CGbC8AcYfg/HFgFqBdgSSv4Txj8m2d1JKZZTPXV0Rx3VX0JNxUONHOVIzEjgH MA4DDsrxc+54zqK0EGgAbgO4CwAHMR0OKrFAUvgHIFyNKajcC3 BzEnkp9MER5qobUdFWwZEG5WCzZ2ijW2em5VumzqZ3ZskIyXiW T84I3OZyBGs7kBkL+HgFxx3YOAe4n5d0tjpNpoHZiVAJ3GbLKK b9iEh/USF0nV4lXDaV6CXEUYXeipSdmANkrpTsrZVPloJtGJgxIh5DHI orSOpWZrW0gQLIIsSWgg1QoITYXoCLFCYgcL0JLFAS7W+Lsfqk JTDSMxe1/blzClf+UgaWbsOiWqRHVpDTHuhBgg5ktBDhMWgnqJ0kNHglAai LIEYSZQjAqcl69vkg4WYqhKUdYul0wCyANHT0tk88dqjSGKHpH 2zcCaI1GJAh6M6BuUIjEMBi0EtgWtJVA8RHQENNHGeorXygP5V VIpa6MktW/VZUOBdBH8Fkd5ARK8gopuI/Doiv4bKriEuzyAuTyPSS4j0CiK5ikgvI4InGWZ6z6Pv7mx9k8z Y6d1dJ9K6QQ4SOoI4jefqd+XsvYoEqdz27fIf2kVWKZFoVfTq1 qYje7oH1F3qvoPHjrz2xvWH37PdYXP+Rcah/6nAotlmfmBefLD4YMlsvmex3bctLVptZrN1yczb+Tdff7+hvqm 6emV9/SqFor/zmLqsuK4wv6ogvzwzIy88PNrfP3D58hVKhWp6enZubm52VnPq1 PjxkdGTJ8ZHRycOHmpLS8+Ojo4NCwsPC43MzipYuaKxtmZZakp mYGBIUFCIn29AWGhkV6fylet3Xrv91jtvffj+O5+8+/ZH77z10cd//+KN19597fbbj+45lJ9TVFfV8PF7HzmdvMXm5P/49YWWje+q+h9ykt45cepi01b+v7/zdofVarfaeJvFaTfZ7Fabg+ctTn7RYTfZLYtO5ytf/8Z++MOzn7ylHWsfaT/Yo+5TKNVqlbpXpVYoFEqVululVqr6uhW9R06M17WeeGTwi9TcL wICPtizj09N+zQ14d3Jcb5x3dsHD39/aoIvKfkVIP+ioImAJpIwk4QJxx9QlBkHD2jGgmH3GYFVJLYA+I CgrChuohgrgA9IaokglwiwJCBNkPqe8PwI871FBt4CQZfQ+HFp yzHf4SrJnBeuxWiWpDlIGCGYp4COhByJsxBwBOAgYSABC3AtTr IkpSVIlsJZiOsh1ENSJxJxQUJdpEQXJdWEivQxQm2sqybeVRdB cd7kggzoaUInl00WCNYqEJfbBLFIEU6A/4KIr4jr1f6jdYJpMckCgd7dbbRCsOwoEtQvWNntOlYm0ElIHS0 dj/U7ug1NbQfFQ/KundKxfMFksmAyUTiZLBpLlY5nScbSxVNJ9FQsOZlIT2XTkxnC MwnCiWjJdIxwLkigkftqg/I0bYk7jBHNx3Mmt6ReKMw7uz7jsCKh5WTJdK+PPhHXiSDrxnC+ jN4b6KU4B0gtSnME0BP4PIQsHjQtaGmX9JWBngamUinwmAPkHC nShrirtoLcISSzTaxqEGm9KR0GWQA4BuMIoCdxHUlzNKkDpAEA FhAcoOYZSuvudqISVh3G3RaEsleg2xUm0yBtHJG2KCSNR2Utre Lmo5KWY+L1reL1h8Ub2kUtx2TruyXNx+SNfXRqb1S+IavgFRjU 77V3r8uZdErvCTgKTglyHtuXuf8KEj4k338wYPggWd2LxQ5ENR 9bfXSPeqivX9F74ljnxeMj71y+4rQ+NLr9TwX+P/5B8D8VuG9aWrq3tHjfvLhos963Whet9yy2P03WpUUbz/Mvv3Q7O6coLS0/ISHrwL72bZt35WYVFeRVF+ZXZaTnR4THBAWF+Pn5+fj4BAYG+v v7+/kFePv4+nj7e3v5e3r6hYVHpqVnxsTEhoQEh4aGZ2XmlxRXVlfV p6VlBQeH+Pr6BweH+vsHh4ZGxscm5mYVFuaVlZXUVpY11NasXL m8adXylvLiuuK8ysrS2jUr133z1bdOnl+0LPH2pa+N+oW8qn/Nzv9kPHehqOxbnZ632nib3WqyWs0Om8X50DPgdDptDqvNaXY67 LyT/9vnP2nf/5H79ucTFy4ebetRqvseWob71H0KhVKhUnep1Aq1WqHqPjY2XbR r1Cv5CRx8TuG/xMX+kZL0u4T5Msj3np/3z3Fxf6Rl3Hf3+hnA30naQlImmjIxjAXgD4SMjYRLAtpKgEWGs ggFNgCWaMYMiUVGYIOEiaAtkDJBykQwNgCWxIRVjCyJMTNF/IHAL3DfF+QbezynS1FORBqFlIYUcVDICYhpEW0UAQ4SBgrqCWq eJvQE1EGaoyiOIo0UymHASEGOofUMzUFKT1B6EmhxfIFGOZLRE yIjDvUIsUAAHUVz7tLJIqZRibjdocj7Avp3RviOZ8xFsmif52C tRONDs2LIuVCaQL/BTYICJRI24NLc6TNRSnMyqHH3GK9kmjqRMI4JPydOPUtlGGGGh srRgzROkHGOTDVQGVomWSdOmBencnTyrCRjgUrSkYUqyd4ml8G YvMdLej+82nzizgr1E49cG1p3a9um672Np4wNHY8pX7ve8nqbZ DSKUWdRu8tdO2vcZsKF5yjKIJQaZbRBBC9I8McEPnqXDZ3uo6X U0DLp8j6hl5FijMHuw+sEJf1I0AnhpkOS8QyhXg61OGEgoZ6Ce oIyioCWYvQCcoZm5kWApUmWoA1CoJVItZGSjjqm+CgePUiUtrp 3t8hn8mRctEQb5KKPFmuiZNoYmTZOPBct0caINZGubLx0NtZ7N jdAXR+xa294OYfIWZAy7X7wqOfpaslElHQyOH9hb9a+C0h0r9u +vSEn9tB1x0BsT3zT0Q1t+/pHBpXKXq6rry+rfKplF291Wvi/uhYwPVg0/bb44E/rfbPDbLaYzUuLNqvJ7LSZeJ7nn3vuSnpmdmpqblxs9sF9XRvWb S3ILs7Pq8jPK0tLzQ4KDPX3D/T3DwwKDvH3D/D3D3j46OcX5Osd6OPjHxMbn5SSEhkVERERHh4emZNTWF5WW1O9 PDk5w98/wM/Pz8fHNzAwKDg4OCggMMAv0NfLPzggPDw0NiIiISOtID+nPD+zv Cy/tji3YkPzlp9/+q/dbrE+uO9cNPFLv31iXHi+cde1pi0fnhl3/vofp93qtNocZpvN7LBanFabw263P/QLOOxWu8Vh5/mbf//Y8M5X+q9+G3/p1VZlv0KpVCoUSqVC2dOtUHQrVIoulVKhVimVyq4xTUbLDCJ7D AU/4pgZQf4LsJ9Q7FME+QRBf0SQ7xHk3wj6Hwz8iYM/cPxPHF3CMTPATBAzkZiZxE0ktiSinBSwI8gvCPItgnyDIN8hyC 8YeIDCRRxbwsAiCh8Q2BKDmnHMhJCLOFgCyLdY0Dnh4V2kPh7T i6k5QqxlBJwYmyOABuIaHNfiOAtwHUC1GM4CoIOYFqIsinAIwu GolsQ0OORQRIsDHQm1BKLFMQ0u5RiphiJmAaaDuA5CjUA2mU2v bkNcX8KxX1DkC7+gtzcf+cFvrVrQWUNpgjAtgHMk1BBuk0F+rV vwVCUSpXA7+IirNh+dljNz7vKTBeSqHXjkIAxhsRAWi9Cg4RoQ bgBB80SQgQjRgiAtCDHgISzwP0e5vECSNyj3efea9gR149Zrhx 59esaj6HDJXu2GswN1T69fc6krvKULC95S2z/c9uZY4sgm9+YdwpRtVNJ2jy0K0YEjwn27JQf2SA/ukR3YKd6zxX/f3rL1hxsTN6/K2JzVuMd95z7Z7j6mfBbxnZCUqj2GG8GZAFwjxDUUpiFxFgcch mlIXAsILQY1BMoChIWUnmSMYkRHA71AMhshHSyX9NRJhzPpmVB UJ0c5gLMQ01IoCzEWYjoK0ZIIiyMsgnMorgNwmo5aiK94bkvm8 X4y7STieR5E6JGMPYLmOnlvbqHuaO6jjyFhrW6HtvqONBMNe5H Y1rDGw42H9/X39vco+0daO5/qUP720ad2h9Nqt/3F3EHngyXHPYtl0fHAajfZlmyWBzaT2WrmzRYLz/OXL11Ly8hNycxNS8lv36dc37glN7eosKC8ML88MSEjKDDS3z/Ezy8oMCg4JDQ8OCQsJDTCxzvAxzvA3y/Yx9s/Oio6KTE+LCwoLDQkKiI2J7uovLy+uqYhMSnFy8fH19fP1883wN 8/KCjAx9vDx9vTx9s7PDg8ISYpNjIuOz2/JL+6vLChNL86L7No985HH/y5aLM5zGa7edFqsVnsTov9/n3Tb785HDab1W6z2hx2h9XssFkcFrPDarXb7XbeyfMOh8XBmxx OB88///qd05evnvvyx4WPvuoYOalSKRW9KkWvqrevV6lQqNRqhVLZp1ap FMrOU+eyW55APS8T4v9gwMaIrBj5uUfAm8nZnwnEH4ppE4VbxM wSA++JKSsBLZAy0YwJAhMttOOkmRQ6IPyVQL/28/oqP/fH0tKfSgq+qyz9McDrcwL9BccXKcpMU1aIW0SMA8L7tGiRFDyg oUVIOFHqSypzXqbYI9AnUTqBSEeRegrhMNJIQZagjDQwQGgkcA PAWUAaKZwj4DyFcjhuhLiRwPQANxK4gYJGEWBpah7QRkRgABQr AhoXxuhCsIDWC9wnM8WN3YjbHYL8k2F+cfX6OL/+04Dl0+4920RzUZCjKJ2AYIWUkRZro1zad2PJPXhKd0DbbndNJ PWYAM67uWoyXRT1Hj3rPZUb3bvXe/ZsduvY4K3Y5tG1yUu5yUPR7KZcK1c1e3bt99pwkgiYqG35R+bm mfz+fVNfPNMyfdqnrHP9wPMHL2saLmzccHk4a98cEngo/XDX2FfzO85Px1Sf3Ljrw9jUi4iHEQl9Fg1ZgKHnkQAjCDJCPxb 6GURu8/7Cc76yx0iZlgh8EvW7jPifJYuVXuqVLpwfbaBIPQV1BKVnCD0J OYIwkECPMWcJTA/AWRrqSYGOFBtEOEfCczRuIKkFKeBEhFFEzIuBXkgbhaSWEBkYm oWEHmAGCDiC1lOQg2CeABwu1dFhCwHBjyWGGCr9Ww8Jk7SU7Mm whIuimFaXTVuq9ZNZ+y8isb2yw9sDT20Q1B/FEhXhLZ1rj7QODPWr1N3d7Z1v33mD53mLw26x2f4q5tj/rQUsVovF7DBbnWa7bclhsjxMUbbyvJ3nee7cUykZudnpWYXZJe 2tvavXbswvKC7JL8tOz4sMjfXzCvLzDvL29Av0DwoNCfcPCJTL PTw9/Dw9/DzcfT3dvSPCw+JjIkKC/YMCgyJCY7IziysrGqprlsXGJvj6Bnh6evv4+Pj6+vr4eIlEjEj ISMWSIL+g6PCYhOi41LjU/PSiioLaioKq/Kz8rrZOu9XpsPBWE29adJiX7Barw2x1WK28ZdFpWXLYrA6bxWF 9WAhYnFarw2Z3OJ1Oh8Nqd1rsTjPP86/ceP6k/szZL/5t+PKXE2cvHO3sVqjVyl6lqlfd06NSK/sUPQqlUqlSjXScPpfVwmGejxPk9wTqhPhvCPJmTOLdNc0/SmVvA/RnDLFBaMawexBYILASxAOC/B1FzRhxDwE/ouAXivhwRcMPver7u/d827ju68bGn3bs+Jey997aNT9L6M9Q9HecsgJ8iYQWCCwkaceh FUArTlgw4ndM/Daee9q1v1mgCST1YmCkMR1GcASmA1BPYCyG6TGUw1AWI/QExkFMDxEWx/QQ+988DKAcjuvBw7cILUEbhKRRBFiKYEkwhxGsq3y8RLhWgXjc BGAJRxblkp8K8u/5RL9AF3a4D9VQBhdwlsBYChhIyDLSM4WSrZ1IxIggZyCwZ4tkJ gNokpiZfOlErcuZWulUpXy8ynWs0vVUmftEuctkkXS6QDSdL5o ukZwpdZ8p9xloQvM3hJSeSdhyMmd494FbQy360+7F7Ss7L+59a rzh3JrmC13pO04gPltyeoa6/z7ZMLc7dp0id81V/zyDIHtcWD4rLB4XF0/RReNU+QRZdtqlbCoyZTLH42Re4GhEulpSrKBK+6gVB12UdTLWH xhw3IgBA45oEUwPMQ5iLMQNBMICYCRQPYrPk4AlhVpGzAkxHQB nCdyAEAYU41BMD3EDjXE0ztKYBqf0JMUSgCNQA4lzJKGjMS2NG QSYjhBpBCHnAoOfDPU/F+k/WC4u2RGWqekc/D6+Sk1ULq/XTuU8+hQSPiLfdyRoZLuwqh2N6Y9oUjW3Hu0fUilVR7uOddy8c YfneZvVbLFZ/2K/gNnOL1ktZtuS3WqzPeCdP5u/feHmP1ndd1eu8X+Yxk9PJ6ek52ZkluSVtbX3LVvdUlBQUlZYvq FpY256XlhgRERwVHhIZGhwxLKGFX29g9u27grwD/H1DvD1DvDx8klJjE9LivNwcwnwDwwLic7LraipWlVeVhsTHe/l4R3gFxQQEODt5R0YEJCTlRURFhEVEZ2UkBoVERsZGhEbHlOYU VCcUVhVUF6SW9CrUDltTqvVbrHaTRabyWpdslpMVqvJarNaHWa zzWax261Ou5W3WZx2K2+zPiQN8HYn73RanE4Lz/Nvv/TCmeHOZz/6h/7rPydeuntYPaBUqNSq7i5lT7eyv7dnQKVQ9ag6u/uVx8YMueuNqMtTEHwNqS9p7zcIr5uU+BWx8G8E9pFI8C+p9AcI v4HEjwDcB5gJQ37H8V9x+JtY9oNQ/DkEbzav//1A6++pqZ8y1AcI9gGCv4uDD8IiP9+88962PffFrv9EsO8J+F8C +x0giwC3opgFw5ZwYMLBEoF/jzBXBaUnXIcbgdEdzAM4RwEtgekgrgOoDsP0OMqimA7HWYD9X0 sMygFUh6EsjrIAZQGmxzEOgToKzIgpTkYuMLgRwTkEsADTSVzG SgRrlIj7TYD9LiS+Skv5YGTYWVr0AXTTUsv2yyeLgd4NaElqGh POQsGc3OVUuWTFCO51jgl5DKbo0DQdSNSTsVoseRpJO4OnzOBJ 0zB5Bk+awlMm0bRxNGWSSNFjGZNk42HP4Y3C7lpkfYFbW3nA8a S6yy1d7xkLD4+V7Zter+0/8Gb3vtsD5Z2qxNruQ2cfP/hBt8+En0ydh26uY/bW+p+ocR/Nk53Klp3OFY5lCyezBBPp4afz1x8p7s6Pb6tIX364InigyHU0Q zIdSbHuuI5GOQHGUUCLAx34fxooTAtRDYlpANCimB5iOsDoGCE nQFmIGgBgUVKDwzmM4ADgAMphCIcgLIJxCGAxlMMQI47pccjiO AsQA0RZnJ4jA84HhD4eGrQQ6X0inW6o9Eo5tv6RmwG5+0TLa5b ppvL2PIcED7o/2h40tFNQ1YpEDYSv6Vt3pE090NOtbms/2nrr5m2e5x12q93+V+cUmqxO6327Zcluttqcf/zxlnrkidzqD3YdeqZq5d9a+57rH89MTItMSU7PKulpG1mzYn1u bt7G5g3aae3Rw8fiohPjohMT4pKTElJ2P7L38uUXbt+627xuo6 e7T3BQqL+3T1Fu1t5HtiXERXp5eMRGJ5aV1pUUVzc1rq+rrg8L DIkMjQgODPLz8R3qH/jwgw9Pj47V1zZkZeQmJaRmZ2VlpWX0tHfrp3XNK1YWZKbPTE04 HU6z2WI1W2xmm9lsXTRZzBab2Wo3W+xWi8O6ZHOYnA6T027mLS aHxWS32R4SVJ0Wnrc67TzvfP/6FZ1y77Ublx/79If5j747duqMqls5oOjs7lN2KgYGekaUHT3KgS5Fn6JjzJi3w YC5P4tLPyMir8U8es5r2wkscxANnKP9L6zZ+p/9rbbMrI/TM7+KSfgZQe4ExH68ZrvZK+j1tc33mzd8t3n7D+t2/Mh4XEeQD3Bwn6B5DLfRAguCfAZEt1fs/H7VzntQfAcBfwfMf1DBz8DlZ1z4EyB+FTFLJDALGSeJ/At4PkFvOSDRZhB6Ia4laCODs5BeYHA9gAsEbgDQQJBGCnCQmqc fjg8JA/nwDjlIGElMDykjA3Uk5Cg4T6IGDM6ThJGk9FL3sSxJYzfi9qJY 9vGu3Q9Gx3+fmPxlcsK6ddtvooAp1+b9XpMV1KyLSE+Sczg5j9 EGD4+BVVRdJxJ/Ck+cB5ELMMqIR04SMWN0/DSMnYUJRjzGSMSeI8INVKieCLgAXV4nhP9AfK5IN5/wmFjnqk+WGdyYWSz+ydT9b2s2Try2sf/NnhtXj/zjeMenuiPP3Nw48FLHS0+XPF8JtSjgpAKdn4j1JvUyuCCABkAa CVIPCSMA87iXjl7fLhrLR4bricpuqRfrSukgmCcwI0GylMBAAi 1DcS5QJ6AMNKGHOAdII4lzBK2nGJYAegrXUYxWJNDLML0AGBmK JYVahpkjaB2k9IAwANJI4jpA62maJaEeYPMQ6nGGxSkOkAaS5K Bwlgw/H5r0REzI2XDRZLB7bwUoXkWmrSfryoOOrqyZnc585DoS0+dyYF v4qe2CqsNorDJyXe/aI0fVI4rO/iMd3W03b9/ked7psP31DmLLktX5p9V632JzWv7ztzenKmr/e/Fp/t7vlht3niqt/3ROb5jVdnUPd3YMnjwxsW51Y35uQW11/ZpVayfGpgryimKi4hLjU5IT0pOT0pMTU/PzijMz8oIDw8NCo4ICguJiIzdvaEpNjvP3842NTSgtqSwrrW5u 3tiyrqUgN9vPyys0KCQqPGpdU/P69ZsrK+sKC8sKC8pSk7MyM7JLS0rbj7TNTZ7ZvXVrTnraExfO 8zzvMNvt9233LdbF/+u5dPA8b+dtVqfd4rSbnXazw2ZxWs1Oi8lht9h5h9PmcFrsdpt 9iecdb9+4duHY2rceH7768cfzX/w89Niltk5lr0KhUCm7utW9PQPKLoVK3aNSqXpOsbkbtYjH44jr HXH1VMCJVfKJFI/+ld7tB3z3te6/+sKBi5fjtqrWnbhT3/OWJH+48fQLJ9/6IvORqd3Hbw4Ybx9/5g1R2QGmekSe+wR0eRWQX2Dkh1D2BhNxRVx4hinp2XDytaxtj5 P5fYKa04KqaUHNDFMzJ8x+CrjcwYnvITRTyCJO36Gretwnq0md O65FCR0EczhkIarFMBZHdCjOAshCXIcDFmI6DGdxXIfhWhzXAU yLEyyJz1GojkG0KKlHGQOBsQDVE6iGYKbd/E/UiGuPI8zVyPC/K3v43OwPXGQv5OV/1NnG+3vdGanTWAAAIABJREFUxLymvXYcc50sojhPYl6MGYQ45y U2xLlMlUj7V3n2bvbq2eSr2OKl2OF7tN39QJd3V5en+rBMudNF vdela7df566AtgOeTacIv0sAvgkCnpatG/Bs3SprWy7sWi5vbfLaMEhEPo4FTnjv2Bk8kR92apl7YyuStt+j fRM96UtwDDnH0Boa6gCip1AjhRtwwAKohVAHMA546URNR8WjBc hQDVrRDUVaAuEAykLAEcQcRmkwRIvhRhJjUVyPInoENyBQj6Ac ghkQVI+gRgQzInAeIc5iiBFBzyKoAcE5BOMQlEUwI4IaEWweQQ wINo9gehQ1IOg8ghoRXI/gHAIMCM7hwmmPqDO1ubrDoaMbRaNZ0uk42Ugq3ZUpPVnm1tMU8 +jp5PXXkPzD8t4G39GVgoojaKQ6ZG3n6taDqqH+DlVHW1fbrdu 3eJ63O/+abcL/lwqYzDbrosW0ZDLbLQ8+/eZfl+9Yf7tvc/D8Z59eqK755vxjPM/z93nTn6YLly/Ur1heXFRVmF9amF9SX9uQnZmdlJCcnZmXkZoTH50cF5MQHRUXG 5MUF5scGhIZGBgcFBwQHx0RERYcFBwYHRNTVlpZVVlXXFyRnZ0 dGxMZEuAXEx4VHxkXExWbkZ6Tk1O0fGXj8uVNqam56Wk5pUWVK xtWlRaUlBeUleQVvfTCdZ7nbSa7xeRYdFj/+PFfv7/5+q937/zn9bu/vveh9fcHdrPTZnHaLHarxWkxOS1LD1XA7uBtTofZaV+08/zfbj/7Unvph+PNL7/54sJXP03deOOgckip7OtV9yp6VF0dil5Vn0rVo1D19IxrsjfpE K8nEI8XxQ19vqfKXSdTJN0N4r2bgwa2lr20I5BN8uzPqtZO1Ux cim5XF3HtDbcPxekqN73YPvjZbOm5dbLhdLfp0qCRvVSO0jXqU nD2TZB40vuIymOy3nU8KcVQs+bmQa+JFNlspMtsnHw2Wa7Ldj/RTNUMI253GeZ3AWlFJe8xywa8p/MlRinBEpSWolma0FEESxJ6ErAEwZGkniI5kmRJSk/RHEnqAMUSJEtCLUmzBM1iUC8AHCU20mK9AHIExkFS6+o6ke2+p xuEXwPgvZioL9c2W0Wu76HwQy/fLze22AN8PsXJD0D0Zfn20/KeR2SqNdKutZKutXLlGu++TZ7dO907d3kqd7l27nDvavN4ZAip 2cdsOOx7tNure6+rYrtEtVV8YrVsJt9vus5t01HM+0lM+Cnw+I x0f5PweI0MfZsJfxX3eh2RvoPG6Nw7WkRngl1O5TJr9yKxxyTb DntM59BzDKMRknMykhORLKCMODEPCCMBDCRuJFEj9OLEzR2Sk4 XoYBVe38NItTh+lgAsSemEtE5C6QQkJ2E03pK5MKEmltKlidlk 2UyCy3SyZC5JMpMsm0uVzSa5aZM99amy2TjZXLxkNkE6Ey+bSX KZSZXNpkjnEqSaeKkmTjwXJ5lLk8ymimfjJdoUiSZdMpMonU1y mcv2PrVWsnavtHhYXnlKvHmP1+gKt6kS99ONHoNtaNXR0ApDyb 5LbvtXS+Yi5OPlwloVEqWObGltatvfOzCsUve1trfdvn2T53mr 0/HXJ5RZTE7LosO6aH+waLct8byJt5mcvMn+98GBC5WV9k++tFt4 i9m6ZL1/7unzK+rXlOZWF+WX5eUUlpdWFReWpiSlZ2XkZmfkx0QlRIRFh4 dFZ2bm5eUWhYZGhISEhQQHpyYlRoQGh4YGR0VFl5VW1FQ3lJZU xMcnhIYEhQcFxUfGJMcmJsUmpialZ2Xm19evbFq3ubi0Jju7OD uzsKZyRVF+eWlBZU1Z3Zt33+J53mGym01O3uJ4f3DobETMCynZ 51Mynli3yfzFT7yNd1icDovDbnFaTU6ryWmzOpxOO++w8A672e mw8fz7ty/eaS/6uq/o7qXxJz/79/zH3ymm9F3KAXXfQF/fwFDfyICqr6+3t7f/RPdpbe6mGRD2DOJ13b9Rkz7R5XVkL5o1iARMCcoUPr0t3nMVEc d3Cop6kJBxIv2EzyOH5KczZBqPmIXoVW8u8+Q8BSwlPSvy45Ld Nm8UJvS6F456737UU1dAXBAz53G5ASl7Mz3yUhilp6lzjOAxij yPS875+5zcICzWMrLPXMRm1PsdZs1A4HSJ17y70CASLohFC2Lx glhkFImMQuG8ULggEpwVCudFknmJwCBkDLRoQSScF4rPSoQGkW RBJF5gBGddhEZX1wV3+Tk3ep4UzUu9tCm+nXvxtHOE9Gsx801o 2D/qGv9saPl99bp7lZXftrZaYqLeoslPKZd/I7538JgnQZSBir6EhT1Fx10SJF6BkZdB1DN49Dk0yohFPQEDzg emXvBMNMIgjgo3khFGGKuHFf1yxU5ftjp4YrWsuR/1f4OmrXKaF5NODxfey4UXCiyk2y8w4wm/oW2uC8Hu2mjvoxtB+kks/VRA534fTZTISNBnRYJ5F7FRJJin6bMCiVEkZ8VyViTWi0INHhs U3icrBCfq5CsUMg8DQZwlBUapZF4uNspERpncGOE5sla2+Zio/qS4QSutn5DXn3Spm5LUz8jqpl3qpmXVk+710z4rNC7Vp11qxlx qx1xqJ13qpl3qZl3qZiR1E7LlE5Ll46L6cWn9tKxuUlJ7Wlo3K aubltVNyerG5bWz8tInYbChauXLTS1vCoJniBwjVqCjch8Tpjy PeFyMrby0ZnY2YCqJnhd7sBX0smNoYlfshtZN7a1Dg8f7e/s7Oo/duf2QOPY/tsBfqQLOe7zlgc1x32J6YPnTbLNZ7fy9Pz6fmmSzcr+/8LRzyb5ksprNJtOS6alnnq+rWVmSU1KQX5aTXVhVWVdYUBofl5 yYkJoYn1pVWb9+3ebmdRuLi8rDQqNCQ8NCQsNCgkOT4hJioiJC QgLi4+PKyiorK2qLCsuSElMiQkPDgoKiw6PiImPDg8KSYpMLck qKCsoryuszMgoyMwoy0goa6horypYX5VXW16z89KPPeJ63mSwW k5P/+d7LG7d8quqzffL5H198eu/bzy1/mmwmp93scFocTovTbuatJqfd5nDyDrvDwdvtD1uv9165fONow2 +q7M+0Oy7//V3jV3+eeebG/qM96oHhZ569+sKzz58aHuF0bP/gifbBAQV3M67mFSb40pbTf9/AXRJmDFPiJ9zktzHp01TyvLzWwCRfwMVPucqvMjKOzD7iMlxIT kkSnkoseD4fniLFs/KcawVV19asXuhJOdJJNVV6DCUxOiFyFgUsZMaIrIu5+c8WE5M0 rmVIrRDqMKgnRDMRrq1bsFgtRn6ICO9StcMek7UCzhtoSZzFAY tTLKQ1OD2LkbMY1AJcB3Atgc8CXAswFqA6DOcA0AF8DgNzENcK kDkBnGUkGrFQRwMNLjoT6KVqEuWdRDzOw8irMEUTsFJbrXwpas Mp7/p2j4r9rQs34tb3w7ReKn8KzzuN5Y3CvJMgcwJkskTeHJE3DXKn YfY0zBij0qaZpLOYhz6z5J2YtKswfJLIHaMypyRx56D3HJky5r mzy6d/lY9qL5k3g1JvQXAPxf8Q0b9L6EUc/IYSvyLBL7gePCw6E0ZNCzxPJbhvPYxEniRyhrx6WsQ6X1xPYFo MaCCiJRE9hFpSOEMJzwByjvDRyFZ3uPYXE/3lovoOieQMxHQCYo5mtCitRRnW1fV4DVXWi7k8AchbGP0WytxF BS9hzC1U+Bomuo2L7uCCW1D0Kil9HaNvYqLbuPg2LrqJi25jwl dx4R1McBMX38JEtzDhHUzwKia6jYlvoMJbmPAuJryFiV7BmLso 9TbOXNi85e7ure8z5DmMuQJkV6H0GpA+h/rOpB6aqLu2TzQlBXO0dKyQrDuERPWErWlfd+RwX/+Iskd9tL39zq1bPM87+P+lAf2VKuC4Z19cNJkWH1gWTUtWC3///oejp4y5mT89eZE32xdND5aW/nT+ucj/6rj8xMuV9asyC4qKCquzs4oqKupKSiqTElOTEtPq65arlH3XLr/w2p3X77721vJlqwP8g0NDIwIDghNiE2KjooKDAuLj4svKqqoqa/NyixITkiPDwkMCg6MiokMCQ3du2Xnz+q23X/vb5Weu1detSk3JSU7OSE/LXbFsXU3V6vzcspXL1/77m3/zPG8zWZ0WJ//N95drGn6dmV96+9MH3/7k5B12O28zOe0mu8Nsd5iddhNvXXLabA4nb7c77Q6Hxea0OXn+/VcuX29rWOpL+2y46Pobz+u/+EPz2seH+4eHRo6/+cY7Tz5+cbiv78UrVybHp7uOD1795Jd1B/+ZUvBG59z3a3qfEwezkeE31675QSi5hcG/IcTfEPApLXpr9YrvYqOuYLGdUnUdfcYr40p63vMZYBQmPJux8k ZzgaHuyDs9+9/bH6ILpGZoXEcSRprSEfC0OONiafnVMtk0TWgB1FHASKLnEEwPp DOx0kcPIIELCH2ZKFNLJ0swgysyB9A5BGgQqMUxHcANBK7HCAM KDAjOIqQeQ3UIZkQwA4IZEGhEgB7B9QhiQIAegRxCGhDBPCOal fsOrySrBhGvx0HChPfRox7HKyI15Q0vtEVPtIRMNMTPrdz795E ktkEymCGdzJZMZUvHCiXjedLxHPFommwqUzaTKR5LloyliMcyZ acrPYZb3Jdvd/feEJK5KVzRKJjMFE8V+au3ua/oRzynEM8RctlO/95j7o1TqOx5CH+jgE0EzRL6AQ7uAWoRkbzOVA97na4mWBGhlXm dKpGuPYSEDtDVva5Da0ltIMpSgIOkgcI1BK4nUQOF6iHKQY8ZW eMx7/5KSrmCLOsgZFohyjKUjqQ1qFAjdR+rEC7vQ7weh2FPyUrnhDUn 6bpTovqTwvJBSfUgU9MnqB0U1oyI6k5KG04x1cOCuhGmboipG2 ZqhwV1J0S1J0U1x4U1I4LqEXHtKF01wtQPC+pH6NrjTP1JqnaI qRuia47L6icEmR1emT3BpePScoXvtk63rQfdt7TJt+8VH2jMMG 4ovFnFaAAxS3qM1tOV/Ujs8bCmjjWH9qsHhpSq3rZjHbdv3/n/iwqYH9gX79seLFosS/f5P//76fjM+fI1/7328sNT++KS7d6i9Z7F9oC/dOFKVdWK3MLqnLzqtMySisplNbXLk5PS0tMyqitrigoKc7Jy0l LS9+09uHnT9ojwmNDgyKDA0MS4xNjIqNDAwKT4lNLi6ory2qys vLjY+IiwqMCA0Jjo2OjImLFTk6PDp7dv2rF/78HSwvLigtL8vKKM9Nz6ujUNdY052cVbNm//49ffeZvTtuRw2JxLb7/1VFL83aK8N1aseS678vNplv9z0Wl22kxW25LNYXbal3jrEm+zO p283el02HjbEm9z8M4Pbly8caz8z774j9Q5j13QzH91n/vi147puYE+tUHL9SjUiu6us6zewJ7tHpvdffql+LIbrn7PrFe9 33LmOh13Sup1MSDsDuX6rDT1skv5RVH6deh6LcDvtsTlMZjX6z rUIBj3yH4uq+R6EXGajruWUn2jOs9QePi9A4+81xRy1gPXMBgn JI2ANEB0lkl5Prvk+RL5pAs5R5B6GhpcmQVfudHfZSYk6PSqkC 3DnkkzQU2dwRP5Hgs+co00yOAWonML5HykXCBzNl7AJUi18RIu XqCJkrLxgrkooTZaxEaL2WgpFyPRRQm5CJILk3GxYm24yBAn5z ICR1a6r+pHfBfQBIPboQ5XbZZgThhicKu/UdNwo6n2Zl36+YxHPjkYfzaFmZLSC66YVijSu1BaEXPOFecEmJ GhzrkIdR4yLoDQeAn0ofLZhPyu6uaiqtUr8xJPxzAaL2YhTKTN dDv8CBE9klL8smtJv8fuPs81ekT+CkH9zmBLQtIkEdtQaCYEVo z8Cg+4KN91RK5NwQwCUuPvf3yluKYViRwWrFS4n15B6LxxDtI6 ktRQcJ7AOBFpcCH0/4e594qL6uzif3d5dpvG0LvSe++9915EBBG7wYaK0mFgKKKiCEi dPgO2JJqeWGKMPYmJ6b3nffOmGgWm75nZ58Lkf87FuT45n8+6n svvrL3W7/ku3GPWsbwlbV1M/PrKsPTDXrZyHqxESAVJie3tJ7PtGw7DLmeh8LPsve0u4nx7WSB f6sOXhVjNhdhKA7lSbyuJr5XY30ocaCMN4UsC+PIAntSPqwhgS X1ZUj+uwp8r92dL/Sixr5UygCXx5cj8ubIgjjSQK/PnSH2s5QEcsZ+dLNbmSJ5Nc51b9yab8STuaR9c5clbDOAoXcl5 h+jnYtOvJ7OkBC4hnSdKqcIhKOS4X13XutZ9Q0eP9A8I27q6bt 68zTCM8e9zwf/qPQKDVmtcMRlWLLTR+Pj6tbPuvu+X1v50cuaTk2PvTU/9+c7HphVGrTHpaPOZ888W5lelphQnZRTHJeVk5hRXVNTERMcnJ aXExSUkJCRFhEWGBIWFBIdHhMeEBEX4egeEBoZHhUaG+gf5enh Fh8fm55YW5JfFRMcHBAYFBYX6eAcEBIaEhkakJmeEBoUH+wUH+ QSlJaYVZBckxidFRyWUFK+pqqhPTEg/sO+gQau3GMy0zmzRW5bvf3Szo/WXy0/T3370xbEj8tSUx3fvMCaG1tG01mjSmU26/0OBJ3fLjBaLgWEsH7x+8Wpn4cpw9HdD6dKZI6ov/pJ993j8tdc7env7ugTCHuGAQDggEA4K+3vH52LWTUBW8xD3DL9 QEDS8y2HbbihYADlPEcmj9oI9VjMltn0b8IxeyGUUChrk7NrNn w6lJvHkF9LSX80FEwQlZ6e/lV59p6b6jS25l7e6iOPIWTtEiqALAFaS0BQZfjE+67V81iQLl0 KUmG09EcE5WMzeUOa0p3Drq8KJ+68KpLdHXr3X9KYgUhSz427T iR+mj3586tQ3i/XP9nG3VbLW77Lf1G+1sdtqay9nk4C/Vcjf2s9t7OFvFvAau7kNndabe6y29Nht7Oc3CB22j6zaftQhXw K7nke9Fbwdh/gzyUDGwuYRn8VVBdezvKVe1mPWAaKAA18fCF8Mwk8CIMMJBc4S o6QIBlIEFWN8ibvTeJJtd6lNRw2/q8S2u8zhUF3a9m2b0hvWZ9dH7ax36KjkDKWwREms3goybX/mxpf8Nwysau5wqpqGbF5F8F8AoqVIA5unQ8FjAOsApIfxr6FgJ b9lD2cuBJaQHLGry+AaMrUH8hy2bmyxP5VAiHmoiEIkOJCipIQ ipSQhI92m4t2Kt9qzW51DnvLqybWa52NSBBGz2HNhvN3bIa8Zy H2BW9/hMJVKSHmoAoJPQ9AiiigQsAAhCxCigmA5BFQwcQaDVRC6CMFKC FJBkAqClBCkhCAFBCshSAEhKgiS/91hPVkxPGm4IBmEKAAutvFQxgadTqam2agcRpUEoqAgBYRPwfE XAjKvx+DzCBBhjifzWQU9UEC/37rW2tb9wuHDgn5Ba2fHk7wAbbGYLf92XsCgXaHVRqPGYtGbfr lw+XZJw4OyutulNVdKa85V13//4qvmFZ1eTdMa8xnZM/k5VWmZxckZufGJqZkZORVlldERMVERMYkJqQkJqXGxiYnxKYnx KbFRiZFhsYG+wZEhUdGh0cE+AX4evnFRSQV55YUFFdFRcYGBQQ EBwatX+YQER0RHxSfFJ+dm5CTHJSXFJRXlFSXGJcTFxMVExuVm Fa1dsyExIa2/b8BsMpmMJlpnUC9rDToLQzMmmjHRDPPzb88WF38yP8cwf1OA1p r+6QXMFsZsNlvMJgNjphmGuf/GpVe6qzQjcb8Lk2fbt4muvaP8/q/FT7/tH5/p7RkeGRgZEggGhQM9fcKe8fmUhnnU9nnM9jZVJHQ9lWt/Ksa+t8yupc5uqMhaFkMp/Jwlqa4DG50OdTgKWlwmqxzmQ+wnvPNfXJ/3Yp3DZLD1TKDjXIjPXJZLfy2xrhGtrHAbzSVEfHgBp5Rs6hSW9 kpszqVU7iwbl1D2s8G2zdVY1C6X0MNWodu7X7iy96w8blt39K7 2ljvzrffHO64oUveNRZSOtRx9sGPgdauwvU7hk4SjAnd+DrZ7E XV8HbV7DbO/BOxeQ21ewh1eRWxewuxexvjPk3Yvo3avYC6vY3avIKyXEPdn+b VCj8lClsiKUAG2mPRUeJbeKk9/Kb/k9er1dxr3ftocqghkz7AwFYHKUa6cJMWApSJsJW6ewjpOdh8SK EGDz4FAJRVyGvVbsPU852fzbADvgoPH84iPFElp43avtRWl23R lBLdujhre4Ht4o2P9AOTyHLD6DScMJEUTrBWAPWJTRhwY2ZQJs L8EMTLnnl1siT+u5FrP+K7q3A2iRuHQw/Z7t1rPRuIKByBjcWQEIUIpFcFRuNoMVKOxh4LjrjjEK7CmSjul JyFCcRnf9lQ2WdYOecxzK0bcT5ayRS6Y1JqQkZgSxk4TiAzB5S iQ4LicxGUEJadYKg6QAEJBYjIcV1JAQaIyHJOTmJzA5RQmxUkl G5UCIMeAnAQyAlcSQAGIBQpTsnAFG5ujwl+KDHs+AjmJgFkCO0 WxptnENMo6jiWdDcq/Hs+WAFxMuIwXU/ndcFB3QEPL2vZm4chw/0Bfp6D75j/TQYv531GMMP9P15Bx2ahT64wajXF5Rb+sph9rTI919F86y4rRt KShlzTGZZNZxyzIn81Iz8/IzEpNTUmMj09PSRLPzq6tWpOSlJqRnpuVVZCZkZuWmpEQlxITl RATlRAdHrembE1hZkGQd2CAZ0BKfGZx4ZqCvPLIyDg//8CAgODMjJyIsOgg/5Dk+OSslIy0xLSUxNT4mPiQoJCIsIiYqLiK0rV7dh1MiEsdO3G SYRjaSFt0RrPe+MUbt9+cmGd+V9MWhvnq+xdzi79dPMdYGFpnM ulMRq2J1loMGovR+M9lEsZoMpvNDHPz9m1pW83vQ/GPB2Iv9NaflCnPffPH2W9+P7x44VDP8KBwaKi/d2hg6JDwSNu0OGnjNGzzHGr1Pl46wRenoUq2lcLdQRFpM53MFd RgG/aw1/Vyanv4G4Y4jQJ8w16icQ9R1Ry0+0SN6KJVw0Gqps2qttd+3Qgr 8Sjb/ZRjyBHbDTWuikSbi564COfOEnm3MsKfCcFmOZhktfv0el51p13 QYlHRt3aeI7ukN9eKzjmuGYJyN4bP7dx1R+rbcAxyOAoRx7Or3 l27812X8NGUsjcINwkr6iyerECTJSBZgiVL0AQRnizGUiVoigi kSbBkKZYkx1IlVIacSpSiCZNkfZftyRKexAWXACAD5AzlrfBcc 2tdw/Wmjg96is4XFl8t9pKuxmcIoCQRKU4p2JiMYMlc7UcqWfmjkN1N mPgFJSwwxGCAhrBfUOwhihoomCEgM4IsoTbX7dYP8idiHObsG2 +uS1cWuPZU2FVNQPZ3AWsFR3QcwsBiawH2iGDpEExNEmoSPIK4 b1Fpk3bDDax5b2qe4zSbYLdLAAWcILM77EbzMaUtIoPZCzAQAV Rqg0vc7UfzsLyddkEyfuw490AVV+pKSXFcZGc3WkHkDsLhx2y6 WjiycFhOIkoUkyO4FMMUFFACTEUgUoBJUUwKCDnOVpG4DMUVAJ OhlArHZAiQwoQCYFKYkKO4FCblKCqBgAwFMoBKECBHECmEywEq BaSMRY6zki+lNHzRkHI9Lft2Xv61/KJruXlvpOZfym16b3vxtRL2NIeQ4PaTGURBGxwwGFDfWdvWPHj 0cG9/T2tX240b/+QF/nUK6NVm0yMjvaRb0aiXDFqtTqvT6pb1+iUDrdaZNCsG3YpepzY YjRal4kxmWm5mWnZmVlZMdHRwUND0+OT9e28tKBfFYplILJdI5 VNTMxPj00ePjAl6B4SCoaG+4fTENL/VfgFeQenJ2cWFVSXF1ZERcd5efn5+fo0bNrQ0H9ixefvBvS0dB 9vbW9pb97ft2bFn64at69asa1jX+MrzVwcFxxJiUiTzMoZhDHq D0WChDaaHV16XRSf/ODbPvP/p251d58oqjZ99yxgZWmehdWaj3mzQmQ06i9FoeqJ4pS0G2kIzD HPjzr3xQ+t/HkjTD0VfH6wcOty7+N6Pp79eEd/7uPXwaL9QIBB2DwuHuweHO05JEzaKIIdzkM2beMmY9XgFbzqaP JTG3rjDvmYcC1ZBvLcg8CWCf4MQ30LENzDxDcL6CkE/Z1EP1m4yecW8BeFnMdvrwOEuRD4TFH09sfI0WpRRdGlbw5dbsJ OYs9y58K1i2ylXq4lgVm+RVWOXbeoZzO4qYX3ZMX68++qdvOMT cPhuvLzd43CL89b9kNcAFSx1qBwrmDhTP3eJl3yIk9LGXrfdeq SQMxtJzYRQ06Gc2XDWVBg5HYbPhGNzEfh8JDETg0/HEbMhPImPlcSPmArARR6YwgZWsjA5whKhnJNYgNJ7+8fbN99o2 vjqpvWX6p/6eOsqqSM6A+MSHBfjsBJGlBz+iSxO9TDkchuwHqL4MsCNANHgq BZBNQDR4agWBRoE06CEFuJ+YpMjjj2+r/q55vkfXxHcPJfSewr2W0CJ71BYi8A0GzNxSAMKHgGgQ1Etij7E UC2CPIJ517mlR2yP5xMyHpDybY/WIkl9WHqnzdF8ILOF5ABdgDAZgolYiJhvI0222dsOeY/hiULX/jpy1h6T4MS8A/9oIZ7fj0QK2d0NuNQNkaGIFKBSDBUjQAojUhiVYagYwSUIEMGk FHCVBCGGcQmMSWBEisISBJYgqBzAYhiVIk8KFsGoFKASBBHDqB SF5iFUjMBiGBUB1hTHTx5UfKWk8FJe0SvZ1a+VlL1UUHA5P/9SZf7l6lUyP3yKwGUE52QGWtgLBRz2qzm07uCeoZHhXkH3oY7W G2/eYBjGZDb9/4ACKxbDktmwZNSuGLVqo1ZNa9UmrcaiWWF0yxbDslG/tKJdWTKbzSrVmdSU3Mz0oszMotiY5ADfYM9Vnt3tHTeuv3Hlyq XLVy5de/31y5evXr36xutXb9yc46sCAAAgAElEQVS6+db5cxcz03LCgyMD fIMCfIIyUrKLC8pLCisiQqO9PLy9PD0C/Hy6Wts+uP/g/r2337n71ifvf/TZh5989OCjD959/7233v3o/seyOWVhdmlKQtqz555hLAyto3Vqo05LM2r9d6rTl4sr75VXvbp +/f/evMtoGFrLmHRmk85M68x/5wUMJovFzFjMJrPeZDIyDHP77lszbRt/HUjTDUTfEVYMdjUfu3hF8e3S4pd/Hpk7P9jTJxzsFA71CQeFfROKxPUKyOk5yPk6u2jMZ7jLevMhJO A4xDuLW73D5fxGQFo+zlCwgUUY2LjOCmitcR2O6CHqp+DUT7b0 fmubepjMO2ZVIuWmKFgh80R0i/2B0tgXM/JvZfBHeEXXKlJfybY/FuWytw0OEMMOr8M2dzDuZxDv5urKOcH7LyUe64Gi9vLKRrybT2 GxvWhol+fultWjhQU3t6y/1+51JNt2LI4nDbCS2nMlLJ6Sy5KQbDnFUbApBYta5KEqNnHGCp XjxDkcVSFAysZEPDCH4xIYlUDkIptQoFYygn+K6znneuDrfb1f DHbc7T723UjLl1vc5jncORsbiTdbZIufBiyxi0vnduArJamfuL gRJx+z+Toc+9OapSbRZYow4oQeI7QkpcNxPYvzCHF4YfPI553y nxra7nWO/yA4qfbw+pCEfufjFgLXk5SOxaJRfIXimhGgZrG1LJxmkTTB/QHyPMPd2mo9mUrJV/HGSuG8DiT/gN2JXErujEq51AIg5RBLCaNKiCvzce9vhyNPEDl9jofr2HJ3VA HYCo7TZCpR0I5EHrPt2GEj88NEOKXgEHKKlBOUEiASmFBRQAJY KgqXYoQMZ6lYqBiQKjYqIwgVC8hxTEFgCoJQkqSSAlJAqihcRp ByCpMRmIzA5BSQEoSShUgJfJEkVICapNhH2fgRhDMBWCcQfBSG jkPUDB8+xkIn2GwFD5NR9nNFREknCB8MqGutbd03dPRon7Cvs+ fv6aCZsTAW+l+mgEFt1KoNmmWd8bHavKTRq3VqtUGnNulWTIYV k2FJb1hSa5fVNG1WLZxLTs7LTC9JTc2Ni03x9wn0clvt6eoaFR ackhSXkZ6UkZIcFx0dFREZFRETFRkfFRkXF5sUHhoV6B/i7xuUnZ5XnFdaVlAeHRbl6ebu6e6y2tUpIiBg5+atzU079+/e07Kn+cDe5vaW1q62jmNDI4IOQVZqTmZqbnpa1tXLVxiGMWpo4 4qeVhu0aobWMroff/3jw/c0jx4aLIxeQ5vUjElrMenMZt3fTw9pg4mxmCxmk8miN1tohmFu 3bk3dajhl8E043DsXWH1SOvugTn5wle/y79dPvX87e7unn5hm1A40CcY7p8QpW6YhhzPQ/Y3bQoXfJsn4eAR21UXwqI+YrE/JPFHAFUTpAEGGkBqMEJDgRUWWEERDWT9GRE/ufvlC3UvD7kNlTmMlriO1DrsXmO9J5d/KgyX8DljvNxX8jZ93Ox5Ktthz1NYxAzkdJ4d8ZxD2iVu8BuQ/blV1Sc731UljnVDEd38LAU//zQUPMTf3Ow4l4qf4ma9kdV4s9nzcLbVRAIh9efKbNhijJTihAS QMgyXokCK4nICV5C4nEvMccgJsFrsnng2NeN8esqFyPALfrw5G 3SGhYkxSkZSUi41S7iJnAsulk3+KKp9pcFD4m87FcYfqrBt22A 3ko+L3bmzAc67d8OrzpPkn1zcBIhHCEsNMC0LM+KIAcMNgNADo MeADgA9Sahx/O2Ghj9q1vyYkvZBXv67+59aCV39Hxx6xEJMBKIjWToWm4ZRDUo YYURHkkYCGHDUAIAGZX0KR0zzOxusJL68E5lwbjNW0Ow4msuSO KAygCsAJiIxMYmpUJ7S3al3ExTVieW02Y3UkEonWAXjUtJ2PI0 o6EDCh2w7t/JEHrgYYHISyAlMjuNyBJHCuIJEpQCTE6gE4HKCvchBpBiQU4iM xBUkkOK4nMDlOCbHMQWBSAH2d0aTBFIcleJATqBSDFP8/ZusOVbKS5kNd7YUXylxm3JyO+VU8mZh9IVY9oRt7OXUmCvJVvM 8tojtMJ5PFXbBIX1+dQfXtR0QHj7cI+ht6+x8sik0Mcy/pRj5vylgXDFpNbRWrTc90lj+0hiWdeoVvX7JqFvRajQrOrVWrz ZoVoxGmlEuPJucnJeWmpuWmhEfHRfg5ePrvsrHzdV3lVuAt2dk cFCon7eni6Ozna2ro6OTvUOgX0BsdGxEaISfT4C/X3BOZn5ZQUVZXml0cPhqJycvNydvV0cfFxdfV7dgTy9/99WeTi6rHJxWO7t6urqHB4YkxSVnpOWkp+Vk5+Tdvn2bYRijzk TraZ1Wo9cZNTqLTq81GzVGncmopWntsnGFNmnMJq2J1ppM//QCTyhAWwwmi4lhmBt37k4eqv91KFU7FP2msHa0o6VDMDx/4z3pD0uqj38Ujp/o7W073D/S2zckmJCkrRdBthch/k3bAqVP0zjkecLT742ikl+4nE8xRAMjOhhVA6DB8ccAaBHMiGI aBHmIOt6x3dDvNZe+6av6DW9XuM84EqdQfJrFnrElJtnWE7bFV 8ue+nq3tyrGoaOKiD0GOamogkm/3oGg/bP82POwlcQ+eURw68W0Y0ehwGFe4hUs4Tk4fdBupAaVWKNTRP6 l9RtOn7ROryOT64hNleyJOKBygJUkJEcRJYooUEgK40oSl7OoW dLuOJ79cmLTZ9sb39q8/nZj/e3azQ8atny0KeR8KDWB42ICUbJhGZcc83LtLS45ORLZ12zTXud woBPL7oX8trOqKvjjCVazMXZ7m6DV5zHiIRdncFQNgA5DdCSqx 1A1gmkRTIfCRoAZEaAD+F8s8u7urQ8P7mRysn6rrf214wDtu+o bCP4VwwwEoqbIFQ5LiyAaGKNhmEZRGqBqHFOjqB7G/wf5PcvZt9NKHMAbTUOy9+MFLXbH8nCxPSTDEBkGxBQuoVAFbLv o7tqzEY7oApldtofLCQUfUUKY2NbqRDFWKICjBVY9DdS8CyKFY QWAFTgiB0CGABmKSklYiiMSgEoALsdZKhaQAlyOoxKAyXEgxYA Uw+UEKgWoHCASBJUBRIYichSWIYgMQWUoKkMwOUBlCCKBOfM2u 75u23Jj/56P2goulSQ/k9r00e5t7+9OuZC/4f72PV/tiXsmhH+CcDmaS+V2QsEDXnWHalr39Q8P9wgErZ0dTyhA/39uGft/oYBBzejVZoOGptW0YdlgWKaNKwb9isag0WhXdLoVWqc2aJY1Zp o5e/rllJS8zMz0pNiIqEDfADdnPxdHPzdnXzenIM9VwR6rAj1cvJzt PBwdVtvbr3aw8/dwjwkNDvcPCPTyjQgOK8zMrywoL87MD/P283J28HG183a29nVxCPFcFebtEertGbDKPWCVu7/HqoDVq+NCwrKSMzLTc7MyC0pLKj//+DPGzBi1NK2jjRq9XmvQ6oxqnUGrNRh0BqNaa9boaQ1t0pkNGp NBazLqLAadiTbQjMVisRhoi9lkZhiGuX3vxmxb/e8DSZrB6NcH1432HBJ09x+RLix8/4fi+4cjp59u7e4ZFAoFwsN94+dS1sshx4uQw11egTio5ziVehh 1PMPh3ePhP/LYRgjoKLaFAHo2ReO4CSMNOGcFwX/HPO9a7+6l5oKtZQ7rbtft+2B/8c28lKsxaZdTCm+Vbv90x84H2wLmApxPRrs/1QE5zVApKruhAy6icvbGrayAmbCE21arhg8tvJV7VAKFdDumPs 9LXkDSep2F6+0knpzjnLUvdFZ0n3H1ORWTfA0N6nNo224rSuEo vdgKW67clit340jdbJRuvBlHlznfhnvbW77sjjkfbzfrajfvxR 53dBatzrqYve+LQ3mXSriTbEyFUorVjsL1vJze6MrLPtkX8DAR 4nvexueF7PI73OS9Dh3FbtNZtgd3Qt4qnP2QYFlQQsNlazFshe TSOKZj40aKMGK4geSYEWCgcK0d/8NDzZrk+PdDQ76Kj3v/QMtScurvEPIzzmZQTE9RGjZbh2AanGOBAc1mWUhcQ7I0gKWFWP 9D/F6237/fRh7NO1oKsgfwvH77EwXEAg+SA2yBAjKMWmDhiwRfucq9bxMcI SCy+52PVPLlTpQYcKRudmM1RJ4AiRfY9G3mSf0wCYIrAa5gkXK SraAIGUEq2bCMxFRsTIHjcpy1wMJlGEtFoRKUUJG4kvinSFxJA CkglSSmwLAFDKgwVAVQJQBKQKhwIAeUHLebsWr5dH/HO+3tnxzKeTndbtQmSB64+bMtIYsRIfLwzv+0ZD0XYXMC8x0v4 Oa3oREDvo1t1W37hg6PCIV97b1dN27eZBjGbGZMzL+GgX9M5Dp GozbpNEaj1qjXGjVa3bJu5ZHx8YpWo10yGx5ZzMu0+bGW0VsUs 6dTE9LyspMr85MaK3KzIgLSQ33TI/zjgz3DfVwjvF2DV9mHebmEea0K8XD3dXGI9PeMCvT1c3Pxc3OL 8g8sz86vLiwuSE2PDfQP8nAK83YM83YI83UJ9XEJ8LD3drPycb P2X2Ub4u0c5u0c4eWWGhWRFp+Ym5m7tqr2P9/9aKHNWrXesGI0LRnpFVqvMek0JqPerFMb9Bq9UWs06ky03qzXm Axas1Fr1mtpo4FmLBYTY6Atf6tcbt55c7Jt48/DufqB6Lt9Zcfb9/R09/eOTSk//E717UPprQctA0cFfUJB30DfuDitQQTZXoSsb5Klo67H6+06mpB QGQQ+wxEdCpYh8k+EUGOIBoHUMKxB8WUUf4ygvyFuV3k797EUn tAsYj/mHa8qK7+6ufLKhqorjWU3NoY/m8EbW02NBdn07ECjT0Gc09w0kdtIo/V0BGt/NZYisI876RDXsv/iS+Uqkf+2acf08cKWN9xqBnOUnXu+bk4/k7pucbhe+C7P9VmXgDuIv9h241Gbjr2cjvW8zrVWnbXcjgZux3 rOwUrrg8W1F8c2XVTYHtgA7Sl17t7g2FJJ9acgc17QKdxd4tr0 +Y60FxOJcbb9VAa7ardd4HztU//xTz5Peo1RAXKXmIvFO2871jdZCWLsT8XyD+yEvM5hnEckl4GwF Qwso8AA4yYUMZGoDgdqFDWgwABQIwb9acd/t6tVm5f/aVDkpyERdw91qpPTf4Og/0AYDaM0SRkplglG9DBqghADAEYU1qFgBcEfQugXkOMZ510tVjN RVkdK0MxOLK/H6mgRUFgjSgSVo0AKcCmOyjArhadb71Y4TEgld7sKa9gzq7BZg pQ7Wo3lEXltcHivVccm9rw3LsEQCYpIWJiUwGUoKoOBEsBSDJV jqBTgcpxaIDA5ikqQJ3/7TwqRok/EDX/rCSQIkKGIDEHkCKIAqAIDcgyRoWAet59y3fdx2567B7u/7w0UBzgcs6t/ty71pVTnSecAZeDGjxpyr6dQE5jriVwqrxMJHPCvba1p2zc0NN Tf39vS1frmmzcYhrFYLDTzrz0t/mc6qDXpNbReS+vUtE5t1q6YdZon0i6Letm08pdRu6TVL2tMOpN oWp4Ql1BWlHH5WelFyVhjQXJNRlRVRlR1dkzX7gbZib7xvoM12 UkZEYEpYQGRvu75KdFHBB0p0ZH+7m7JERFriopKs7PWV5Q1b1l flBZZnBpSkRlamRNZnh1eX5pYkRNekh5YVxSzqTxxU0n8lpLko +2792ysy05K2rZh01+//W6mTVqtUas2GtQmo8ZsUJt1K7R2xajX0TqtXqc1GHQm2mAxaM0 6Na3XmnVa2mikGcZiYowms/HJl9ftuzeOte74eKDCOBT7xUDuXHdTn3CgRTB44sLl01/9eebL3/oUz7R29w/0DfeOnUqsG4O4Yoh3hV0y5jhe4niiCiRNQfBHODDAsBaCVwhSx yK/43A/xMmvcWKJIMwI/Bfqdo2/6xBPGsKZ9+UfqkZzmom8g+F9B7KnmhK7dsV2bkuVbvSZaSTLW3 GnSftV50n/Ef5TdTYSH1LiRB2LJNujPAfTd93vr7p4pHLqDX7RxEb5F2H7Rw tlzZsubzn45uHGKVX9wS9ZvCsA/RiwvwQubyHuL4LVz2GrnkM9nkE9ziOrn4Zd5FEFb2xr+w/bdcw1+7xL8Utsb7H16uMgaQ9XUMkVeVBTeMCCx6b3G4OnSm22d EBeCtT2ZZugBXbOoGeX0FW4zbWz0U+wxf1YqdVMBG86zrplL+z 1LMZ6RLLNgNCwSB2MaGFKA+OPSHyJRWgx1EgSJhTWUPhDa+t3D hxSV6z9NavgUWjog0MHNalJf0DQjzihB6iORWk5XAOC6EjchIE VHNfgGE3gWgz73t7ugVOgiqqpt5tPtB4tQnL2goJm2xP5hNIOV QFcSQARQkpJXEHyZJ6ugq1I5AAro89FWGMl9sDEAFfwrSfyyfx OOHzAumObtSQQmweknCRlXFyC43IMkWNggUSkOK4gMRmGyTDWI oXLMUKJI1IUVxJPHA2YAkelKK4kEDGKy3FchpEKApMBVAYwFYH IMVxFoTIMkxPWErvGTzeHisILruRV3Cyuvlp6/M+RsueKYpSx2z/dueOLXQmXksAM236ykCjthiIG/Bra1rY2jxw+LOjvOdjT9uatGwzDmC1mmqH/ZQpYlizGJdqwYjSoTYYVo3lJp/nmp//dvqf/z88WDa1Z0i0tLS2rl2mTRSk9FxcRnZ+e0NO87cDGtZtLMuqy49 ZmxTTV5F2YP6Ic7X7jGenMUHdGuH9aWGC0/+qC9PjB7tbinCwvN5f0hLiq4qLKwoL9T23d2bi2KDm0NCVwXU5 YTXrAVN+OD64qrz99cq5/e8/mvPa61I7a1KEdZZcUY7ITAzkJsQeamnRLy7TRpNEZl/X0spbWaGmNhtZrTAYtbTKazbRJr9EZdLRBZ9JpaK2G1uv+DwUY M0NbTPonF+Jv3bspPLTzTUGVdjDml8MZqr5tvQOC9v4B4Yz8zG e/yr79a/bOB+19w4M9o11Hp9d2nk1ac211xA3nEnG8aK9zb4FTybHVgV9y WN9FxSzzbP9DEY+4rM+qah/FJP4XQ/+HYyYEeYh5XrPa0e4kzrYeygeZLWD1NGx/Mnbt5eRNLzonDFglbYwf6MyYHaQSm+095jZs+a979CS7utZ+Ph JesCLPu9gseK6aDdny4f7KF/pLjzxrn9W/dfpOxK4Bh6b0bS/1lo+Op227WH/gZ777awT/PubygAh6GQQqMd/TmN9pPFgBQmbRwDkqZL629YOQAgnk1FLfeb+25RuUp4qNe+AQP Utu2mgzF8lTWqPjnKxXthecnIF9BESI0rpERFZtt2krtZ+PJCZ 4q2dCNr9zMEAWjk+w+LMhjof2op5PU8TvXMpAgCUuoUbAX4j1/2Crj3HWBzj1MUZ+TXK/QVmfAPZ9rvNLu7ofBiVfw+zOufpc7B3UpGV9ASGvYzafwFbvo7 bvAsf3IPYDjP8pbPUObPMBxPsSWH8Gs1+KTXqnsuk9vHotfzaN f7wSydtLFO92HM0l5bawDCMUJCECbDmFKwBf4ebavwGJ7cNzh5 xG13AV1pQCIuV8/lgZkSdAIgftunbaiIPJeYQlRygpTkowSsFFpHxUYQPkHEzOAlI ClxPsBQ4qwXAFCeTEE18LrsQxBQ7kGKbEUSlKKEhcAkgZjktxI MdxJYnKcKAkETmOK0mWlPI66+EmdrSd5wQ84xHzTGjxlbyMF5N dZx2in49MfDnObo5PiNh2k/l4SSccMRDY2LGude/w4KCgv+dgX/ubt//OC/z7FDBo6WWdVqM1GHVmy8rj3545fbO45FZV7SvVa3999ZJxxaDW 0CtqHa0z33rzrZZ9B/bt2rFj/fp9mxu3Vhaty4pfnx27qSBhfXZ0eoBTWULQ5pLM/OiQ7MjQhCCfmECfEG+PgNWrQ/z8ivPyq4vL1pSW5GUmh/g6xwU512SFrc8K2VoYOdW9rXNLUdv6zHNH9w5vzR3amCnckHFs d1nz2vSa3LjEsOC+9g6L0UTraa3W+Nho0upMerVhyWDS6k0Wrf 6HS69/ffFly4rWqKeNerNOTWs1tE5n0ukMRqORYUyMRc+Y6CcDmFt33u lt2X2tb41mOP7XgWRlx8YeYZ+gX9jZPyS69bb4p78kn/wgODbd2T7YOnL05Ivv9MnUyeVfR1e9sXXxjEtL4U7li3t6fvH0 f2X+LFO57jsEetvK6rOi8ofx8X8A7D8A0yDgN8j1RetdXU6Tud w9pYj/QFbpd0GRr63yvGXt9GZo6jWf9BnX0oPZE1Pc/A7Cdjgg8Azhs9d+e5XLZApvIo7bn81tSvfrLth9X7jmaUHjxIX oyuO9sk9D1/fVzYx3v3iNDG+Lrn754LTBOvJZyFbiUCl36Wnn9q5nC9Zy+mus +9byhBWkoNBv4qnyi8fse8pYPWnp53ZmTw3wcvZbxbURqfU2+w tspr1wCQufdvYZ25DbcxaEHrBqespuPpM3586VWYN5EHHeZ/vra+b/K2p6r93nTLjDqVinXW2Q04sszp9cLg2gZYD8CDlfp7KfsS074Z 9+NMXncErAcc+sGVbVNFly2Ll0oE35UePo9XUDL287+XLvhXeT 94vZeZ3s8gGybNiqatyqeoJdPM4unGKVTFGlE+zScV7JGCdz0C 3/eNi2o069pezZALvRcjSrGctttRupxCV2iASQYpSaIxAxCisRq0 VX58FqKK4LxI3YdzazRf6onECVfOpEIcjvhcMF3O7NuNQVVUJg gUAWSFgFYCmOSnBUjKFSDJEARApwGclWslERCktQWAZgKYz8XS giQWAJCsswSIoiIhQToUCMolIUFsOoFCBSAEsBIsFREYmLuZTc Gp4D8ByEixB0EgFTGC7G0BmIGIfYMxAuRa3HUvHCDjhgwL+mvb Ztv3BY2CPoOtTZ+eaNJwli2vyv7wj0apNGY1jRG0xGWvPZV+Ki yi8PjzOf/vR+3+HF0krL9/81aSyaFYtabVTr1I81K+oVnebRyv+++aZlc8PajPhNBclbC5Ib c+LXJIdVxoeUxYaWJ0QVxkQkBvpsrCq7dfm1l85f6GhpO7B3f1 312qKc3BGh4JnTik1VOcXRXtvyo3ZXJTRVJZUlepbHue0pj+pp SO3fmNm/Oae/qeTc7MAziunTMsl7b71jNpiNWqNOqzdojDo1vaKl1TqT2aCl79 95Ojbp+qZ9zJ9aE20x6ExaNa3XmPQ68z8UMJsYg9FsMlhMDMPc uXdf2Lbnen+VZijm1+HUxb6mnv6Bgf6+vp7OIaVU/u3Pqu9/n33haltPd8fxkSPn3s7d8ADn3YvI/G7L9P2YwZ4DZ954qu2rwvJPO4aW9u5fXm3/JZt4kJLwZ2TAXxzqd5LSw/jPqPcLnJ37nObzbNurQFBHVMgrnt5nfNOuOKe8yvdX8ZwWbKOV icMLgYeEHtG9zladPvkdfod32AsbWWs7WH7jjp4S2+B9rS88k3 u8s3Rgsf/sH3WD73JTB4SvfdV38YuwWkW54Ob6oa+53s/ZeV4n4occhuvZkhBy0RFT8tlKPqlko1Ju3OtlWa/ucJpO5ytCbFVBjvNpDkO1nF1V1vvL3UYzHaa8Vs1F2gvXoKV7o vc9E9DaZzuRiC2wyQWAzQM7ucuBnw51fLi/9umKne/sPPRdX/TRp3iZJyGb93DWXxTbAONLkMMDqmLa5USj+6nA0t7Q7vKQQ9UR WcNp1jMxtqJ49/GkHff79791ZPDD+fXPHtjyxqHU8wX2E74Okmir+UQbabqDJMl2 Jsl+LtVmNs5eGmknCnWeibcbSfUYLYxT1jicCuVPRrt270Xi2t GC/fYnikmlLapAOXKAi1BMBWAV4CpdXY9Vkbn9kLsEyzzh3Nu0+mS C/4Rn2HCxVUYnCOn3PrQzYDrIY9LRcTSUfyzUataFklGIDMcVbFK KknIclQJChnFULFwCSCWJygGuxIAMBXLwpBcgVBQsBbiKAnKcU JCYHEdlGJBjqAyQKhJIMVJB4RKMUrKpBQ4mJ3AlgSsItooHxGx MxQFKNiFlsVQEUAK7qWyyuAsJHg6q76lrPzh0bLhH0NXW2fNPX sBkMT85r/PvUcC0wuhWzH8ZabVRq/nmh48vvKb/9THDMEvPvapMTKM/+9yiNevUjHrFuKJZVhsMGo3FrGc0fy617thak5nQmJ+0MS++IS due1nGrqq8NSkxZXER5YnR8b7uzRvrGIOeMTJnlOeOHj62obax MKvg7Ru3GIYZ622pjA/YUxx/aE1Se13GgZr05orEtrVJwo2ZA40ZfRuzhLvXPPzxQ4ahGYYx04 x+RW/UGIwavUltpJdp7Qqt0xqYh79/sqfpmk/Ah00Hmf8tmwxmvc5k0Jr/Lp2Rpp9chabNJsuTwcDdO28Ptu661VelG4j+dThV2feUoH9wqK 9vRNDVNtQ3d+fB4g9/qd77svXwcMfEqZLdC7jDMwD5mWf9yCPzpt9TYrvsCbvVt13d/uJaf+/u8rs99xdr6w/27LHkJP7Mhr7CcT2C/4l6PG+1c7e1JML5ZKRPTY2bw+bVHtsLewcjR/fyNzawswVoksx+nSxyz8Da+u718Xs3rO1N2jxKxkxD1s9Y219J Trxvvbq75cwruSMTeHRvUNUVqzQxni6MbZ/zqjrhmHtkm/xGUecrdr6y2KR3UN92m5YyntgdLOBAxcbFbFKKkHNE3mtNcSNH bNb2OtYJ7Ou7rNa1+O4bXSO5VXTylfwT8tienqyOgfL2F1Gv3o yOxazTe9jzfFQJEQskNkusUvhv+HBfuCQ5eCogWZJw4Oqp0LoZ yOY5lPqZRRgotgayucnJH3c6VsNS2fNERM6w+95yj6byqBRBlt 3xeJvRBOehtIbLnZXndufKnsqab3rq5tGIuSK7I1E2x9OsT+ZY T2bxp1J5k/H8U3Hc8UT+qRzuWLrNyRj36dB1b24b+PFovCjbX7CBl9UHeQvJ Tft4s3GYkoMqSJaCjZEKIpkAACAASURBVIkwYgEgSpSl4DtOxz geaAYhctj2OY6bJDtuv6AkQViQmuG2L8h6pCmp6Uhx6tbCSvew 3VD4FtuD1TbiQExMsuQUS4JQcgyT44Qc56hYhASwFSQuBbjy76 NPmAJ/UogUJVQkkKO4CmBKFJUjqBKgChRXAkyOUEqMlAFKgbEWcCAHhJ LC5WxczgNSDq7gIFIWkLAIJQGUuNNULlXQiQYfDq7rWdd6YPjY sKC/p72795+XxaZ/rxX4P34BtU6rNmk0jH7FaFjRmU0W3W9//CyT38or+VQwYPlrSW8w6dQmy5LJ+BetfqTXrhhNK4zm98edu5v q8pI2FCbsrc1+elr44Or5T26++IJ8cmNxRmF8cHak75Y1xerff jE+0p5XPX3yyHhjzcby3PJ3rt9jaNPciKAmJXxPcUJLeXRrTfL x5nUTLfXD2wsEG1IFjWldG1I7tpR8+e51xqjWa/VatdGgMRnVtHGF1i/TRrXRqNUwBv0ns7Jbm7d/sXffnb0Hmd/+MOlog9ZkfLIg0Jj0WgNtMDKMmTGbGNOTsQBz887bfYd2XRfWr Awn/nw4VdHdKBAM9PcKh/v6DvX2jr9wc/Hbx6e/+G1A+vT+CWlcvQjin8eRPwCkgazfcK28wIs+CyHvwpAGgv6EoC +jI37oFBqki4b5yeXG2l/ZNt9C6I/A6WXbpzrZ8yEOp6wLuxK3ZqXVFyaXnCxwFgXHPpNbpjrgtnGAk/I05nHe3UMZ7HDK1+mMleOLqIecl33curqDW7jNaX3DgXcUiSeO Q/7HrCJf5SQtgOxjq/bMQtFdILplo0reeGaeVVxClZaRm4v4E3G41BpRYogSkPM4Z4rn OBZZMDnpn7cI8WcQx3Ow7XnI9mRy/RuRVVdtohRpG9+Kq77GC5qvav4spHpsjVwYdT4BmUEQOQeVsPE pzF3sXnlrc9mbm9bcqtt5vWuf9HWnoFch8DEMHrLYK8D+AzJxx KOvnjvngyhwuzn36JbqiLAmX9cRG/85KnIKCz1KBPTtGHqrV/WgtHWmefK1w6e/dk+Zwv0miXARFjVGJIyTcVI08hSIHAdRs2i0FAo8HlAz3/v0h0NnvhhY/Gz4xa9St1+BHE7wcg/bj5STEnsgA6gcxSQUJmKhUhSWo6SKspY4uoxmO1UfxN1EAb63s 1j9sw4F51etWUv2poLew6uKnvOMbuHWR/DG/YInyYpKq1PxhNwOkxHkHIRLUFSOowqCVHEwMU6IcCAGiAw8sbk DOYZIEPSfTQEiQYAEQCIUlmKogoRlBCzDYSmKyjFMTOByhFqEE BkEi2AgoggJBxMRmPiJ/hhDlQBRAvvxDKqgEwoY8q/tqj24f3BkQDggaOvofvKm0GShLf+6fVRtUOs0OuOK0bBC69W0W W9eef/TO5t2vh6T8Wl7h+XXX/Qa2qCmDUu0cYnRrtBqjVGvNmsfqfta9tXkJtTmRp8S7mWWvjY9/sbw8FtG87+Zo53pkZ4ZkT6NFYWP/vOTRWd+59Zb4ilJY83WiryKd2/dZSyWM1OTaxIj95Wn7C4OvyQZePzlzYefv/nt3Quqo3sFW/MGnspv21Dw3rWXGJPRoKX1WoteYzFqLEY1Y9SYVrQGs9n811v3 F9bs0Nz66N3R0df2H2D+WDJrjAa1Qa8z6fRmndakVRuMOiNjsT AWs9liMTEWhmFu3nurs7N9UbD595G0pZG4S8L6kd7u3oGj/YPD3f1DPSekix/8R/Xd0tztT/bOquIb5hDnixTnIUCXCdcPXMsucROvItyfSWDhsNQY56OGJnXT/v9GhF+rKP5w8LA5OOY7CPqcWv2u/fYRR0W84zxa2ccbLGX3F1ttHIvylgZX3ajafnNd4slKny1DpJ/EwfG8O0fi7iynvI/br2tdNV7GlwZbzfq5zIZs+WowYXwMijxlnfEKK1OCZB9bfUBBZ Y+hKW1rnzu68fZe78lQ+ykfrtSbXLDDJICrICgRZC/jOU5G87bVpe14OnXDK/zCY9Safmp9H1ElzBfcKtz/bujaZ7MEzyYLpas3DdVKzubM7S+6VBf4fACQQmABws9g1DzkJX Wsentt+qXiUFFe4Wh/+/GfwmO+gcn/AUILsb5D4xedBduc54LJOVsrWYjLsSr7nHYb/qit3SLP5wXMa5EMkSGBo6vKRVmtp6eufb1/8rWIShEvVIF5KrCQs1ioggxREv4XML/TZMhp3F+JBymA90ja5ud3Ct9xjenjhnYVHryxZvABnrPHTrCOI/fHFwChhIACJpQAlaNAiQIlRikplozFm3VeNZTHSt0SliYJCmlq rCg9UNWQ5i4Mszm6LXNtf11KUVJtcNhUSLaMXFfPn03DZdakii BlCCkDuBwj5CRrgYPLKFLBxhUUtkCiSgyT47gcxxQ4piJQGaCU FCEnCSVFylmElEsqrYASEGdgRAFzFqy4YmtniZ+PKGbVXJi1cj Uqo0gVhctJXIVjSgArMLCIAwXuMJFH5vdAoUcCGnrq2g8MHR3o Fwq6uvpu3bj7/xcK6DVGWm00qA0aDa3XWswGxqCm6cc67Ru3FtPTvjt7zqK36HR Grcag1dLLeo1GpzXojLrlpcGOA9U5iTU58Tvryr64f5Mxqhnaq Pnl546mrYUJkZkRgTW5mb9/8x2jMX73+VdnlecaqjevKar+5N13GcZy+czpNYmRB6oy9lWnfP z6OcbwJ6P+ndE//PHDG71PVfZuLercWPzG0zLGqNMsa7Uak173hAKmFb1BazKbf3r 0+vaDnxyfYv5SP+gfenNXC/ObnlmhabVepzdp9GatzqTT0gY9zZgZi9lkspjNjJlhmNt37rV3 dIu6tv08lEYPR77TXz3Wsa+/f1DYLxjoG2jvGZp87urit38sfv1n78VrUevnIcfnUdafKPoYsX nHpeyyVfIViPUtCRsw9BHG/7aowegZ/D4EvY6Ct6rqdAFhPyPQD7DV50T6vPPgU14nUte0Rh/JC+otCG0YLC1+ZsehBxO97x+ve25r7FSZf0d29bqKvRGFT5UUx bam8CZDgcyTLfW2mw5aPRnX/LE4rn0WWn2Cn/YMN+MUntnvu2+OmzSExu+vujC84c5+97EI62l/tsiDI7ZzlHmGKDOiRUXRou0hw5NQdF9wvbh0ZspzZK3zZJXdXJ nriZ2BbaPpB57N6no6feJIsqw5Tbm37PmW0Mm8kktNIcpy3ngk ayqMPR/FOxXuPZtWcX2f/1yxa+cmh0zhvgN/Jsf+F4J/RKjvMd9nHfa08edjcRUbiK2cx6q5FUIO70iW3cia/M7wli1Wgkpu/xqrvhqqs9Sha03zNWnW1F5ybxanp5rbX8MaLmEN5jsMrnEa2sz tq+IPVfAF1Va9NWRnUZKypVjabt+UZ7evLHZsZ8WFVufRULbIE VWyMCWBywhUgmIKDJYjiALAMoApWISSDSQc3nwkp7kMLar17do aMZMbe6TCq/gw7jNUduxI7dm60K46XnIv4tnmsmeH1VwgUAJEiQAZRMhRXIKS UpytZAEpjitIIMdRJUAVGC7Hn2idETlApCguxTAJgStIVA5gCQ bkbFRCsSV869lVduPBwTMVySf7g7YLg5u74hf2uJ2NJMU4IceA CkNkKCTHECXApITjyQIqrxcKHvKtb1/btld4uE/Q19PRIbj55l3myQ7rX/8iWDHSZo3JoDHqTfTv73/+qeyC+S+1hWGYX/73bFXpvaPHGb1Fq9cbdHq1Rr+kX9ZoH5v0GsPKn0MdzXWFqY0l WbW56fs3N75z7dq3738yM3C4JjOjPjujND56TUbqfz/9lNHqf/nhx+eevlhXuaG2rOabjz9kGNOt5y/WpkS31uZ2bCg6vG/TDx++w5iMjEH32tOqzu01vdvKOzbkvyA9zhiWjDqtTmfUaowGD W1QGw1avcVk+fXp1571iXynuvaDxk2fhEffDg2/P3DM8khr1tJ6Hf2EAloNbTDQFssTClgsjIVhmDt37rV39Ii6d/wwmG4Yinivv2y8fVdfv0A40DPQ19PV2991ambxix9UPywdvfFx aL0Usn8JAn8AVI3avedSdtkq7RLE+YJCNBT0mM3+paSCCQv5ng W/7+v8Y8M62j/sOwj+BuB/As59TshL/PTTgXGyHA9RuPtwZMnJsjZRzeBc2aA4c2AkcqYmcMy+qYkzkcR vr7eJOMkhJE780SJ83XY0ZYfPura+C5/75M4hvkc96y9ys07iWX0eB2aJFAFIba49N7vpnILK2wHlbKW2b 3ccqI+b7YzcO24TddIh+QXP0retUqbD2/rWvzRpt3kTVtAJCkdZWXOsoBlbXzHuNU3GSKk0BZUpw1JG3CtH 1wzfdCiYItNPkdlzWLYYZJ50KB2tGHqt8sgrxV0Pkgo/7j5oSoz6HELuw84vu2zoWj2dCUtsoAUWTxxhvW035HIszunoYO iGrsqguFFrbIGFKl2sZgJcjqc67WyMajoaIdhvOxZDyeyIRS6y QKBKkitz4i+4YwouoWJRch5HbotMc2Ivpa95o6HstXUVV+vqrj fU3VtrP8sjxBBQQJiSwGQUEAFMgqMyApERsJQASi6mtIKkLFTB Z00H8o4l5N3elPBiYuJ8ZfmR1+1TJXteevngZ4eTJLuw/F4oaMDh0DaO1B1VAKCkgALDFBiQAFyCsZUsTIbhSgKSILAChWU oJsOAFCASFJahTyiAiwAuxyAFAi0gqJTiTwfadlWyalvwjEGv6 gseaddt3C5QvgM+B3eGn83iTROEGAUKHJYCSIbDCgxICLsTeWR +DxQk9F3fvrZ9n/BIf59Q0NYhuHn9DsMwZgttMf3bvcBjo1GrM5uXTYzJ8vDt+3PJ 2d9LJMx/f/hDqTqdnvLHtcsW45N8Hq1dMqk1BrVaq19RW7TLolFhQ0Hi1rKk 7RWpm0qTNpWlbq/M2lSYuK04sTEnpjo5tD4v5bsP3mW0Ws2jh6++8PLa8vq6qtpvP/+IsRg+unFtS2FqR33ewLayzoai0QNbry7OvyAeH9y9oW97tXBr eUdD3vlTA5bl32idRqvWa9R6vcZoUBsNKwZaY3r0wVdfnZr76v jEj0cnPyoovZWa8bXivPmxjtYY9XqTWkdr9Sathjb+3QswJgvz hAJ3797r6OwTdTf9OJylH456d7DyRGdzz8BA31Bff7+gr2/w4OGjc28/kP34UPrZz0nbzkK2L7O4GuL/Yu4746K41v9nd/rO9l16ExGkiAqCYMNGkWJXpKooKopIlc42OgqC9O27oNhbYmKq 0URTbpKbctNzb25MuTfJTaKyuzOzs+X/AlPvzf9tfufzfXE+M3Nm5s3zfcp5zvOwLIj3215Z17lJN1iCTw UQKUVsBPrPrA3Wot3W9JQvt2/9urvXnbDqNTZ0ExF8DqN/Q/nvAPy/CpA3A+B3ceiGV+SrKzLeknd8U9f3YN6Op2YdbE+Ur6zZ49W7BD 6yUxDeK/AYnyfcvYMT1hUW+5hXcE+Z7F9+SePc3KpZcgUrpR5Y0exX3g+t rGctLyuYPLu5+bwkaGje4mfgQD02/8yc1NteUY8Fht7wCrzMWzgWVdGX0Fq/Z/jpWXGPAawXUf6/IfxTAn1zecIPs0I/BfG/s9FvUfwhALwVt+yLlI0PWZxXIe7nAPIFyr8PwJ/4BLyRl/t9aMRfPALelYhfqD9CL1n8MUDchReZ/WT7ReOh8LjAQx8jrdrNnt/CiezekVN7PD28cSO8oluA62BkUsBTB3vVZRCLKldkPx5SIOfXp 3kYQzAtgJoR0Ihz9ASqxkA9hE4isB4iJghojL3g6vzcm7nFd/eUvLTnyIv7D721Xzwo4ulQjgHEzBhkxGYkFtLCqAGD9ShiImAT wdIh8AQC6wiO2iP9rxlJ1xOSNAU5g28K48bT2/vl742vVNeC6+RAdJuoZjffNAfUosgEAU5gsAmDdDCqRbhGDmpA sEkcNEHQBMw2QDPZRLABhs0oZIBxI45qEMyIQacQyIx7aBf61B 7AlowCkhdA4cfSkG+8A/89L/xTafSA7+Gd4ZMrxDoepoXQCRw2cgA9BzITmIHnPZCBrWtmzW8N LajNbqhQ9Cia5c0NTcqXbr38f4UFHFa7lbRTVjtjo9wPvv/7iPri2sxbW/IvpGZ8qhl1/3jf+cDpeui0T9tJi91qYaxWh/W+1WW1fPb2yydbSstzV1bnrajdlVRbtLKqYGll3pIj2YsPb11c mp00eVL14KvPHBYLbbU+ef3Gpqytedn5X3/2Dzdt+epvb/TVHlQWb2jfm9K9f1377hRF4RrVrlTFrmRFUYpqX1pjYfLpAbn9 wb8YkrQ9IOlpu93CUBb7QxtjsdkZi8PF2N0uh9vhfqHt+LXDR9 33SYeNpmx2inRarQ6KdFE2B0MxbofL5XQ5nM6ZFOK7d+401DeM NJZ+0r7e1h7/hipjoL60RdnapFS2tChV8o6aZpVyYmri4y9PfUnt7v8LwJ2AoP +A4EO2+GX/jY/zl15nEZ+ibBcXIHHio8TsT/N73ik3vLhe1td18+U1dcPc5Gru1nYiu43YIRduUcas7t4c2rpm Tl1SviF4e9/W5vNbm24hsXrBsqmotBr5ttSTCciRPCSiSywcCeWWruQsLg5e0 iuNqq4ceHNVXWdk94aIvgL+hkqPtNb4qmGvNS2SNTUlp6/u6DwrjKwIWdaHhPVAIePBSc96xEz4xfZJFlb65ZYtHe6TFDQmb H2icKcNRv8GgN+B0A8c/Dux5CsE/wBEvoZYPyLAvUDvD4r3uwOCP2GBX0Aww2Y7YNDCBr7y9PkgL+9 hfPxXMXHfZWz8ukXuiIv7DADvQrHj0rZCXB/KGZ3j27QNjq0DQltD9tZmH13esB6q3o4saRUQ4yA0BSITnryjG 5AI2dptdwM3ybh1adzxUEyLwBqEpcFQI04YCVgHISaErUdBPQa OwTFX4zKvbVlhSE4yri56uvDIWwc9RkXwOIBoWagOg3UwpGMhO hBWg4gWgbUoasJxMwapWYSGA4/jyEliw1/Wr7q4fHl/3s7+14l53UuPttTe7dk+1YatbADmNnlUFnDVASwdwtKCoB5kGy CWlo3oUcJMwDoI1LHZBhA0wmwdCGtBSMNmadgzcUFEB6IaFNKC bAOLrwn0UxThS0dZxJsI+yHI/i5oljUo9EuO3yS+7HBwe3bI2cXIOAfUY6ABY+lglh5lGxBYR3j 3r8PW1QPzlKH59dtqj8g6VS2qlpr6utu/RAcdf9ZW4SMWsNL2B3b7jzT9kKKsFOWw2H54690vbzzz4L23nb aHNtJutThoC0OS1mnaMm2jbNN22kI7rVbX/W/++cbzj+m6roy1XBytf0zbcl0vv6ZtvqZrOTNU+9TUCctXf3NP/4e+/4PL7rj53K2MdetLS8q+/9e3rukHzLdf3Hv91rWx1gnV7jMdu8+27zzfVXSqtdCozB+X5fT Xbp3oLP/klRtO6/eUjaQtDDPNMFaHzeacJh2klSEt9DRtt1Cka5r69MkX3zj/mGN6miJp0sZQVgdlddFWF2V1MLTD7XQ5XQzjYmi32+12v3jnVk NTbW/T4TuKjba2uHsdKTr5IaVSplDJ5XK5StWqkMsaWtu1L71tvDc9+ PoPHuEXWazvWdh/WIHX/HOmBMvPAcL3AY4TRKws3nOrqq4nj7YkDCcn69bJPxjJvFDq2RM vMa7gmZKE+riQ8XnZ8riuzAXNGYv39O5aNLA3WlaT0DAYWXxKs uy6kK8rm9s0GBddUUAs6CEIvZA3Hk7IlkOlq7xqUuru9p/4aFD11xMNz9wo1b1Rf/bljhuvVGverDDd6v7gmbzHuj0PreEeWiNozvaQ588/XhlaWwdn7OPl7FzSf3Sh/DgQOYaIHj9QMr298FsEfRMA7uHENIo9ZLMfwMiPAPCJr8drVeW 29eu/gaFPQJCEYScbpCDEBrL+4yH9+85iy859P9Q0unKK7uUVPwyf9z kA3wWjxz2VeznGCP5YrGDnHiCsUbRbFnY8JaNBUr8JrsjGE1sF xCgHNOOQke/blyFa1wUIB7nJTZLeVNjoCelB3ABCOjauFxJ6Ca7FMCMCGmBQD 0PD7JiLsbnP7dl6IS//2aKSWwcr/lLhMeQJ6yHQCIN6HNbjoA6HdSioZUF6NkvPBs0wZMRgLUZoEEQ NoYP4qhsrj7xfWXdreEP5YwFL1EcuXy1/U7H5TBO2sgGIlEtr93PUs0ANiI/jqA6H9BhLh2EmPmHio+MIocMwHQIbUEiHwBoY0cKwHoWNGKiHE R2MGDmQCeXqvLw6dxDpxwHRDS7+I8ZmIOiBf/ADyfyb/jm9c1rzA3UxfhcCER0O6ziIAQONbMgIwAYWrMf8BtZy0quAaFl Yfn12fZWyu1OmktU21dy6ddPtdjvcjMtl/5NZwG5x2S0u2uqiSDdFOm2kk3a6GZebcbinSfpHip6m7LSNtNk sVoqkrIxz2umwMsyDadfDH90Pvnn4z799897d7z64++0Hd7//+NXvP3rl2w9f/ubD12z/+tRt/Z65/z31/Q+Mjfri868mTFNPPfGM7b6VeTjtvP+9++F/fvzk9Q+eN//tqbH3nhr88LmhD54ZfOep4deuDd65NPj568+47//LZXlATdtoC0NbHZTNabU6bVanfdpBWxxW0vGAZOwWh9vmdtvd0 za7lWRIkiFJ58yeAmVjGOoRCzhdjN3pcrvdL919sa6xvqel4jn VZrot/jvVarVsn0LV0q5SKpQKeXurStnc3NTSajo9+fFXZ76gCpv+xmK 9xSI+IpadCz6i5q+cAATvwZwfYcEnaIRuy/BI0RNHc68Ul1ztaLvzRPJArbAsTdiSzW8olNbv8S/PSd61o2Rp9s64gu1VnWH7O1lRNazIyoSKqehdzyCiM3HY6L65B/fvzUronu9lnENMziHMsYKJFUJ9QsRUZsbFo6kdI/M2Tizeqd0y2ps2dmzRnsH4yp5lZ3cFno4W6wIEZl/E7Mk1+YVNLojUJy29sGvBaE58R92szAk271UW8Hcf3w9LK+8fK PsxMOQDCP0QRj8HgH9wuZ8uXPSpXPWwIPcbAvmIi5IoQqMEDcD 3EaGFjdzz93vvcLm1sPDrkgMPN2z8R2GRPSj0Hov7CrJI6ysrF 6kXSIeWcnMPAgm1vq2lvmOhGS3ilg1o9TZoSSeOj3MgsxjQcaW 6Zd5HZEBoH39zp8dgOnrKE9QjuBHGTSyOlk9oPVE1BzeiiAnBJ 1BkhL3oQlzxS2Vld6pKXj6UfSm74tVyzyFvSA+zTTA0+ahvMmY iYD0Im0H2BBuchEETAuoRbAIBJyCOgSce9kx5dlvO413ita1Qh HKV+tiqZ4oDVFs56TIgqltQ1USYEmEzyjUguAbjGDiIAeOYCa6 ZQLQwZxIH9RBiQnETihkgjglFTDA8gUJGGDfjsJngmL39Tmbyt 3UC3s+A6FcEymAIDePfSUPf80sdzT7Tt+RShlDn6X3FFzPimBb DDThqhmEDGzchuIET0J9CpFWz5inDCxq211equrtkiub6ptqXX rztdrudLofTyfzJLEBaGJp0MCRjp+wUSZOknSQdNpuTsjgoi4O 00M6HtPsBRU3T0zaGsjIuC+Ow0cy0xWmxui3TbstD9/R9t+VHt/WB2zLtnp52Tz90T1scD6epHx+QPzyg7lvIBxaGZNwOt5txM1bG Pm2133/APLjvePAd9c2nti/fp756j7r3ju3eO9Ofv/Pw8/csX33M3P/aZbnvmrYx0zRpZWw2h83qtE077dNOh4VhLAxtZWjSQVsZ2uacI S+bzWEjHaTNQZFOmnJSNoahHW6X2+Vm3C5m5mjx3RdvH62r7Wy qelq+jWyP/49qub5xj7ylSSZXtMhb5cp2uVwhUyiOKhX6F96c/Kel/7aV738VIC55Zumia4z4ogkAfgcCPwb9T88qbs69ojx8feiw7sr mw1cPNL63bNtVtkcbOktL+OlRn0mW92mR5+lA/hkfyDg3+mnxnLML466HLD0ZlFO/5piGWN0P8rT+gjOzw82eK0/wt7Wie6qxvaXcXdXE7gakoIXYpAHChoBZdZLCwsBjyfyWTcCiE mDFTm7PYpYaZY1DoBZmGQB0DIg0hkWNhu9+rWD16E6/9Z2eoe8AwD02ZAGA77jct7bnfV3XRBXtup+3/Ycd27/bs+/HygbryuSPYOhdCHgIg1Y2+COA/IfF/yfk8y5L/JR32BVlD11R8Z8N6XdrKu+1trkDgz8C2K8iC9W+zfulY5Gi3gR 06z5gWY2wZZfnQEBWIyFfB9VsBuO62aAWYKkJbMRb0LtWerADC B4QpJ3w6cpljXqzdBhbywE0bEzH4eklyBgMa0FQDwFaFnsYiLk SvfmpbanXUpOeWL7hqfXFr+8TjkgADcA2sQADAOoBSAsgWhakZ UE6kK0HUROHYyQwDYbphbCBD4+gxAke3uUrakyFVtWC0Y2SQ7n irjgfRTqeWg34jECrh4SdRRx9AKJngVoAMbIhAxs1IoSJixsIz Mxj63mgDoU1IKphYToQ1LLZOoilhUEtium8vUbW8QvqAb/LLPY/YICEWA42+z6Avuq17NTGrjHFWyd23tk5xxDpf3oWPI5A4wg8ho BqCFJDkBZhj+PevamctDogQhWSU7e1tkze0SqTNx2trXzp1gtu t9vpdjldf3bFMdLmpCgnSTEUTVEUZSdpu42xWxykzWGlnJSNcV gY57STtLqmSSdpYxirnbFSjI1yWEmnlXRabI5pm2PmhP80yTy0 OSw2etrGWCnqodVuIe0WkrZS5DRFWx201UFbmBlr3mGxMQ8tTg vpeEi6pmnXQ9o1bXdN2902h4tkGKuFmn5on6YYm5OyOWw2hiJd 9LSTnnbQFic9U1zU6rJbnaTNSVNu2uaiyBk4KNJJkQ7SZrczDp fb5XQ7HG5mpu7g3Tsv1Tc0dcoanmwtvN+R+GNr/LXmgaI56QAAIABJREFUvGPyJoVK1apo7ZK3t8tbW1vbGhtkw+e ePPX5d7pPqYXrbwK8M7O3XA7Lvgr5TGHcl6HAJz13dUYc277tV MOGZmPq7iezDtw8fPz9+J2TWHwvtlqHJQ1zl49JErXzF46tCB5 J8B1ekv5UwJqpwJhj3gkHgw7lrTAURjWVeCSewHlPYNhrMO827 P00EHSWHaqDgvXQrCkkYAr2ugTMHuQWVXiNJ4v1ET7HtsArK/D15Z6ja1AzlzAKcL0AMXEINRFpit56o6jnk0tlky/EbvyLd9D3CPwQw50oxw2DNAp8PS/ks8y1X6xbcS9j1b9TVv7Hz/fvLORrFKd5HJrPIzk4xePf9wr+yiP0I4+57/lGvrZt17dNjT9MGh52d36/Y9sDX/E9Dv4+vkA7p3WfrzHSY3QVnn+IlVTt01wUMjh3c5OgbT1en8tL 7OVwTZBII/HvjRcXFWDxfbDvGSRymFtULBhcyDHhuAnDzCj3FCSc5BB6lGPC EDMBGUXQKC/p2dT0S3ni9kju8TmLJzKznz7iM5wg1EaJddFibaxIEy9Rx3qo5 3lqIr20CzzUsX6apMDRLGl7lkiRFnB8+can8/a9Ubrv3bpDrxoXHzoTnKbZOzlW966s5i/dZfpbsUteh4TnOJld/seLJerlfP18gW6BSBPnq1sWpk/36cyCSldJm1P8x1dI1XHS8XiJZpFYGyPSLRRpF3lqEj2Pb0dzm qG5lwneP7j4Q4yww1wXJPgMDDdFNnXvebq9/JWKfbdLk6YyQ7SRQg1BGGC+gcvRY4gRQiYQ2Mj1Gkwn1jezF3T NLWjMbqhQdrW3quSNDbUv3brlds90JPmzzxFYaZeFYqwkTc0MK 8XYHA6biyZdNO1mSBdjc87o2xnQNqeddDCkk7E5GKuDsToYm8N uc9htDtrC0BbGbmNoq50hHaTFbpu2kxYnaWVIi52yOGe8D7vVa bcyjI1mSNpuYyirnbYypIUmLXbbQ5qyMLTNQVspcpokrXbSypB WB211OEiX3WK3Wxx2i9tuc9M2F21zUDYnRTp/0v9u0uYgbcwMEZA2x0z1UbeLsbucjJt2u9137rzS3KDsUrSeat 71lXI5rYp5o31LX0u1rFXVqlK2tbbJW9tUra2yVlmr+pT+va8m v55umPwO9L/unfQab+6T0Ylvzk24TKyv8e/PCR1ILzScDU/T4WGVCWU1Zbd6Ek5vEg3E8Mfj+do40XhixMklBbXzetLDVWkL9 3Tlpeqag/eWBh88FD+5L3xq0dyT0cmHNqXG7F21VDZ3q1KapxDmd0jyFML8 BnGhwiO7wSO3QnA4RzSYRphCBeYQz75sKLkO29IgHkvGTgk5Jh 5h5OOTAkLHiZqMyL1Unt+jzyq+vTjrr35xL6Mhz2FRN5F5TyHh T3HCbiNBz7ACr0KBlyCvK6j4ZYR3Dxfc5+MOKWb34E2LuVYPDu nJIXncaR6fxrgkC/pwbvAHzbXu+TF/B4DPBLiNJ30TXdk2+/gWn4nZUvVaPL+avbQqSLYrZDhss0yo3IzXFPAS+vgCMyY2eIT1 bxCurRb6G5LTPvOOmOKlVoee3CTWSgVGmGvC+WeEgtMivk4kMA owg1CgXySQZ6ae7Dxy+nzwnoOeeYU7T+pKhq9JtzTzs1ulO9qF ucc4+Sf4ud3C3FZxbrsgu0u4fcA7VyfJ0glXjXuuaI/YVtL90pnK55vyru8//NxA5ejNrNJzDc9eyH9md+5jRSdeenNz3hueHmc9o87y1mhFO0a EuV2ivFZRTrtnXmdQwUl+0rAkRu29tNtnk0Kc1yEo6BXmdolyl MJCOT9P7rWjm7+mD59zWiB9h8f7gScgYYmd7fEjFHndc191vH5 T9gsbD72+5+BrNRlP7JhjihRpBXwDLjAI+QYuOonCUygyyfUYX cdZ38ye1x1ZoNjRUKPo6upQqpqbGl586SW32+1yup1/1imCX7KGaDdJOUmSoSg7RdkpkmFol4N205SLplx2m9M+o8N/xQK0zWknXQ7S5fiZI2xO0uYgLQw5bSetjM1ip0knaXVYpxnS6q JtTsbmsFsZB+miLYzd6nCQDruVttvslI2mSTtls5NWmrLRpI0m rRRlo3++TlntM3nBDtJltzC0xUnb3HbSTdtclNVB2h7hj1jA5X a6nHa7yzFjdN156U5tbYNKrlI37LmnWu1oW/CGIr2vtkSmbJHL5TJlW4NK2aJQtqjkBzu7lDdem/z84amPyehsMzfRjM43Ld76VPzufv6RdV6D6YKS3IyWS42n/3pk0qB6c7jlXnO4OZI7QKBqCDQAgAGSjIg2t4S0J4c2Zsxe2Rk cMhEWoYkLNST6nw5GTJDnIJF3eJZs1exDBTFRXfN54xHCkWjJQ CJvaDGhjhEOLZYOxvPGAiAtDzPxRBp/D1UmsrIOTjsqGFjL1nNgLYpqUZYWRMbBUFPI1lM1qokPSpo+it +rndt4VNyUxVesFKpWC1oyceVGTJkiassUqjYJFFskpfXsBecA 7GMIoFCAZEM/APCPbPA+xJoGQBsA2NhsGoC+D/T6eu2yH30D7gHsr1nox0DIBFF60GN0MV8rFvcv5Ww9CMQc8GnI 8T8ZuL4Jka1jl2/BF3Th4BjsqQnYfLU5JKcnNPHCtp0fzltrjt6ryr4mn6WLBocwQ IPAp7iIWYCOcfERIXc01LMjG1xaG7H8Skvf17X9f1WOfNw99O9 1W18BeKcAzuNszhMg/zrAfwIQPMMSPAPwHweEVwDhdVB6ExCcD4i6vHjVGZ/YivKrZ1MmciKHlnhWJaTKj+03vBjaVQy2SYh2Sd753mX5hrAFm qUpz7F4aoD3GMB9miW+wRJdAaXXIY+nQfj0ulV/i45+CsAmAOE1QHiDxX0GJJ5iCZ4GeDcA7AbCPb11+8eLYj8DgK 9hlg2CLADnfWLFqL9yx1xt+LKLCw+8ty/ntV1RZ8IDznpi4zCixuFxBB6HQB3KNsCQHhT3J2KZ5UCkck52Y/bRakVnt0quqK+vvfXi7f8zLGBz2kmXnXI9EnLaRdMuinbZ7e4Z FpgR9RmtS5NOhnTNGAgz1xnrTyxAOkkrY5u2kxY7ZWVom4O2OW ir0251MzYnY2McpMNuZWgLbbfaGRtDWynSQs+UBqKtDuoRZqwG u/0RazCMjWFsDrvNSZNOm9Vhs7oom5uyuSnS9bN5QpFOinwU3aRI x29YwOV0uWiHyzWTpPnq3Zcam5pblO1jisp/dGaSHTGvKdMGGw60qWRKhUqp6FYoVJ1ylVLRWdE3kNlyXP3Xe2 e/nK668IHXpr5Zxd2zSw7GNufN7d4e2NQIzGuWrujLGR3XfHOu9I 2KBRcSxWopR8PlTflz9R58jVQ8mBB0oGj23EMRCQeimvKFJ8LE WjE8DEAjAH9YMr8rMTs3oyg2JbtwXXhvOE+PYAY2aOYBpwWsCR YygaB6DJ+EIRNAmDEvdYCvYgu8rBFZ1+A5ko4aebiB4Bg4LAPE 0SMRp+ZHyndtkt8M26INb6yYf2YNT08gkyg8RWCTXOI0H5vAea clxFkpZMY8dHHCiiow6gILfRvDv0CwLxHOv/mCb1HoCwT9NwR/gRH/ArEPQ/3f2pP9MDTkbYDzBjvoileRUjK0kqMVcXVc6cllxI6DQEKpr6ww YChoezPWkwrJNhNLuwl0BIw8G7fvtY5IWYVHXrl3TpnXrl0Rjb n777TEX1oFjRDwJAZPgtgkApvYQq1fYPc24QYV4KvBIs95ZfXl Dl489vxbkUX13C21UJaCk9HOz2jlpbcL0rr5ad3CtF5ecpcws5 PIUIo3dgrSW/Ckw4KVhXN27i19cXSBYYmfOszvWCqyrghaXsVv2iLSB/GGRdnPVid3qNDlOcK0Su7qOs/0Y6KUHl5WJzerHV3fxc8a9I4+HhLY5hcl80ru4K5r5axr46d3C dYdJ9L7iLQTgrUnPBI7U7OfjFv6AY59IwAdOMsO8v9OrOoP7Nk 8xxwTOBqRdiN/8dk03zGf4PO+hIELajHciHD0IKJnEyYOruYFDWXwMmpZ0U0R+Q 15dQ1tPSdUCmV9Y93zj6KD7j9tn/CXfAHyUZ9vmnJTlJukXRTtImkXTbtpymknnQ7KZbc5SavjFxaw OhmLw2F1OqzOGaeAts4c42PsNsZuszM2hrHZGSvjsLkYq4uxOe xWO2Oz2612u5WmLRRttdsstG2aslvtDtLB2BiGtDM2+4yb4CDt DivDPLQ7rHaHze6wMrTNQZJOG+UiSTdFushHUYDfsYDrf3gELq fLZXc4HY9Y4M6t+oa6RkX78ebqvzZn0qpFH7Wv1zaXKeVKmaxN puhqUSra5E0dMlnDSW30jpZdPU+e+5LW/OOHZa1DPjWF6Y8dWHc+x/9oAbyygxXa67FVMbvxUOaELHZ8G9LrIxydLWpdiu3fzD+6zXs4 06M9D01s4EhPsXy6/LYfTj+/f/Mr22frg+c9njhnMtn3QLZHWBUflXnGVAc0b+Rp/FgmCDyNQBMIqGNjRgA2wJCJAPU4aoTFBi+Ptk3shHokuV4ykAI ZcEyPIloU0MGoBl1gToqqr5u144xv3lh0/77QyRB8lAXqOMCkADJi0uFZEuVyvmwDv28Vd9hfOOYhHVwgOLI XTpYJVml5iy7DPtej494X+l8UxZ4Wrh7jrR3B4tQ+88Zzd77qt 0BHLB0lig55Di3naDwwE5swcvj9K7EdR4Bl5Z7N+X4Ds7JacMU 6VsMmKLEHgYfA+Gur8l4tDRlN8uxN9urb4HViTWBvws6XS1Y/lcoZF6AmnD/J5RsFiEHqPbpGuq2O7aVjhWq9Dg54NtXOrVWtbe+e27GdM5iIa BPw8ThCtxDRRRDqKP5ItGh0vnBkoXBsEXdsnqchXjK8nN+1VqJ cHj2ydu/71X46f2iI73liM5IiA+Y1iet3CUfDuYOiDXe3bniiWCJbyetI4 w+tFo/HC0ZiuGPzeSMLhWOxYSdXZu7fuikmbf3m5IV9ywTDETx1FE8dw R+LItTxxGiCdDAxoD1rScN4cNJtAH0bRx/CsA3g/Q1b3evdlTrHtDSku5CXu19UsC+mtzjWtN5raLFwZLFInSAcX8A fixKPJHj1b/KqbgHnDYFhAxE7WrKrjyq7jikUitqmuucesYDrz2cBJ+Wyk06a dFK0y0Y7bY/k32WnXTTloCknTTko0mGz2inSQdNOmnTaSdcjv+AnU5+xzUQHa MpC0Va73crQj8wB5//ETNVAysIwNsejJgI2B2NzMKTjpwljt9oZq8NpdTitTvuM//+Lwv9Z+f8arp8NgRmmoCmny+VyOVxOJzMTgLlz94XGuqNyubKz uebp5pzptsXfdCRMtOxplLU2K1UKhUIuVyhVMqWysXZwOCZnUL q4Z/z1B6e/+qbl6RdSj3ef/OiFvjdeTK25CM4e5mZ1hShrBAWlAds75hTXhSh3BXfsIzLq2J4 9eOQx/8J+zw19vKCBzZvej4ifCFgn3/fEyUWGtSuuZpbfq0kyF6FrjoAe6uDIZ7G5zbySLcKxSLYGAY0s UA/CGhBXI5ABBY04pOGjej7f7Cds38xKaETXVosG1sAGHNOwIQ0Ca hDuiGiRZsesnDZAegJe2BnVeShoMoo9zmIbQWgSJ9S+ooYd7CV yYM5xdJ1crNrOUfugYwJcHYqr5+Bj8ySthYIlTT4+x3yX1QS2b eaOhgtGon270jl52cCqHfzd2/x7VvDGA2GdJ6ghEBNKmEXC/o3YZiUroVranON5cla6HGvJYFdtRhf1oOgwK/Hi4gOvVUWc2IAf3gDnbyUObJqtzC18tjv1TLW4ca1QuUZ6LEXS ky5q303sVQKhY4CfxquwPaznEH/vbo8k2aId6lnlu6QjEbCZwCZxXIdzDALYQEBGAjHwYD0fNohhr YfANNvDONdjZK53b/RC4+rdf6/ynpgtGFrgU90ARxmB6BPi5lzuiA8ygma+sSnr2Xzf3hjhWDQy4 QOeJhAdjzfGw9V8rk4aOR5woNRnYDm/LtszvsdDoOfBBhFsxEETxDYLYC0XH+XOVs9teWM8V3UD87oGIB +D4EMW+gGW3CvsTg3R5XgWqJDgYTjwZGCmJmrfCd6Ww8T2o9j2 OixbwdmhILYp+OvHOQufBvjPsoN0odkt2UdrFF2qJlVTVVPj87 fvut1u5v9CfQG73UHTDuoRnDTttFNOhnIylIumnDPRAYp0kDYH TToZ2j1jONh/FmnrTyxAOmmbwzZNkxY7ZXVQNhdlc5E2J0m6adJt/y0oq5uyuuhHQT4XbXNRVidldVHWnyY2hrQy9KPoo9Nuc9G2X0u 7+w/g/B0LuF0ul8PhdNlnag3dfuVOY1ODXCE7Jj/yrGz7w/bF/26LPdW8S6FStLQ2tbXK2hQqpUpZ19lUM6xdUqgFhB05bR9e+No 59aGlzfTvDbmvFVd93DFGhydfEm9tCW9sZy+p3Hjo7tJNTwtiT dJll1G/0U0b30xIusnyPssW3+Dzn1y55k3/2OE5OfX7nlIs0S3Ne6Gg6dOWFHUpFF8pChrN3/lOcOIJUUGu7+gCVI+zTTA8yYO1HL6Oh+tx3MzBNFzMRHBOeRHH NrBW1aPpZZLRNZiOL9RxCR2KaCCR2i+yv0Cy9uj8pRcC4/uCyvbNmUpF9DxcD/G0EsnAGm5uDexzwtfnGhZk5OwqFxsiISMbOoVDEwiuIyJORGUW Jq2Pjc0sSIgenIvoEPQ0xjGKeJoQzlAkdyyIb+LhJhAzI5CZBZ gRniHMs70YXaVkLazyUu72GJmdqcAV6+Gabdy4bg4+wlpwKrb8 pZOJR/vQ0Fapv1Ewyxy65vE9bf+JWHeHHfA4OucpLOoCJ+oMFnYFDboJ +E5KclUBvRuC+rPQrJwFaZqCqnel6ZVBil3cnlRe32phzxpRTz qvdw2nd4noxBpu90rx8RRRV6pnxzavlt343gIitzC6qfzwy7qo 3k2BdYfw5SaAewuZrxHLNvANgZwh7623SzcYakX56znF2zkNG8 R9GZyeFFF3mqAnRdiVHNGauWv3utaEZRWpa5Matnq3rxb2rBT2 JhPHkkX9ydKuBSuvZdX+Q3ns44GxN6+XD7/HD77NZn2NC77Cknt9j2dFju0WZFRGLD89a94Fnt8Vr7lvsCXPA aInQemTLPEzgOQ62/tJQHQbEX0FoX+HZp8Nz1fm1dW2drfKlE31zS23b92ZYQGn689m Adr+iAJo2mGnXXbaxdAuB+WyUz8bBW56prw/5WYot4N222m3nXLTpMtuc9lJF21z2UkXQ7rtNtcj18DmpmfE0u aiSDdt+z3s5G/m9v/xzCM/xf6ILNy/YoH/huu3cQHnDAHRlMPtcrqcDoeTdjqdbrf71t3bdXV1zUplu6zyWd l2mzL+29akieYjjS2dzcrGVkVdm6xZoVQ0tMlbBoxJeTpAYPJc cG3wzsMLX7pa9P8EoXMQeGXHnn/Nz7gs2l4a1lIHJVXMT7k+J/45lp+RHTSF+hlWb345PvsSkSrnbWjjrzwOBTcACw54VeYnPbE9/eWNEfroVVNr108dCiusCo4/FrnwLFs6wtnU6jWUiep5sJkFmTBIj2FaDDbCoBFEtDhqwnCzlN +dBa6qRtMqhMMZkFGAGyDEBMNGhFBLIoa2iVJqZsdMeSzsDDiy M+R0EqzhYWqMM8YXDyQAmfk+84bys7+QhEzCWyo9NPHEJI6buf CECJnwiB4ILC8J7kqWVhT5xZ8IwI1CeIILTxLwaS46JUJOCbEJ Hm7gE0YJahTxTSH+fflophwIVQi2l3qeWO4zKNjUhCvXgXXb8I QuDNdCPLVv4tTBwOK2kDWTOQe+Xpz8fkjszUWpt4Rz9JDfKSjw KjjnGhp8AfI+y5pl4GTIvHs3EeOe3sOLePm5vKhe/5CbqPAKZ841JPIxeO4FbvgZ7txTnIhJPPw0N/IUJ2KSE3kWjzrHmT+FzB2UxvXPXd0dtERZ2vuVX+IkHHiZJfo7 iHyHRZ6X1O8WjIZIBiSFTzStKGn3mt8QscaABA9w551Bo09x5k 1yIkyc+RPE/NOefsY5YpOnl1EwZwoLm8QjjLyI05yIc5yIYemK+gMXTu18QR7 UNmfJ4JKjL07O23kK4D4D8V/nph7z7Vk7X7Mh6lCjYIGSE9kZtNkQUqTmrG/B1qt4Wd14Rjs3q4GfKeOtnMSC3wCxN9EgY3hOY05NpapDrpQ31 NfVv3hzpnO58887WPwzC9DOGZ1vnxHvnySfolwk5aIop51226m fZJJ0MdSjCKKddjO0m6HctM1N2Vw0ORMFfAT7H/gC/4Xfk8IMGKt7pu/wz8JP/oT/kv9fOwiuX7GAw07P1BpyMu6ZVG33y3eeb6yva1B2yBRyXWPhP9 qX2VqjX5dvO1l3WKlobGjtqlccb1F1NSnb5f2GZfnjLMklFnpe afhy6nPK8L5lV+3H0bGvp2/6dm7S8/zttbP6sjk1KUBWJphXIqppEVdUeR8uDak6OkdR5dO3xWNwteex 9UTNerwpUzAUyzkp9DzhteLMkqJXC4peO7Tn6YHioef2V326Jf d9bnwr98AO6chCxMiFp4SwCcNNGDgFs86gLB2OmQi+wcujdQO6 uBqOl4l7ikGjPzoBwSYuqOHzx4QxE2sXyPbxVmd75xbEqQuCpy JhDRvSg5hBJB6czyvYjQUdC53zLO5znpd+2rOunVtfyGsuwBsK BA17ostKCrP2lC3cnpNRGFG5l9NYyG8s4tXv4jXs5Nbt5NYXCR r3EXWFvIadguriWTUy74xeIEDFTW3x7s5DNIGeQ8TWZpE8Harb Ci7vQIkxENFxeUNh4iPp/JVFASlKUUa9JL/eo6RKcqREXF3Mq94rqi3xPFomOnyIf3QjtzcG0/mgBg5/2NuvKwNJqwJ8hhCP85jHVbb0cUB6FfS+zPK9DPheBTwfA72vsL zOgf5nWAEmaLYR9Nd6zJuMWDEYkNByoONfnrOfYsGvs4kf2fg3 UITJo2G7aCyQP+C9/cnWuEMDooW9s5MeA3x1bP8ptu95lu85ttcZOOgyFHAVEpwXcK9 yscso/yoiehaWXoF9LgI+zwDCWwD/THL9cxtOy5dplm68mHHw5eY1Jzr5CWOAx3k0rV3Yu9pfF5E8sX tJ68HYzsoVZ2tDzMnCkUjuYCJ/KJ47sog3Ok8yGuN7IsdjVxc7UA2FjIZtb8mtqezsVKhk9Y1H6+ 7cnOlK4vzzDhP97BHQLppyUqTTTs8QgYuinDQ1k0rkICkHRTlo ykmRDpp02CnnTBCBJp32mb6gj8p7OWnS+Whf4H/C+ivYfuoaQD7S85T1v4yF3+p/8n+wwO+ig85HhgBl/12+gNNtd7rtbpfd7Xa/eucFWWOtTCFvau863lzxblsG3R71kXLNaEOxUtmgam1Tybvb5B 0tirbmk4YlhQZE/DTMfm919l/O/sNi/PyHjie+S970131FlqStz/EKinzUsVyNP38skqcP4pg9+ONCvx7fAy8cXnd2s+iEL6rm8UxS nsGbMyGBTQRnWLj9ldyydw8kXYwL1PuFaFYEH5AHz79eWHi/VP6v2dk9kv17xYp8XvsOgXKDj3KLoHWlQBML6z1wPSzQeor707 jbjgKz5aLsLtHwDnjCH9LyMC2XZ0R8dd7xp1fFa9YlGjLnn1rs NSHCzABsYiNmPjIWHKrKiUqsXCge8OWdBT2uwmHXgLlqMHqcFT qGhZqxoAmh1BAkMXmJRnlB48hsPRo8Cc8yo6GTcNgkK8QIRUwC YQYoYhKcPYEFmNheJ9Glnd7Ko7g6Dp8US8e4WXKxYj3n6BZsRY 8IH0UIE8bRId5jYb4NKdyDKXj7Iq42SHxKyjVyeaeEnEkh75RU YPbBDELijBScFLMnPdgmHmrg8nQ+vGMrBLIdvKpd3rU14tJqjy N1HhW1kooaSXWNoLJMXF3BL68SVNdwqw5I6/Z5Vhzh5h/mbytcWHu0/Pr5qAqVcKMaCr4B4u/C86941e8RamfDY4LNLx1O16jwnFzOrn2eB8v8jhz2OHLIo7pMU HNYUlU+b3/12vXluxcfyVtWmbhT5lV6VFh5mF+3h1+53y+/H44YW5h/N0V5TnZX2/OJquHdig0XdgcUV0ORQ1hys//JFM4o4T0uma0P8dAGC3VB6AiXMOCIEcGNPMTIYZtA5DSCGMQBf Ts5a3pZUf3h+c059RVtXR1tLc3NjQ0zncvdzj+vJ8nPLMDYHxG BnXb9PKcpJ0U7ScpJUg6KdNCUcyYu+CjgR7po0vWzS0/PpBj97srv8Rshp37jC7ioP174KPj/E372Mv4XC7gokqGo32cNuZyM08XM1B188e4LjQ3VKnmzQtE63H Tko7Z0RhX5uXKtur6kqaWlWdXaqGhvUqoUimbFwNjSojFA8jjA +hoWPdN+6evTXz8cePnb2LUX9xZ+m57/Ei8vXzoYjao9Ma2Uo4GJQSjm3NzyN/eNfjHQ80ln7os53hovTI3jEzg6Cgv6JJvu5ux4J184LASPEZzB UHH7Zn7GEAA8CwLPrUp7d1/zvz3iTgGzNEDoFCv4DOh3Fgw/yduzXzq8kNALuUYpdzRQ0rQHWSpnhSolxTUeA0nYOB/SgpAOQsd4kVdiFl1aHG2Omn82QjBGIDqUZURYRg6q4cf0SqvyQ 1tjMzfFN4rjjnEXj/PjtdgSPZqg5y3Se0Rpg2eNR3gOzg0Y8Z43zo1VE4s0nEVqIl5D JGrxhHE8YZyTOEYsHeMsHsfjR7H0ZknLdq42DDDgmBGWjgKZcq RxHVC1FY47xmPrMGAMxzVcRI0QRgFfI+GPidhDCMuIssww24jA GgRSI/gEARlByACxdRhLg4MGBDaAoJ4NGbmo2QvV+2HaII4umKsPxrWB uDYI1Qej+gBU540ZfFCDD6r3FpiCvfQLvIeXevUsjdKn7P20ZP ZknLhrM39LNyC5wPY/51XSwh9ezB7DM//Z9LGcAAAgAElEQVSyacPTxT69cV6jkcKxAI7WB9d5CzXeXJ03T +8Xf3JOSWlQ10ph42avhF4frs6DqwkmtHM52hDfgeVe+0qW7b/lu8Y0u6A211x74OaBzEvb/MuK2PNkaEqt9Ngq3rhIrBXw1AR7DEH1fKFByNViqB5EdBCoRUA tDhsx2IB5HU8mUmWs8K6wnMYttRUtHR2tLbK6uvqbt190u90u5/+BDmU/i/0MEfw8p6nfihk1ky/wc6Luf4Fy/Vpv/7EP/2ut7vr1y38H+ndXqBm4SNsf2QJu0ub4aZvgF4/A7XI4XQ76UcWxOw31R9sULe1yxYnG6puyLQ/aE75tTzsjOySTy1QqeZuiXtnWpGptah7oXlYhZ0UOsfgfAtDdg 4rPz35mm/zMUnPi/eI9n6dm3+TtyPcZTcC0UsTIxbQQdwjf/PrGA+8XL59YsuGxrMrPKiIvRbC1IHRaiA7wl5xbUvBGtqeax9d I/UcyePtKWYld7OCrbMlNfuRlZIF8ddmV7bWvCuepBLEd/Nh+0UIDHDLBmt8jLivxUi/DjWLQAAoMoZKGA1DsMXb4Mf/D9YEnk71GwkUnI2Kubsx6uXTl1YJdr9dlPpXnfzJMOhLKH4/gahbwxyMSesNr80J7li84fGBbjDI/uKs4sL0isO2otLtKcrwiXlldXFhxdMnuI5sPr2k86tNxwLtnn1 dXsc/xA949+z27i717in179vgdK/bu3ud5vFh6MocYW43p52OaOaLRML/+6DTFws6K5ZX7YmLk8+ZMrN56t6r4ZdnqS1uDxmK33D5w8PXa5 VMZgqEwbHwWXx3sr4uKvZom1S0jhheKtVH88QCBxl+gDeFp5nH G5xHaSK42HFeHcvVzCF0gR+fP0QVytMEcbSihnsvThHPVwTx9E E8XLFRHeY4lCntihar50eqUPZ9U+k4Gi8b9A3o2EFkKwH8SidV 51dV4D8TueGXHpseKfORLpZ0xxGgAa5LLMsCEDsH1CNsMhw7hJ YeQwZVA4xZ2/HEerocQLRvRcQAjChlx75OLs4aNkVmTXvEdi482lvxFlfRkPr9 yFxDTiSZ1RPYUbnt+y7YXspZeil/+zPKw06Fb/7o+7vp8eJCNmmHIxIE1AtTIYxthz6GVeEY1K1I5N79pS0O1vLt bJVfUNzY8/9KL7pkMYvefnUE8IzY/bQc4Z4z/nyLtv9O0/0NW/0sOXaTNSdqcpM31M/6LMn56/qdkpP8G+QfXZ4L/M+8kZxIWbT9vCrhtVoa0MaTNabO6bBYnTTldLqfbZXe67DNtH+ 7eeaWpvl4ha5Yp5N3N1U+0bP6xK/6HtiXnmgpalDJVq7JdJpOpuptUrdUnm1Z1F0vzGoGAxwDohb2H vjj7LmP47MH47e+rmz5du+MJQe4u77EY1AhDZgTRcAQnPVLvbg 45Ew12I5wOIuO5zPBz8xA1xtPBPqPivL/kRZjnoyd4xV/XpZpUrLmH45df8wo7SaS0Bra1C9pyA1Rbd10fWDJe6S3f4qvMC ew85HlQCczvAmO6A49WSdSxgAGBT3F544keh5vA8F503rh4zag 0+QR/TVdK/VMp1df8s9rS6i7md78Uu9MoWNnOSz3Oy+zlrjvmt2pswdzBpbN 7Fyac8E3uk6wbEKb189OHOBn9/MyBwJTRmOix5f7Di8NHAtYOcrP6BFkDvHUD/IxhfvooN3VYmDYiTB0Upg7z0kd4WcPC9cPE2n5h8gB/TZ80bUS4amRWYn9vw+s70sckC4+urb1YYXhrRbE5Yuvw4p26Ft 1H6yvPVWvfisweIZJknLXN23qud1z/bNamIe7y45K0QUFKlyCti59yUpg8LkoZEqw9wU/u56X0c9f1Eeu6eZnd3IxjRNpxblovL6WPnzLAT+0SZLVxMjp4m QP8dceRVVXI6pzI/Jqa82/6lbQIy/L8j23zVZZha/sBqZm/+LT39p7C8RsZCgOUmIMmb8ZKVgvHYhAdnzAKsDEM13FCB7l7Dk GDa4H6bVBiNx/TY6AZhAwQS49CBog7Kkm9WJMuv5xa+srSowOlLx9bdWWX6EgRK 6YTSWpfe64p/bltYeNRiZdXbXwlO0wdvul2ZvhUCDQKwQYY1aO4GuHoYbYelAy uQjOq2NGN4fmVm+rLmrtbFfKmhua6mzP5Ak7Hn3+OwG532O0Ox u5kGOfM/BfQDvujvQOHnXb+Co5fYHfQNPMTfjWnfsF/Lf/fr6L/ADM/879uPfrWzw9QFENRDE0zFOWgKAdjn0nNdDiddqfjUQZxQ0ODXK FoUSpVzfVnZTu/7Fr+feeSx5tz2xtrOmQt7Y1NMoWiSak6MlYeN7rY49hqfGMDwt cU7/lcNfkP9SffTX76YPgalbDlaU5Wqc+JBMyAsY0gqsF5A8K1z2cu vLjUa8Q/3Dh36+0NsWfncQdg8TASNxWe/lyK4IRIcNKz8L0jK4bLWWF5iSsM0vhifk2KQBcH6fygfiL2Suy qO+nIsICjEcAGb8nIaumeclaonLOqNaCzmKMOYJlRtkEkHUgWF 9YBc3oBnykw4ALgOxQQb95Y/HrK7mdS9z67uexdj/lnAYmG7WuC/M0sXzPLY0LAmQziXuR7nQMCTKCvnu2nZwWOsQNGYV8t4mXGCbM PPOGF6FEfA3u2EfQ3sHwnAO9JwOcU4D3B8jbBfpMsn0mWzxTqd wULvMD2nIA8LkF+l9lBZ9g+U7jAWLvvyxWLLwJg0/KNV1v1/95S87pvvClsydk91Z+yves2H3knceNdQNzHCjg2J9m8v+2e76I pwGsECDCxgk6zAs6y/c6B/lMsfxPgZWJ5nWJ5nWb7nGX7nWH7nWH7ngF9z4C+Zpa3ke15ie1 9BfA7zQqYhGddYntc8Jv/7IK114LmHTvYeJ839wYQ0MfZWhF8rMS7vgpZcBzgTAH8y5uKvl m96fbsKH3cymtA/F6eYiWm8wb1GEvLxvR46EnfbYfnVKYEVm6fE9vhA2lglgkGNTC oBUEdmzuEZd0oSOsZ4C9qC8yqaXltbNPl3V4HCljhCnBlw6Kzh 1Nf3JpwLjH+QsLK26nR5+ZvemGNRx+CqkFQz0Z1IKKDIR2LrYO E/WuQlBrWnLqw7WXbjx5SdimVyqa6uqrbLzzvdrsdTofT5XS5XH+ KXwD8NHH9f/DLcP8KfzB+u/aX8Zu1/59bfzicv8Z//95Pc+cf/JXT6WScTsbtdt+5c6e+vl6pVKpUrTJ5y3BTySdtGWRrzNutKf3 NuxQqZZPiuKytvVVVVzFWumAsljM6y79nO2fJrkMNLzSNvH3s2 XsTn1on33GtyH0WmKX0PnJUMBaHGHmEAROc5KQ9nZ53pyj7xYL sF7IrP61cfn05OsQhxkRJzyTFP74QGWAJ9XzBuK/PYKqgeC+wuAjN3i7qXoaPeMFaNjQKBOkkG26nz9L7Y2MANglDe qnfYLI09xAQJscz5T7HN/BMniwzgpp9hYPxgsZ1osq9vLIKaeVBQemOEEVJkHyXT2NOYMte ftkuSXmppOywpLxUcGRP+IG9W9fuKZ+3f8u6cv+SEmFNGV5eQV SU8Y+UehwujSguXZext3BR/vZVxQv3lIvKjogrq3iHK4QVNfyKcs6R/YLqA/yqYkFVsfDIPq8jZaLKEk7lHnHVYX7ZflH1Xo+SokX5ZcN9l3fu afHLyt1woq/umQvLWmtml5csbW87fOF82L7dJReMawZbiX35gpLikKryksfPz Wku5RzKER09QFQd4FUdEtQc5B/dT9TsJSr2Civ288r2iasOCcr2Cw/vF5cdkBzZLyrfR5QViSsOCEsPSg6Vex2qCjoo99yq4C5VSBO7I jJVZSMf+S6/DnleZoWOCXbXzj55QFR9EE5VIXEjO+o/zDj8pDCu0Wt5K7G+wKd3GaYVokYcMcO4GZ81Mj9+z5aY6A3LU9 IWHIvh6DFoAsYMMG5GWAaUGBJnXN9daBxLP2g+ePJC93vqTZfz/Et3s6O68FVK/xNbVrywLvX5tUH6wOCLYbMvhUadD5GMc2AjBE+wOGY2aGDDkzA yQYiHM9F1cvbcjvDcupy6Ix09HUplc1Nz3czJYofL6XQxfzoLO P8nXC6Hy+Vwux0/TX591/EzZu7+N377qt+J5c/D9dsl/xt/9InfLfmjW86Z+Ivb7Xa779y521Bfr5TLVXJFs1J+ounw3xWZDl X0261rj8mKFB2yFlWHvK1HpZCVj5dFjM2FDThHN0vYsGj3RKvq +tmmy48bP/1u8h6588QtIEAOxh0XN1bwteG4GcZG8TVPp21/Lr/oxT1bL2+uebty7WNr0T4uX+uz+qV1cy9EgUM4rhey1Dhs8CIGF 0Vot8Sd3+yrnhd6ap6HXhJ6bXaQ1n/9zfSIqTnYCMQxcAETBzOI/LpThBntQOhxztaqoP4kzrgIMGPsSYx7SkgYvHFNEM8YyDX4oeM +0JgEVUsQtQffGMjTBvE1s/i6ENF4wOK+WRU7fU4meZXtDw4eC8DO+GMGf8IQyNH6CTSzYvvm Hime1b1SWLvLb3HfLJ7GV6QP5KoD+LogviGAo/HiG/x4el+e1l+g9vPQBvFNwZDRlzB7c7RSkT7Ad9BvuTx06vTRJ549 VnyxIP1qnuLz3sOvHEi7tC7OnCa7N9TwUcf+tw4E6vwJtTc2ND vcmFj0ZvGciUjhqJ9QN5vQBPN0IVzdLEIfwDH6oUZvbMIPNfti Zn/M4Mcx+HMMfoTBlzAEono/3Cgh9GKB0Y+r8Zdq53oNJ/AVK0R1S6JPZpW+fWJhT7V48wl24HkgdFJ6uMVrKEsyssKrdVXR jdYtl45wm2IF7UtFJ+dz9F4sLYiYMESPcE3CwP4k3tJiD98Oz9 jDfo0rCJ0POEHARhAyskAjSoyI0p8o2HdGX9T6XPHA+eInW1af y/Eo38uObsfXNomPp+CjIsEoIdTw4DEU1uLgCIQZMNAIwQYY1+GQ FoWMMGjGRcPpSEbL/2PvPcOrOs9877XW01bbfasBEiCKEBKSkOhdIBBISAJRJFBDFEk 00dSl3VVBFbVdVt1bAoNxwzYx4ALG4BI7TpyZtEl1MpPkTDKTX m1zPjiTyTnv+573fEky1yT/a39c61rry/6t+76f5/n/mdTOpIPNpU31nq5Ot8fR2tb04P4fcgo/+av7C/x/6//le/t/rhr+jxf8/zzl/+b3f/km//tdf/L4hw8ftrQ0uV0dLmeH0+nqbW18zV30s64l33dvnm492uFtbvK2 u9xuh89xyn9yuT+V91NABXCY3fv6vqEPJ8480zv53tuRb/9w+Mvfm1sxScUPkHXdUZ37WSmGnRQ23d6WfWNr5mR6trq68YOz Oc/kGofs0QH7tvubFj+VhEZZbtIoSBwIMPHX5ux6p2jzaxtX3Fq++ 2F+zgvrKz5bmfvMrvyXC2ZfiwMhABUjkDGSKYM/PtZbh7d0UYlue8WZuJFNSBGBhmAAkSBAEgNlCik0UBlaZqCOGY 2hVZpRGCBDKBNukl0yIJw4JvRuY4+dts0YxVCh2BBFQhQKUnQI zRsxn6o2XF5NdVQYlg3asGZkwkYQMYGIgYmIIMKjiBGHrUSzI5 k36gbuSgw1ZYHTCE9jpNlswdhtXXENJxIHRraXRFYvCCSue2Fb/r3C5U+nz5hIWHlza/b9vBnhuSRoJroRK7xJjZp9PckaiUGyEepWJmwFERvSLUg3wikT iIhwygAiBhgxgbAJRSwobEZhE45YUNiCNSOr83xExLqJj8QYp2 Za9JnmiRlJT6w49PVjs7UFUZeyDYVu2naNSfZHNR4xBheRCWvh u/tyH+wR/AuE8DyoWmnVQCmQ0ShGAawaHd2fy2SdTFt3O3ZDl+HsGk6eSYV FpGIgAzqEDaOm8jeOHb/qX3dwtLAjcP6t0Uyt2Hy2hl7SSXKaTAMbUFDgZGLUOBQEQMaUj BkFQxnBIMYBDoUIkhmgAOPwJrKzlUp2LDrQVNpw1u3t9HjdjS2 N9+/ff/z48cePP378X5gC/330xwLk4aOHba2tHrfb63F7Hc5LrS03XQd/1JPxM9/qp9oOt3g957o6XW6Px9Ny3n92+eUl5kmOl0zMZTblmeTKB4cH3 x33v/+S9M1vhr7/o+pnb8fk91AzuoUid9RQoXV45s7bOyterzz05oHqh/vrP1+b/fx6foiLCYo5j1YvejEBBSiTKnIyAkFqxd01RQ+K50/MX6Jn7Ly9rfRufvUrZSUvlO17de+8K7MYmWKf4BiJcBpHdM4kJ 89wHQNLvfSSCWN9g01dSVSDMCWwOoPDNL5GqAgFr1CUTtFTFD1 NMdMUukpRKoWmIQyxqSNZW/bvykvbk1u5Z85gOh82QZUXwyKQARPmEyfmHKpNc6xbX7mmJKvs nOXwSdOxM5a6JmPtOePxE2LNMcuJekttvbWu3lh33FJXZ6q7wN VeMJ4+KdTVWepaoqpaVxe37cg4sTn9WHrxOUvFab6qXig/aT5y3FpTL1acFg/Vi9UXzMc6DEeazHWNYs0F/miDuabBWHPOcqLZWNtkrm0yH2uw1TZZa5sMNQ3Guibh6AXziVZ jbZOxpslY02SqbTbVNhqOnbPUtFiONNpPXDDWnLYea4mpbWP3V bBFezKbq8+87ZytzCahqNj+PfzWXirhCrNyNL65I6GzovSliW3 BS0zRblhabGrLtQWWAsmAr0AkM7wcGzWRJ+5rRvPH+fWOmb2FR LYzT2AQQZxmFGSrMCTuff1Q9zufOTP0UvOV6xe/p6y9vtd85hCzoo/NccSN5rKySBQk6hyWERvmgcoSnf80+IzVWCQjfopFOo6d2M7mt TFpnYvLW0sbz3b29ro9rjZH24M/JJQ9/uTjv/Z08G9Bf6TAo0eP2lrbPC632+ns8LS73M3XHcd+0rnt167Vr7lK O931rb62TpfP63Ken2jInFhKxjEOmYAsMpPE3Jtw6r6z+oUuxz svRb79/UvfeGfxxQa8vYNK7BT2uuZ0Hdn/7PkLb/S63h+qevrEqfvteS9WmweXxU5k575cl35lm2U4xTK2gkyu5MbW z+ktLdJcB55vXaZvXvPCmtU3l1d+/uDGZ9bmv7x1nj6fHuOxjrEk4ICIFMyGxejQCtvZ0/TiETrVN+NcvX0im0jJfGiRMbRYCKXz/qUG/1JhIs0QTBf8qYJ/icGfIY5nGCaWxkzkxpy8AGYOGznZluG1Nx4goTmMgkGYpxRIgt zc/pTlB/YujD4fi6YF9i0sfAEK70Phq4z4JWB4nxHfA4YvMeIXgemLjOFL 2PJlzvZPwPBlaPkiNH2AxS9h/n0M7sXSr81gXib8Hcr6GrS+Ak13ofklYLkNrK9Ay8vQfBea7gD THWC+TZtvw6hXcMxrjOU2sNwG5jvIcheYbiPjXWi8C4y3ofkuM N6GpjvQeBuY7gDjHWi8Ayy3GeuL0HIXmO5D62u05UUSfR9bXo6 eeysxLTJrua/h1gtJ/pVwAotyYqz3MFl7mYp6ip33pDk9UNHxldzy12JnBxIzrqPltVG ObF6ywjDDSpQoCbbAmpgz56lFXi6/NW4gDwcNdJiiVYCDLB8U2AkSE1i89FKt5/lHR7Tx1Mtb48fXRTXXUhlObmtbzMAGEuSIglmdMCEGqRjICCkI yAxWIFQQEwJAZWgV2YdzuPw2KtW18GBjSeNZT1en1+tqbmn6Dw/ixx//1fcL/E3pjxTwOJ0dbmdHp3e8vfab7m2fuLK+5CsY6qhtdzu87k6Py3X Ofz7DvwxOsoyCGEVkAwtMruxFHXXJnUfzIp3hD/9Z+f539rzSZ2ktQeud1GzJuj5Y5H6+0HF965kn1tcGDo+9sqpB Ne7yWncPbOx4cp1D4Xeetu5z8ns6LXtlkh6wpozEF1+Y6csxSf GcbInW4hdEFubdy5/hT0STJqwiHGT4AMuGBBQ2Q91unFhjOXoBJnhNqWPRewf5ve2m3 e3m/U3mUodpX5dpT6dxj9e832fY6xL3uMW9PsO+buOerqjicZQeEWw 3lyY/NCSOkwNNZv8mpGJGY2CIMwTio73b0aqzCUkvi4b3EfoBBr+FzM eAegyZx5D5HU39GlCfAOoTwHxCU58Q8onIP0bUbzjmI0x9RMi/Y8vn4uNvpURfTYybMi25wi9/Qsi8wi6fwis1nDmFM58iy66hrDBerqEsGS1TUVaEX3XNsOpJkh lhs8LssjDJ0tnMMJsZYTOnSKZOssIkU2ezwjhTI1lhkhkmWWFu WZjLVIWlurB0mluq85lhS9ZL/LwXZqXdTFt/LXbFpVMvvJw0tIbtR/QY4YdS7fU11PwhCl+hsb6/6l+2Fb2VmPTEkg0vMCtqoh3bBNkONciFIBfirKHM6PO1VEYrLq qPGc7mQgKUaBxCJIiQwiCVsGPzLA37sh2BzOYOi2uNZTzF5qik Mp3c5o6Yvq04KBKVJRqhJQqqCCgIKBAoDFQgIyNGAkAHtAJtQ1 vYvFYqxZV0sLGk8Yynu8vp6mhpbf4TCvzVfEb+hijwn7XAw0dt rW1et6fT5+3scHW5vAOOE//gy/3Es/jrnRtG2mvb3Bdd7kudbufZwInFk6lQ4jkdWaU5s7pLyIbj6Xly cpU7tr7C88V3tO/98OLXX1s4uMPaUg7XuumYgYLj30nd8DZFaRwvHaz5fsqq9xjjE 0xUeM7aZ/NOfhUmTKJZMpz9BDPzBdbymQ05n7WsahZPF1mVNBBkuTFu5Ytr N7+yw3Q5msg8vgoYlRF1lg0hpHMwjIhsiw5sI5VnmdQJGD9N4q +QWA3GSGj+NJg7jeZcAfE6TAijORGYEEZzroDZV9Gc6yDmKcr6 4ozEV0v2fcW2YITdc94e3IQjHD/NCJNC3FiO6VgLSZTXrfk3u/2fsOH72PBLbPgIcY8x9xgLv4Xk14R7DPBHRPiYgb9Cwi84428Q +rlJfAzZn1Dxr0ftGt53+uypHduP7Nq6zlls78uPGSkyjuQax7 bahnbaLu2PGi4xXSqwDRWa+nfYBnfaBwpihnfbh3ZbBorsw0WW gR224Z2Wgfyo4V3WwULTpXz7yG7TpXz7yC7LUKF5qNA8VGAeLr QN7rJfKood3B11qSBmeKf9UkH8xVOxLRdg2T60d0dy01HPl6dP vttQ+XZl9XuHDz2srX/Ye+rKkycG758cfND74pd3XZwQC4v5gwXG9hxLcCnSTGCaYJmwQ dEayrKcOkpl+nBBU/RYDg4KRGOJzBId4ycw0kx2/yZLdX3yTnlByXBcx4HYQLrdVUqt9HFbnPEDu4hkJgrLhTmg0CS CGQWQMIEqIGEW6SxUEHuFBTqOHctld7Qwad7FZS0ljWd8PT1OZ 0dbe+vr919//If5+d8p8OfXf84FHj5sbWlxO11uh9PtdnS43X1tTW87S37rWfJ vnZk3nJXudrfb5fO6G+oDx9KCqSDACkpMbHc+t8lH89fXr/hmZkHYcHBX/tXO4Pf+Wfn2D0+8OWkaTBU9a8SyfaWjr3tCnxw78mF7ww/6hh4nLL0jZIzPrbpkPVC3P3R9Res4v/u0eKhdKL1IMroSlneKm8vs7blG/xx2HMX4LXvfL54/nYjHMCNhWke0ToAMkMTwOhbDkAsBTrbyE6uZC2VsdRtX5hLLHa ayNrGiyVDdIlQ1iZWNxkPNfMUFoaJBrGwRKlqEijZLZbcpb5RN 6I2N6TEnnbPXlxhD86GKYBgYJ6OjGw7CtElAXhPof+Spf0XUR5 D+hKZ+x1AfIer3Av17TP+OAb8H4HeY+Q1ifonIr3jD7yH8JUY/oq2PyI7uhZ2Fxe1zWndbGg7YVvYaiAqJzvKywEocliHSENQQ0j HUEFAZpDFQofgI5KdYpAKk0VClkErhMA01CukAqQyUaaQCrEEo M0iFUAVYhVCFtAKAhhiNMGFEa5AL2016vCjZuYApLhi/8+XdlY+OHnpwqOZe5cn7x46+Wnv8wfGTr5889ehs1cOjaVPLzW NxRikK6yZKFygNUhGKkQEbMluDy6POnqZS3Gxeu2UgF0hWWiGM himdpnVGUGaYfFuYdTUFle+mFVwnZeUzR3LsrdVUpgdvbojuzc YBA1E4PswzEg0USMuQkSEjA6AAWoaMBBmVoVVoG9rC7milFruS DjTua6h3d3d5ve6mlsb79z6dDv4XcB/9769P/pe5QGtrq9vl8rk8bk+Xy9vd52h4xrH/xz0bf9a5+nbb3r725k6P1+NrOhWsWTKZwY3FRw1tNRQ2UjFPcn Pvw0WjYHuluXOjfXhZy5eeU771k8D3v7v0egkzxluDszL1wgJ/x9itb7h7P1y37UVxXfestiNz5LXiZHzyk8vqvly/RMkSLsdZpdWGjiK6ZLuldatlfB4XFMiQkPewIOdeNjfGsCpGCk fCPNQIVAmUWV4RRIXlgjQOi0izCOE4QUs06Mm8tohT5xi1maI2 U4wksNpMPjyLC89iwzP5SDyrz+Km5vJactzo5pmHd8/efHDR4ZK4waWcbkIKw+rYHEgyVNRTts8w5JvQ9AGyvINi3gPRD 1HM60zsPRT9Omt4F5FvA/7XDPyNSH4jwp8T9mcGw28o8mPK8hZZNzrjUvnM0aUbLmzJWbZl W9GW5MHFQAFoimFDHCfxSANQZbCOGJkhOgYyAxUIVUQ0wmsES4 DTCJYhq2KkAKxCpAAkA1bDMEQTFSGJIRJiQ4iVECcjIjGcBpFM IY2CKsVGIIkgqDI4gmAIcQGTcNlsHLUaJ0zcuMgHzdjPChLHBl hW4qGCGR2iaQw1jDWWkRkcQbSGkGwyS+nm87VURge/syXq8nZaMUANAg2iMGEVjkzG2S9tx7knEtdM2dcNiyeq48bz7e 211PJudqsjdnAbGzQSieM1DssQKQTIGGmEkRmsQqhhICMUhrSG oi5vY7e3M2m+pLKm/U1n3N1dTldHa3vzg/ufdgT/pVcK/7voT2qthw8ftra2ej0er8vd6XD7PF6PtzniqvyXzi2/9MyRn/MAACAASURBVC1/2F180dHgc/X53O1ngrUp/lTzaGrU6WNUklPMHolvazL0ZnOjKViKpcdM65+plv75Q/XDn5z/4LownAA1yIWsppaVu13Ppq+/S811R587ZpXS2CkRK4gfFbbe3n76G2cTI8ncmN04Pts8kmwdn8 cPC9GT0bvfLj34hSO28VjoZ9mIwCmED7NIAUQjWOU43chrApYQ 0ViiIUEHnEZxEQpNUSBCozBEGsI6BgqNdAZqFNIprDOMSuEwZB RIIjajnDhrYkn8ZKIhyGEdMApL9Ci7P9t4wEXFPksvvBtVHoyq rzVfKLOcL41qKDM0VZsbTsYd7kbJEdb4TQx/JXC/I+hXLPcLQfgVZfwWyboyo+FEjLLSOrDBuu2cJdppXnY43rddDM XiaR6ovKAYeJ0lKmQ1jGXI6QRKgFVZohBWY7EuMDKCOssoCOos o2GoE6izjI7RFEtrCOoEqAipmGiEaCyrEaJCNoygxqAIZMIATr EwIjAqz4UtKCRAhWdkDDUCVciEGKKytIbBtECrHFR5RkNQB0SH rAQMCuFCDKuxtMYinTerSeYLR6hMJ9nZYJ3cQkc4okNOYrmQyM kCHRBswTVRJ+upxGZmU1t0b7ktuNbuPEKt9JJcV8zwDk4ycQor hDmsAKISqGKss1CFRMdIx0jFZAoDHceMbed2dDBLvMnlzSWNZ7 3dXW63o62j5Y8U+OvnEfz31/+DAi6n09Xh9LY7PM4uh/vicNvJL/m2/LZzyVc9eeMNJ72uXqfHeW785NLJVMtwFlfcSC/ptTQeF5QkeJUDOoEhDgXNluEsx+fvTn/z34Pf/day6UpqTOAn58Q2VSUWjcbnjtqP1xnHlrKKyaSwvJ9hx5A4ZFr 7Qs7Jr53fc2f3eiVrpZK6XEvOe2bd6c/XHXr7WPx4IhomSOKQyiOJIBkwIQpIgJEw0kQSMQAVAYUCEoVDA IUgHUKUQhidUCoEMoQhACWAZIBkBoYoLAEYoHGIYWUKSjQTpIU Ix0cwVBmgIEYSmFC0dWA3t91FzegTd/XaB0qNynxOSSBKPKvEsuoMXptjG8+217Uwc6ch/hpgfk6hX7Lcxzz7K8r2lnl3T/zwZhwymnrWU0tPZG57cVa+W6xfbw7MYWQOBw1EttAaR0uQliBQ IFAgI0OgICrEYJ1lp0RaQYyKGAUBFQMF0RIDFAR0SKs0rTCMAm iJAQpkFMDIgJEAHURUCDIKYjREKRCFBaQZmCBPQgYYREBiGIVm VMjIEMgQywDJNJIBCSEmCGiZAWHI6JBRIAxBEkRMCFISIBIfF1 gVXeekFgySHS2m0W2UZmRCNBtg4SSLQohWGE6abT9fRaW0ksIW 61Cu0Z9ibSmlMppJTrvl4mYcEFiFFcIcDFJQgbT06dvSQAG0Ao CMaIWmFGgbyuHyOqhk54L9F/Y31Hs6O13O9uaWhtfv3X/8+PHvH/+dAn8B/a8dQUtLi8fl9rk9TqfX7e7xun0DjnNvdu/9lWfJT9yrnuo45HJ3tnR5Lkwezxpbbhvczhe301nNM3oOiKoNT 9OsznAyL+rzKG/a6tH26e/8TP32L0597qZlNGPG0HJ25/5NR55adupidGeeEEwQNSsOW2iVxdM8EwLCpDhfml/6cO/Rz5Uf+uzBI5+rOvTWwexnNkcPxxn9Aq8ATgOcxmGNJ2ECVYZEC NIx0lmoc4wCsc4hmQgaR2TM6hxSMVARG2ahArGGoQSJymKVIIW wKsvKLNF5RgN8RMQhghREpjDUgTjFEom2a/NsLRVsVpc4r1/YdSp6bAuWWXYawCkOh1leodkwQ8I22+gWa4WPir4FhZ8A8AuW+ a0AfkpZ79gPtZpHk9E0LwxlsSWHDWs6LDvrYntzcMhGdNYQRGw YMtMASYRVBSQTPiwACbA6YnXE6hhrBCiQm+KQilidRQpidUJUh EKMoBMk0ayOkQKxRpCKkUawxiIZsxoHZEhUjGXAqZhVMApCViN QorgwQAokikhkM5J4LsxhBYg6i0OQ1XgU5pgwBhGW1lgcNgKJJ 1MsDENLYPbc7mqyrp+a4+d2N0RNbqFVgY1AViZEEVmNpyVkVBb YGw5TS7y4qMMystUUSrW1VdBZTrzNGT2yg5OMrER4jSUK4HQOq piEOagArGOoE6RidpowGood3c5tb2eWdKaUtRxoOufr6XI625t bmz+dDn6aqPvX+nP8zVDgT/Tw0aPWlla30+V2uRxuh6vL5fV2dTkcz3Qc+Dfvyp/6Vj/fvr/Tea7d13R24mTGxCrz8Da2uJVOuzDDWWIIzCAqYTUEVcDJs6zdR dSWPaeCr974zq/Hvv/VZU9W2S6l49Kc5D3uxdWnol2rxOAMoiF2ioU6BhHCaJBTEOuH7 Bg2+U1C0MprdsqPqADNqAzUGaRDqGGkslBiscpCBSIVQJnmNMx pLAxCrBAoQaggICOoYKBgoGCkElpmoIpgiGBJRIrIKCyjECgRV uWxBLFCgIJgGOMIRCrF65ALwRh/Mle9M36Tb1/Nq6atx2K7c8VJKw5BoBqBxkEJ0DLL6NgcTFjQ2mZIfdUS85OYq J/GxPw4Ovrf2Pj7M6tdcwJrY5SkecHdGd5Bbrmb31ofO7IDqCJSE VYYEKGYMMNICKoiLfOMimmVAjoFVAbpLIlAWqHgp19+jWJUCuo 0VGksUViikELhCE2pFB2maI1mNIZSKUajsE5BiSIKjWSK1SkSo RiNAhoFNArpFNAhUAVGMTAaz4QhUChWo5BGQY0CGkWpFK1RjE6 BME2rNJiisW6OGS62FF2iZvrBqi5b62HBn0wrAqMyRCJcABMZg BARQ3PNDVXUEi/Z6bT1b7cEky1t5VSGl93aHjuwlQ2KnEJEnUMSIDJGCotUAmQIV Qg0BGQIdYZWgX04h9vRTi/2Lipt2X+h3tvjcbjbG1s7Xn/9wePHjz96/PvHfz2Lgb8hCvzJGsF/UMDh8jibvY4Wt6PX1+a91l75g571v+hc/o57z0jLGae3s36yPmMyzTq4Rth9nslotLdU2UZXmUayxIkUHIo xj6db6uqphd1ZhU9Ovf+7Kx/+rOGzVy19GcbOjVTpeuPpVVGjc4DCgSuCoHOsQqBKgExgEBIJ4 gAFJikwCelRSPsRVAhUCVQwlgjxI+wnUGKBhIGEoILpIINVwuo 8CCIgITrIMCHASICRIa0gSgK0DIGCgARhkKAAhyQWqoiRAJIgD AEgMSAEgYSJzpIwBjLDhBhW4U3+Ocam3Kid59ZWB+OPHzVfyuD 9PJ7AyM/jIIQTFDMJ0SSeP5mxrat/afaDzKU/ysj6QeayH65Z92/rit/b6BxYK1WvmTye1ejJPPR8evE75tzLVneVKZRmDM41BRPNoURza KEQXCSEFhqUebw0S5DjBSlBDM43yostykKjNMegxAtyvCDPMSi JRmW2IMWapFmGYIIYShDlOYI6l1Pm8NJsQUoQ5HhBiRekBENoj ijNFkMzLeE5Jv1TD5IETo7n5QROns3LiZw8j1XmcuocPjTDJM8 yhGaJoQSDNFsMzTUE5xlC8w2BRGNwrjGUHjVygK90UYmjMGnCf rzVNLEeBmyMDCmZQkFE/BDJFCMhPjjXeK6SWuzGOzps/XlGf5K5tZxK85Hs9qi+LSQgcAor6hwI0igEgYShjJgQAArNqAD IkJYpWoPm/o3cjnYq2Z1U0lzSeMbT4+5wtjW2dTx48MbjPySX/50Cf3798RTTm2+96ehwdHd2dXp9Hl+nz9fV5+3s7PT2e+rf6in 8TVfmN3w5gfYTnT7vBfnMMiUrdizbcKCdWdMb3zZqu+Cktlzgy uvn9p9NaPLCxSFseGnZxs86It+6+o1fhr7ztbXXKrmxeSZ1sUl OsERM/BUkXBMsYZNRNRgiJkPYYtQsYtAgBAx2PXqGGpOgRMfINnGSFyT RNG0hYY5MC9xVkZ/ihSmen+KFaZ6EkXCFF68KbJgYdM6g88awYAjzYoQXIwIX5oQpg b9i4CIGVhUFzczpBu6KyF0RhGmDEDYYIiaDbjLoFlPEYgobDGF RDJsM01ZD2BDrXzjfm7+0+/DsyVxenyMo1nlPLMi+t3nFc1mZT2akTKWvmMqufMqxosQXGxeJ i/rAPOOLCQs/X7zvR2Wn/2HvYDCz9+is6hNkkYebcSN52bftaW8bcp+ylfutlSOmqhFrRVd 0ZY+l7JK5vMte5bOUu6OqeqwVvdbyi1GVwzOrpaiyfmu5x1rZb S0bsx4MWMtGbJU+e7knpqLPVt5nrbxkrbxkLuuzV/ZZD/qiqnqslX22iovWiouW8l5LeXfcscGYw4OmsoufXmk/NGip7LUd6rZWdVqreiyVfZaqi9ZDvaaKbnN5l7Wq13qo11LVa6 rstVT2RB3qsZePWPKnUOp1mBaKPto+y79ZDAuGiMBNcewVzhi2 GDVRmAYkwloji2M76qilXVyhJ3Z0lz2cEe05SmX1Gbb74kd2Gn Wr5YrJes0s6JwYFviwKE6JQoTnpljuCs9N8WQas1eFuPHtQoGL SetOLXdUtDV0XvS5PI6WDteD1994/Pda4C+mP1Lg0aOHba2tXrfb7XR5O7xdzotuj8/V2XbRefqOs+Sn7vU/8G560lnm8Zw/FapJk5ZZhzdy+06iZW3zjvqFrL6Zs1XLfFVY+QRe+NTchEcFG7 7UP/rjzmtfCX3hZ8qH/3r+82FhMA6oDKUirFi4SdE4yVpkAxqj2BAtyEgYhwnKzJ1vFpd 84eiBd8ur3jtY/X75ngcFC6XZxkHeKBlYXQAaQQrhNAGrLNY4pBKic2yERypmVcI pmFUJVhDWCNIJ1BAKszCMoAa5MMtqBGkIhTGKEKwRonFQFVnNz CpGMWzkwywJE6xzSBeBamSHxc2Rda7PNaf7FwlDQnQgPv/N4tUvrll2I73g1e2FtwtPv9XR8vxU4tq2BWmfMcS8lbDkCw0dv 7vU94vDJ+9dfvDeqTuqkFM3M/XW/PlfT5n/rwmz/gfNfQ6YHtLmNyjLI8p8F1heoO23aNvTtPUGY32OMd9iLLcp8/Mw6jk29nnKdJMyvcRY7zL2l5jo5ynbTdp6C1hfAubPMOaXGPNd aLtPW15mzLcY43PA/AJju0NZ71CW25TtRcp+E8XeYex3KNNtYH0J2l5iLLeA9Xlge4q xPcmYn4HWl6D9Vdr6EmV5gbY+R1meom3PULZnqOjnmLjn6ejnK NtzlPg8E3/FdqjPfHkbUs28itgggjKAKmYlIxfisEoDDYrKfEtDFZXqJEVO6/AOo5JsclRQSzv5ba6YwVwiGXidM0wLWIZExkQmRMGsipEGgYaQ ioHGMBqMGs7h8zqoFF9SSXNJQ72nx+NwtTW3dbz+Bwp89HcK/CX0J6eJHrW0NHncTq/H5XU5PR5vY2d3i6+nt6P5ydYDP+he+5PO9DuufT53y2n/2cyx1ZZLW3DxSZTZOLdmmE/tWL/2bkbKFxjqA4585fTRX491fVxz+BuVjR+M3PvXyNd+In/4zY2RmuhLS+YGN5jHV8f412ao2xMnVqdOrVqoZRp6Fqy8uqvhg 5HqF/s2BmtWTZStHSvPnjhUecvZ/NWJNU+W4r5FrJTOyZnGsUzrxArTaKZlIssykWkNZFkCWcJYmim w1DCZZgosFSczjMFMMZDBTS4Rgun8xJIo/yr7cJZpJMUYWCKMpkePrzEPLyFDs9nRZMv4avv4WmswSwgt4QL pVv8K21Bmkj/n6Od8rq/4x7+r+L52YfOzmdGX4wrfKU+5kTXrStyy26k738iveXSm7V5wS VUbXtjCZozFbJDSNsqnTn6j6vT7ZWNT60ZrYqsOkhQfsby0cOH/mD3r31n4AwZ9ncx9aFpzw7gpKG7wixsDxuwQv+qKee1tceUt47 qXxXUvGjfeMK55il/9grj2eS7zlmnNZ4QtIX6rX1h/k6TdZrNe49fcM62+T1Jv8yteFNZdE9dfY1feENe+JK56iV35pJ Ct8TkBIScirH1GSL9lSH+VrH7OuPGmYektU+Zd8+p7fMbLQto9 LuMN4/qb7KZJbvOEYX3ElHUravl9Q8YdQ8Y9Q+ZzxvXT3DrZtNc7s38X DkXRuogUjlUhHwREQkDBROKJjGkZ8kqC6UIFlerFBc3mwWxjMN XcUUVlekiOM2pwOw4asIxZnWUkCioQSBDKEEoAKoBRIJAQ1BGt gKjhbH5HG5XsW7S/ZX9jveei1+loa2pp/9R38PEnH338yd8p8OfXH2uBh4/ebG1t9npcPq/b63Z0e10ed2eHp8fjcUvttd/x5Pzes/hLXTtHHcfr/adT/em2kVXC3laY7kxsdVpO18YVjdoWv0WjD63WD0+c/tXqdZ+F9Kt2+ztHWr479Y+/lb/58+7Pfa24/4kdDZpta11N+M6FJ94oark88PzD2tHpjc2X6yLvpFZNziwYNOT 7+J0+Y4HHktdh29q1pEw/rX5pXUNQ3H4+qviipXDAWjRkKRi0FA2aiwZsxcPW4kFjQa9t94 Cl8KK9eNBa2G8tumQpvGQu6LUWXbQUjkQV+mPzhxJKR8z7fHEV A1F7fDMOupY7JuJrei3FvaaCQdPefmPJRbG417b7onFL67Yziv OJL606Obi69Uz1nTMVH1QZR2am3Vi5653dK24tS76RlHFj5eYX 8isenlgjV1jPbZvbU7q4v3z20ZoVVTcX7X85qf1S3OCW+ZNF0e frbdl62sZ/mpn4bWj5HJU8PfOcd85w3qyJJXETSTMvZ865uJ+vqTYdP5fgaD WdORHX1jSrvRmX1pprmhLbLrH7W8w152f1lc0ZKrOfP0EKmg3F fbPPBuJOXkQ7z5sPNs/xNc/qO8kdORR32Dm3/iJbVjPbc3puf/nCgcMzLlzAhS38ntaoCw3znV5+d6u4zzf75GXL/m5DUR8+2hAzUm6ZWGmdXBk3uNt4+nDiuT7zPh9X0M9WtsUOHrF OFJLONWJ/KhdIYHUbDGM+ggSZZWWCNMKrBlETgMwKaqK1qZpa4iVFTfaRLV Ypw+aoppZ1sjme2KF8TjZxGs9HeKhAEmaRgon26ZIHRmEWKYQN E6Th2NEt/I42OqUr9WDHwZbzvv5Or9vR2ua4/+DTzOLf//XzCP6m9PDhw5aWZrfL4XY53M6OLpfT53C5XW6Hx9PTeuEt596P vEt/3Ln2Wkfpucm61FCmbXiZuKsJpDhiW4+Y/ZsXj9bNLvFTwkss+cdd+39aUPbVw6f+vfzAd7flv9Z14/vad36rfvu3HVf/Je/IO0LMwPFz3+4e+klRxSs9Qz939fz4lONHM5Y8G73g5p7qH67Y8 XbmjjdTcu6sKnq9oPJ7FB+ZkXS7+tzP7XNfpNBNin2N4l6nuAc UuU9xr9PmN2nzQ4p7hWJfo8hrFHef4u5T3OsUuUex9yjuNYp/lcLPLc787LY9XwVxcuHRb8ckh4pr3264+NN5GW9S4FkKvwosb0 D7fUq8Swm3KXR98dK7lSe/NysztKJiskTt3fvGCeP4bG7MYpGjuJABBjgybraMRSVMxK1+cv W6Z7KXPbUq88bqLVcqVjp6o4sHFrd3rZgqzbiRveLpg+v8nmWH n+djX6Znh80nzlnHs/iQHQftQOWJYjH0bqAqtnEni2d4S5nqraTyoPlYnfloLVt1jJSd FCrOCaf3WS6uNnVtoCo3Wc8eMlQcijnQivOOzjx6ClbmGfu3Wf t3wL0l5l2OqEonVVgZdeYsf6yKO1Y2z3OaP1bI1u6d2XMA1W3l j1YZ649x1fviT9WDA8WsbxMMJEDdiMJInJjJ1G0UKy7wxQ2xFV 5cdsR0aYsQTKec8zlvqmFsPgxZGNUANYIDEEkIaBiFCBciTIhw obmm85XUYhcpbLQOZhsmU8xtlVS6m93sjLqYiwIGTuW5MM+EGK CgT6eD4NNaQIZQwlABjAzsQ9nc9lZqkXfRvpb9DfXuHpfH1dHc 0n7vwRuPHz9+/MlHf73I4r9JCrz55pvtba0uZ4fH5fB0uDwOr8Pt8LlbOl0ud4f nKcehn/lW/8a78jPuwnNjFWnja6IHNgr7z8KlzTPaqoWJeXOvLEkaPsDvOWH Jc+/ueXqrY7Q+/Jn9XdI+b+BY6PrlD74e+drP5Q9+kjd0ParaN+9E39rugYXHz25 p6Tk/dWO79xKfe7So95k1Z4cWHXJlt0/mekLFA9eP6Q8SKzvZjce2tOgFzmfMm1tMeU5LgdeY5zHmeY07f eZdXYZCj5DXIe70ivleQ0GXkO8zFHQJBT6hwCcW+YTCHi6ndd3 5iYqJm7ai87Xqa8tq3PX67Y5n30+vHjRscRu2dZuLek27OoWdH lNxN5ffknJk4PjEo7MD3yo+8u7hnvtVt4dN/tmMDhiJIjIECs3IgEiAn6DMkwZxzMZOGNhxHHt5TqKznNpcbij fP6t3qWWE5ycM9sCyGaca6cRBw9axuEtHiRyLNIjDHK0hITTL4 s3HlftntRyPdR9iju2zX2g01ByObzohVNXaj7QKVYdm9hTaRlc Krm10aXZ8d7l4cmdMzWljxVG++AAsLTX07TFdLEYHTnM7+9nCA bCr0X74Ai46SeU12uqdYsNBoalgVt9epmZrdMfJGF8NqipOPOf g6vaKw8uwYqUkyGkW+/hy5ti+6LpuvuQ02HUUlh2O7S+Mm9gIm1ayjnXi5CKgCEA1wDCH JIg1BMKIyIRIkAlCUU40XzhEpfhIQYt1aIs5uMTcWkZlutnN7X ED20nIRGSO1TkoA6QRIGOsslCGREVQRlDCWEOMxMSObOFzW5nF XSmlbfsvnPb0enwuR0trx737Dx4/fvz4479T4C+gP7E5e/ToUVtbq9vl8rrcbofX5/V1ejq6PB6nr9vh9IU7aj70bfitd/kbvqJWf0mKf5VxeAtXehpknYn1VWP/7Kgp60xtrmlkcfzE6n13Tu16qib3WnmOf4/rza7dV6q2q63qh9/Xv/Ovxc+HDAO54thCYXSG6fLc2cOZJfcrF/kXxg0sLnr1TOGdY2uf3L7uWm7+7fLd947XfNGVcXWTdSR+nj/j4JunUpUNUSMLbaHFxsBCc3ChObjQoiSb5EVm/3xraIE5MN8qLTYGFpqlBUYp0STNM8tJ5tAi88j89TeLDj64sLB/S817HZuv7V4ytKnkhZMn3muKn8w0TyZFhZJjgimmiWSrkm4YXb DiWtG+zzize/sW5Y+k5kbqbzxY5N8iSqyoIEPYiMMWMRxl0M1A5YlutuuzFjyR lKglzFeWp16qjSqpTaqvWzG5J2UqTQiJSF04y30UZ52IKm20De Wzmo0oFHsFAYU3DC0wteRwh/aa68rMTXtA/aZob4m5cY9wuIgpLU9o8BrLq7lj+VFDxeb+QqZ6k/VMCaouNrWUxA3uM54vg2Ulsb17zQMFzOEjpNAFi1vQgWMzTh83 V55mClstZ918Sz5pX5owvJOcyhVqdxlO55NjRTNaL5AzucJgsq hacIA3DKeZW8uZkuqYunN89UHhZB08dniGqyKmvRge28Y2b7D6 5/MKQQoBOsEKJiqGEUxULKgIytCgzrE2HqZSu0lBq314m03JtLRX Usu9bE5H3NB2LJuxKnBhHimI6CxUMQnzUEGczmINIQWyYRbIJO 5yDr+jiUn2ppR2HGg+673k+7Qj+I88go/+3hH8+fXJJx9//PEf5gIPHzY1N3ncHo/D5Xa4nG53h8fX4e50epwul7O/5dRb3vxf+5Z/vbewa3R/ysQK89BGcXc9k9kQ1V4WM7ZgydMpqTfSLONRhhGx+FHxoXeOFt 7de+q9c64vuLY/uc/qy3V+8Ma1D7878NV3544d5saWWcIp5uCctOs5OXcro0ayzH0bY 3wF2c/VLHt2fYKSkBRZsmJ693r5TJQ71zSaYhiPWXk/b9GtdXBcgGEbHbZAzQxVE5q24yvRWLUS2YQlM5FtRLYS1YwUES tGolqRbCPjttTrq059pa3kTt3Zf2xfIa0uvVN19NGpsncrLP4o FODNU3aLHsNKdiLbid+UdW15wavl2deOrPe1rSzzHx/+yuyTZ6MurhelRayUahhYLranGS6lMiOxSU+kNX+r9eznWg/fPX3kfvPxZ8fLeqSjfuXcywMd33AVPdxhHJwVd76ESa8T9p6zD mzjJ3mjH5CAwAZioGemzbsFH9vK1uZGd+bD1iRjz+KY/vWgdhPftEtsKWXKdtNHikjPerN/mejYBMuKUekBk3cn508Wx5bD1izLpWWWnjXcmZ3GsyXs+VzSuC XKUcSfysc1u2J7KriuTKZntnUiydazFhzdyhzOsXnyLL2bacci Mj4XByzGsdn43Aq4b69Yesx8ooQ0bzB1bxPP51nOVtKlB2B1sa U7W5yIxiGGliCtIBAiTAjRKkYhzEoIhBAbSjBfqKJSvGhns3Uo xxBIM7VVUJkuss1h69/KBESs8qzO0SGGkQEtAaBAWqKBBBiZBhIDZMjIxNq/ntvRSC1yL9rXWtJ0xt3rcTvbm5rbX7n/+uNPKfBX2zr4N0SBx4//9GRxa6vH7fa5PV5HR7e30+m96PJ09zrbOzvavU7nkx1VP+1a8e 9dKeHLG1cOL44ZzDYWt1MLu5IaHLVvtJx898zZ9xv33t49c9i2 87Xc7S9sXTQ5f8O1NWf+8UzhrWrjsew1zT1T3/nZ1E9/v33ipqnsQkz9aVvNic0jY5tHJ2yH2qzFAWpBJ7X+eGx7rmVijn Uy1VK/h0o7Qy1st1V0zGqqXBU6mX39gs2Za+neaejKs3cVWDx59t5d9t 7dJneepbvQ2Flo7t5j6t5t6i4wducZu/NNPbvEziJr966YjoL8iO/4q1c3+h0zWvfn6J5DL6tJfYejnQVW7w5LX5G1d4/Jsyuqq9jkyN0wUbHnztGVz21ZJe/c1Np+uv+71lWquaTffqZ9xqluw4ZOOulcVMXJmV05uz5TeObNI 9uUvLKXaotvHdotN6w907GqsbXi9f7h2QAAIABJREFUadehV0/Vvntucd/+6P1Oam4/tbnT5NtjVWdwQVrQBCKJYtBqCc42jidGyfOFgJ2TLDhoEZVZpt AidjzZOLnEdDndMr6UnYjlFZMxGGscTbWOLhfGZnEajwOsWY4j ITsnxYqTiYbAbFGLwsEYMZBkmUix+9PMgQUkaCe6DQZEcyjBPJ pkHU2y+BP5QAKnzgCKkdVFEjKI/rnm0SzL5ZXGyVTinyEoMbx/hnEiyTCUZBpPtMgzSdDIKSJSWBhmgcwilWU0lpUFQeWhQgzaPE vjISrNR3a12Ea2muQMi7OaWt5JtrmihnYg2YQ0jg2zQGFImAUy wmEWahBrBGoQKZBoBChszOUtXF4DndqZesBxoOWc56LX82kt8O A/1wj+WvobosCf+gu0tLR43G6vy+12urpcvi6nx+12dzndPqezw9 sz1l7/zc7s33mS37i8bNvQDNvIEtPx81RiV1LxSN2zk8mDK1YGV1S+Vj pnfM62V3fnPrd7XXjNlusrT31wcv+tFmPxUZLU3vfkD/qe/aF98XM0/zIdfYeKub5y1z9k5r9HmWXB/OSC5NeiV/eb6/KsgeSowFK+NHfWsu6sDQ/wrCk0U1619401Bx8ys0NMcoRJuYrmX0Vzr+DkJ3HyDZh4BS+8A hZMo4XX4MInQNI0SArDpAhadJVJug6TnkCJOkwI0/HXqTlPgvlXqfgwPfsKNU8hSQpM8oOlEbjsOlgQJokyPXt4UUFo nyYtmMieP5pS+XRb8/SXTfNuMsIrxPQGsrxKrNcKDjzadvxy7tDZ7u9O7LhWuF7bXPVG Zdlr5QciHXntQ7k+36mXPYeePnTpi/6TT4fS9vXvq/lC7CY3f3aLoM5hVMxOYSwDEMJQ5WgNgTBgNAaGMa1zTJjFU5gO cawuEB3wGsuGBKKwQENMmAgRAxdiiUpYFXAqy+gmWidYg1BBTA RQYQI1gQtyNjXaokbzCot1AFWCFY4okNMwVghUCY4QRgVYx7RE Qx2BMKanODrM0iqAEUSHEYowWGPYMCRhllYBirBQRSACoAqhih gdQYmwMqJlWtBmmhoOUqkuUtBgG9piDmWY2w5RWZ0kxxU9sAPK RqSx5FMKRFhaAUDHjAqwhhkVAJkhYZaWcMzlzdyOBjrFl1LaUd J0xt3ncbs6mls7/pMCf68F/tz6U/vzTyngcrncLrfb5XG5nF5Xu9vlczp9Xkdbu6+zw9H0hnv3x56s bwxlVPSajZdEY2cuyGkyZ47m99+Y4duwIJS048HmuMnYolcPHn twrvGdxoM3d1XdrSy+fs6+q46K7l2z+q0FiZ+h4DVu4W20IgKX Da+tvru6/A5eOIbjwglJL1rXeIRz2cZAonE8jT+Sb81sTV59kySO46SutYd eXF99h6T046wAzgqR1HGSOk6Wq3i5hNMuk9RxkuYnaZMkfZJkT pKlkyTdz2YEcZoMMyfZzHEuSQXzNDrZjxcGUUIALhjHGROG9AB JmyCrguyKAL9kXFjiRwvHEtaGS3z39qujZz7bUfOw+sLrI/F72tGCy4ZFN7hFV8mc4Q175OwTLVtHj5/5fGfu0wWrp7JO/ENZ9WePbhg9v+J8/7ILbQ0P+4+8VON+r69S8y6t8Gwpe9q+/ozp1GZhIpHRREYBMETDIGJCiFYwrWJKAYwCaIVmw4TTjYwEaYW CGgMkiEOQqBDqLNF5MCbAMQMJGgyhWDIUj4bjBDkOBQQgISyxv CIgiWED0cSXghtX812ZZDwWyYiWAa0ylEwzCoIKADKNJIACCIY glBikAPjpwUT5UyMwCFUAFIBkwmlGGCJQQVSIplXAyIhSGFqno EQBmaJkyIfirRfKqRQXu7PB2r/BNJlmaaui0tvZHEdUfy4MCkRnuTBHSzSjQCrEMDIEMgAyoGWak QGjIkrCtuGNXH4DtdidtLd574VTrh6Xy9ne2Nz22uufdgR/Xyn88+uT/819tK3N5XJ1dnZ6PV5vp9flc3q93W5Pt8/Z5vS5293tzzoP/qhr1U+706ZDWVueWLJoas264cZFB4dW1T9jrahZMXZsz92zySO bDr/cfvpl39mXHTv8RWUvHt185WDcuUNMmhPbNcYwadk8OrOt2Xax2 NazddP149ueOhPrKI063kqtPskdKLeOriWynZfnGXq2o/1VIKcm7sypOZ6CzVplztWa6J4N9v4N1ktr4gbW2y6tNY1sMgxt Nl7Mtg5uNg2ss1/ONg9tsAxvMg9lm/uzbYM5MRdzo/u3mnuzY9w71oZOldzsrH81WP5U/4rgcYt7y4yefFvP9uj+3BkXt0T1bYoZ3h7jzVvr8hR7XjjYc8d 99/l90+XVr9ctGt0e17/dNpAXO1BrqDtPbTsQfWZfTN/q/LsHTn++pfCpsvxru/Y8c2Sn3LfkXN96Z+eJF3yn3jpX/e6phL711tN7qNy9wpHS6EtrDWo00BCK8EjlsExYXYAqQWGeUVi ii6zK84rIK0aosiDCUzqHpwVWE8TJeLY3XexfbhzegHoyYvzp9 p714OgW7uxWc89K4+UUcXyO5XKy2JkePb7cMLCcO5MXdbyBrt5 tHl4uSAZOExgJYw1zmsCqHKdxnMRyKg8VloRFrLKcxvMahxSMd Q4pBEc4pHNY4UXNzAZFThOgiojOQ0kAKg91jqg8jGBKZy1y8oy G41RqH1fgih7ZaZbSrc4yalkbzm2JHtlKJAOrspzOMjKNdcLIk AvzUIJEJ0hHUIE4wjEaHzeRwxc0MEu8qQc69jfW+y753K6O1jb Ha5/uF/h7R/CX0Z/WAs3NzR6Px+12u90et6/T7XO7vR6Xp9vt6vB2trud7VJ7zdf6dv7Km/b28KoLVzZXPSwte3Bi7eX2nHMvUfE9i3dHSnvuzi1uOqO80jx9 d3uLZ3/foOvezTWhE5aeA9zpOpR7RNhZZXfuEpR5+KqJVU3zbqaueytXG Js1YyJjcWjzAnm1GIrBKkQqIsFo62SaaTLDJM03jVo2vLJp4TP pQMIkAqEGkW7EYQN/jWOvIkYnYArSEQZcQfQUpKcQoyMUYXGERRGe0w3mcev+N46d+3 Kw7G73vht1R++dPvsd9/a3i/kJO5HMJs1skgWosuiKKEyQ/Ol9derNBdvVzNLAEU0+emc01rUnuneXrbfA0lVua6uPb2xNaD9 radqzevCs+9VXWp6+73jm1eGXPtd34+ut01/x3LrTetfj/qfm/Dd2cmMxwvhcYXS+KTiXD1qwJCBZxAoHFYQ0jDQMFAg1FsiYqBy UWE7hTTpPJAwUntY4EGZNcizfvILeXYYr641NtVxTTqynGJUdY fIabUfrbef2kJNb7e496FguVXzQcrY2zlsWdabCUn6ePVxmHFp OggYk80AToE6gQoCMoIahgqFKGJVAjQMyi2WWUzgkI6BgqLC0i mkVYY0XwiYU5LDKMSpGigEFjExQAKqAVI6ZomiVi5tcH13WTsU P4dxm20CeIZBmb6ug011sTmv0/2TvPaOjOtN07XfnHCqphBLKOYEASQgQEkEiWUiARJIQIHJQQFm qqr2rJCEhEAqlVLVTVUlEBxowwQSDweC23d12tzt40pkzqWfOm TkzPTPnfN+cdpvvB56eXj3f3/H8GN/rXXutWrWq/tW93ueu57mekTWEn6MMigxSsAphBo7q+OtdBqiGoQaKaghm4LB KhI2tpja2QOlS+s7uXZ3N7mGP5Ozp6Pqmd/A7F/iW9Ht8Aem1B8iy0ym55F7Z43S4Bpyy5HZ3eByukZ7e566d/zCQ+/OzubJ31b7He9c+2JJ3ZWPlrIYnX7DnXHrj8A/42LNFFTcaen84EPzzfuMvtzY+4tY5bI3NC8drF0yssntXm/wFlB7BBO1mNTpCS9r6aW3CZM4idbnjfw3s+sVh3r+Q0Gx4yEYG w0nDSs5bCD8br8ZWf1IbPZ+H+SN4PYJSRVijYD/G6iSjU7CGISoK+xBUwRCVRDQS8iGoH8NUFNZwcsxS873uw9MPz EVTaMYomtZk3rYjY2xLw0+PlT0sIUYQSiFZhcT9OKJiqBcsu5Q x8Yc3m2ee7Drzbr/xZ7XSF1DSLJx0GUkKIqnTSNoUlaKiiUE4dQ5bqAlR16xx70WlP 0tO/TQ97YcJBZfTTjYnjS2PmF5gGufZKQqfhVEdRgIoqqGEnyRVBvE TiEK+PqhKYAYJ+1FERSE/ghs4G6AJH4b5cVgjEJ1hZ1KwIxuIdS5s8yi1v409tcl8ZrtQ7+ B2DVqONMS69iP1W83tx8j6A2RVK76rxdzSSOyrimw6JbTtooYz ST+F6ihs4ECHIA2BVAjSIEiHYB0GGgypKKrhqIIjCgKpMKShsI LBOgrrMKZjtEETfgzXMFiFIY1D/BSm4ahOojoOB1BGyQxra4ZTfZB93FS7n51Kp9U0S+chKKOPWuO wnttEzAqURtNBElEhRENh9V8ZxCoKqzCqwpiOwQpuvfh6Z7GUV t1Z097oGpQkV29bR/fj71zg29RvXeDly5c9PT2yLHv6+lwup8cjyW6n5O6V+vp63U6p r1eS+/td/Vc79vzSXfx37iVXtDUbQkuLbi5b9HbWxofHLC21ic2dO33zycf axV0HI/YdP3X1Sa33jmmNG8RdpBdp9opJ6z6Z3Oti6vqYPR2mPU5zTT/zRmtpv3/DUCBsa2dK/VjCgYviLonY3cvUS/QeB7vfQe5rZrY3bHb73vDMCTu6yT1Ouu4M07zdNJuHGzStkYwi IBrFBShiFqMMAddpxqApg8YCKBFASS++PLTtdOBHQuQtAO6Y2Y cZGR8T+S67tCnVn3b8y73J85HoDESGCFSFyDkc0oFwhU27nnH8 Ueelzz6taJ4MX+cBeeewQh+8eArOn4aXjeFLp4k8FVs8Yyu6Gr 70fmT+M2veHWvWPTHiORV11X6wY6FSEhlITlAz0rTsaCOVDIRj cyysInSAQDQInyMxg8EUijRYVCNxg0R1BAvARBAmQhiqk5iB4i EIDgA8xDC+eKx1NbL9KLqrjT19gG5bZe/biB7aCNdvFHvW2s6thtqXcdImpnETUV/Jte2w9L+BnyoSmzaiLYv5mSRKZegAjagQHkAwHUVUmAxhqAHhQ RjSITyEYwaG6QgRxIAGkCCCaAgZIvEAiuuANRBKRUkDRQwInaO wAEkFENqAKBUz+dPNzmPo8iCw3RbLJiPOlVFBgQhEi3IDlNdPr umMGN9MKCyu4pRBoDpKhEhYRckQBasI+bpfQEXIEIVqVPjEGmp jC5rlydzdW93W6D7nkRzd3b2u95//a0XwXTr4Lejfp4OyJLskh8vtcLokp+RxylKv5HR4pG635HRLYz 2nPpcrf+1c/NOR7Ao3bbtIpYfSNj/ZGjURnxcorH6+N0ZZLI4tsfeUJxw/ld3pTnK0cjVdIHkStnwPN99Bbe/A9suw9U3M+hBd8D4Qr1OxgTrXP6SWfgDAKKACqPUmJtwjhduoe B22vANoI7P48WHX3/NxBiyG8LDvQaYbYOGscKSDmslBdYTQcFjD0WlAzGKowQAVED4Y V2gQQDAVt55L2R1Sl++8A6wzkWuvWVYNhBUMCmsGrYePmTpLKu +2vPHwiHkizWSkcmos7Y9h9HhKScHOpycPVe+aGc3uPmaVdlhG 9phGd0Wcr4sZOLRg6IBleI9teE/C8JFSr7LomJF7cHz14NBqr7TO8Wb29neW9QzmG9sLtepc+Wjiy boVWnPM3EpoBkZmADINAx8AGoANAOkADgBgADgIQUEAByE4AIh 5lLqMQwYAOgwMCgmwhM5TkxH0QBY3uIq+mEN5o7jpNHJkEXouh ZiMwX0RYDaMUWLZ4QTmbAI3E0P5bJw3izybR4+lIqoJNmjYQCE DQAYAAQACEBQArw8cgIEOAwMCAQAFADBgYEBwEIF0HNJRcg5i5 xFMRREdhUIAXAJQCKABgOpAnAmPl+roorPAruJF42b3PkKNRXy IMBNr7TwEZ7qptZ2WkdWIghEBnArRiIIg2mv6MIq8vrWpMKrAq IbCChE2upra2ALSXMnVndvbTsuDstvZ29HR/fjZN3eB/zzU0H9hF3hdDrgkl0uWnK4+yTUkSYMul9slOx1yl9PjdMvtb3u 2/11/wd9fyOqdWkCdgzL1tPYfNB++va/x6eG6T3abphaazy5n36hcXDWZWzcR1rLTPvIG27KH3HPStKtTr Gk27Tkt1jSad3YIe1pNNafF7fsWd7habn6y+oxi29TIVzRRFV3 Mti5ma5OtvHP1Ma3jnY+XSgN01XHbzj5xx1DkxjkiyodmSqbWb VHzSaZLHKKyrGYRdBH1EUyQZhUWm+Fx3cxPJtpP7N7a81FU6SR fcyRqdC8/vJE7VcdvdKM5Mp7fs7btaoP2KOpwq+Vwo6WhyX6oVWxoMTVIws 5RyzpvRtVsQt3ZsCMO8wknc7JTOHYm7HCX6aiLP9nOHjsd3zSU d+QWFTdGJbfZG7bHXSjdEji3viuwafJszEjRgs4d2NIuJLontu bs0smu5Nmy4ls70ozSzOvrEuZLuZE8YWyJyZsvjC0TJ4rYiwWm 8WL+4irzeHHYZJF4sdA0tpodWcVPrOIn8q3eovDxEtvoKvPEMn EqT/SuFMY2mCc3C94SdnolM1XEjhZZR9dbxwot40uF0RLz+MawyQ3m 0bXi+Gp+rFD05nPjefz4UsFbwE0sEyaX8eOLzZP5wtgys3eFyV skegtEb6EwvtzsLRLG8sWxVcLYcstkfthkoenCcvN4MTuRz00u M0+nC1PprLcoYuCgdeMwsM8gi86Ftx00zaQjBgNpqDidGtnWDG cO4mU9lgtrUYXCDZIOMaiKYhqGqihuEKiOoSoKazCmIaiOwSoR NlbyOhdIrena0XZaOivJjp6Ozp7vXOBb1e+6QHd3tyzLbrdbds sutyTJfR75bJ/UJ7skt+x0yQ63xy3JXRcv1H42VvqrcxlXpxYmDcDJgdSOL7q6H nf2vvTUf3Lc5ks395VSa+o21X+wbOcV5sgWQU3n9XhmNtWm5wu zaeFGRqSeHa5kL9CXRyrLF6p5tvH0gmu72342febT4TfeOrbyS kPJtaMVVxq7Xo55fjq7/sphW/+GsMED4RcaxZG9+XPdZf1BEN1S1DRz7MORRZfzw/zRVT+orv64Jj2wqODWin1/sDfSiOa8sTbnJnNZT43zj2KPSNbzBYRuYYOZcZPHiHWnFle+GZ MWSMu61Nz9T5bU67D1KmK5hYfdRuzX8YX3YNP1xJx7R1v/hz3nMhyu47Z5LOomWPA9ZMFtZMG7WORNLPxNMe7tuNxnmQUf5W 64xLyxec9dZ/9HT97ouOJ4fLftJ8OLncfZXPei/LsLMpT06vmtvU9KGq5X99w9M/d5UdM72LIRcrmXWjFNFHmpVTN44QSzyketmKFXzFArp8jlPm6V nygaIVeP4iu9VLFGFs3SK8fo1Rexoov0OgVbMUkVz9CrFbxYI1 bOEiumidIgtmKCXTnGFnuJtReJdeeJleNMsY9cPsEWe4nlY3Tx NF08SxRNMiUzRNEEt9qH53uZVX5q5Qy5apJePY0tn2BWzRD541 yxQa2cJVeMsaumyIJZZqWOFU1Rq3VqpZcpnSCLVXzRW/DC21C639bcEzG+0jRtJXUWMbiw2RXWBhmkKWi5wz62mtJYQqPo IIupGGkQqIrSQRpVUdzAkdfpYICADSp8ci29uRXKdKft6q3paH IPud2Onp4e5zcVwavvKoJvRb91gefPn7+uCFwul0tyOSWHy+WS XZLb5ZSlXll2uSTJJQ10ywO9w4e+N1T0zwNpf30h42i/RRw3Lb69bPuDzdsebEu/nE1Mi6aJXK6uGktrxZY1250VnM8O+3FY5yGfSE9FWM7liWc2m5 sOi51HmNb9XFst3byXOdIQe6zjjWH9oH53t//dWu+7J2YeVZzTYk40W2pPCxua6cKTWFEDtWdj8ZVdLS+UsJK2N 9qedD54tmx6c7aafuyzfU0/PLnx6tb11zc1/uHReGWB/WIWX19PZbv3jn+aOX0Mn7QSsxZuYKXQ0MiXO0yrmti8I7mVg4e GPrGVThMFBrI4gCyeQZaN40tm8IwJ+yJvYcUddnGQXBwgF02jS/3oUpVcMo0vnUKW+KDFM6YSX2S5ymbK9LIG6nDJ8uDO0zevVXXc Pn75ra3zBxf31pD5DULM2bAUJWHl7YraX8ZE3dpc/lmn9M/l1T9Fzd8D1AOIfwwJDyHhAeDuQfw9wN9BLfexsIcQ/xDmHiPCXSC8C4RHgHsMiQ8R/gHEPoLFD4DwABbuosJ9hHsEM08R7gEs3gHmJ0B8hvAPUdNtNOI WuuAB4N4HzBOYfx/i3oOE94DwEHCPAP8+4B/D/HsQdw9wjwH3GPAPEfE9iL8Difcg/i7M3QXMPSDcRyz3ybDHEP8AsA+A8AAILwD3DOEfocxjwN8FibN 8Q1vYRAk2KyIahmkUN5Mc1rkPzb0AIgPUtjOWiRxsliQ1hglyi B9BVRT2w7AfQTUM0VBIfU0iRiGNsI6tJjedAelS0o7OHW2nXQM uydHT2tb527vAdy7wbej3GcSy7Ha7XZLkkt2yy+2RPB53n1Nyu TyyJDtcHlf7oKvjYmNr75Ifns/+9UDajYspacMMNk7ZtTCbbsemcdzAiJkFMZ4jaIGTXt8ZNVJJq mZkHgYhlNbCw89uEqr6oYQAHH0fjbqDLrwLL7wPR72LRr0L225 A1ttY+EPE/hAPf4+w3gLmd0DUe3zch7HxH1aU/+X6jT/hVnTnXmzY/2F/qezM2TVY7Z9bGtoe7guv/EHZtg8qUqaTNzxaV/n9DbYZ3jq2yFTfAWLdNRduFl+rp8ci7cNF1MbdXPqoqUiPPTIU 3rR/07y87/HF+IG9EUP7w8/vjzy/P3LwQOxwc6xzQNgxiJRKUSfPxQ12Wc/ts1+ss53fbR/dEz66O3ykOuLcloyR+g2TUym1/ckHHamjh5O924uHhvIOzJZeGIgdy0uYKgrv2W2tbcpuG0hr615 9brpy+kaF9/p27Uqpd8JyqMlU12s7KFv2Oy0HnJb9DssBh/VAj/Wg03JQ4uucpv0eU71sOeCyHOi17O+x7HeY6l22QzJf1xp2pEvc 32Y+2G1p6DUf7DI3dIoHO2wHZfM+ydzg4hs6LEe7bA1Oc63Tds Blqu+yNnSL+1vNB9vNBzpM+zvtDQ5zfaf1kJPf7zAflsyHusX9 rdaGLlN9p21/t72+036gy7zvjKWhw36s13SgLayh27Kv03rQZdrfHt7QGXbAIR 48I3ZU8xPZdIiG52EowLC+WHt/FVbqAeEavWo4Qq4W/fGEnyE0mjBoWEXxAIFoKB4gYBXBdBw1UERDEAOHDCpsfA25sQ3 K7Evf2VvT3ug+53Y6uv9tsvj1HMF3G8r+o/V7XUOyLPf19cmyW5L7ZMntkfo87j6XW5L6JJe7t092ut3dJ2ZO rhrM6ju/8G9Hsv5yNOvERRs9jlrfTIi4nMbMcrSGcLOpET29UOYoUzAUKx 2hlWQQgjHdvHBik6WmByy8Bkz3qPibTOrbaNJVNOMGSH8HpL0F 0q4i2VdBqgpyVCRvDqTPQymXVtT9rPzgLxKXXkvNvRa/NBS2w7nhZs/6OwdjWnaD/Hpz/Ymo2VJUoWgD52ZZZoZl/CyviIzCmaaWig2dIKJ/Y9s7h596zONRJimfKapdXHiDTVTCd0zZ6840vHV75blRse607X CX+WCL/XBr2IFW29EuywF3WO2Yfe+Evf6sraFbrG8OO9hjPtBpOdJqPdJ qPdgefqAtst65rOVKfuNbBW1zqc0zuaeCsTWzkQeduVP7ll5dt ezN4uzr63NvbMq7tTZOTw2bjY65nCVq8SYj3mokcP44Wk3l9HR GSeW0NEZJZdU0TksXAlmskUEp6ayeRflTWS2V05J5PYVXUihfK hfIxv2JXDCd0dNoPZ3R0xkjjQmkUEqioKdzvlROS2X1ZD6YIuh pnC9FMBJYLU4IptBKEqunsHoKoyaKgRRKSRXUZabpEtPEJvPMR lZZxhppnJos+jNEX6pFy2D9ybyabDLSeSXFpKfz/lRey2PVdMFI5NVETk3i9WjcT5E6gWgErSfahmuYLRKI8KOLpsK 7T5h9qYzOkCpO6iQZpBANxQMYoiFEkIRVBDdw1EARFcECBKxTY eOl5IZWOKs/Y5djZ2eze9jjcnR3dTt+6wLf0Ue/Df1uRdDV1eVyuSRJkt2yyyXJLrdb7nO65F7J5XRLTsnhlhy97r ZjyvGlE3kbXexnY6m/Ppv6znhm0ll7tF4ar5YK41Zx2moZ2IIVOwGjgzCdq+k2j6zC/Xbz5FLr/nYoIgjCr6fvD5UO96f31ce4q8OkSqu8PXHkaEz/oQWOPQln6+zyNmtftUnaHumqOfxg9o2AO7JpB7W7jKgts0ubym 7vrv+gMa7pEMhvofaesc2swg0cUgDmw1EFgRQInSXRWcbkXWba 1wbC3Zm7vJ0/nY6Zi8cHUqlde9HEXij8IrA583cYDWd/gqS5QdI4nDoLEodBQh9IHABJgyDlPEgaAUnDIOksSOoDCQNw0i hInALRfmC/DpkfIeJjxPQQCM+A+AEwvwvMV4FdQQsc1vZd9rEUcYxivTg9jV JTJDHDIwoDdBjWAO4H2BTAZyBMAYgOEB3ACkBVgGoA1wHiB4QB U5dRxACIBsE6eH0QHWA6QFQAqwAxABIAkAZgA4J0AAwABQHQAK YDVAWoCmAN4CGECMGIAjAF4ApA/QBTYUyFMT+EqxCmAETFuMlU8fRWUFSDVO6xnltD6zwWgtEABis A0QBiQHgQpoIw8vo7/QDTAKoARAOwgkIKhhoQogFEhTCfOWx8DbejB4QbUPKEpem4MFu AKCZMRdAZhNQpKkhDCgyrMKzCkAK/TgchFUJVBNMwRCWtI6vJDWdAupxa3V3ddto1KMmSo62969+IY9 +5wLegf5/RHx7bAAAgAElEQVQOejweSZY8Htkjy27J7Xb3Odyy5PHIsuRxy 739vcd8jTneggQPMzIa/XcXcn55bv2JA4XmTZtsTbvCR3IXzhSwB/bhcYMFed+Pz7kH5bVHOmrCp8qFlmY01wes3oXV3pYfvdX11xeK 75Zu/v6aKF2Mn4/s/ueuikebi68t9/xdT+ZcEucjGR2Ju2Q58OO9xde2R1zcFD5aHT1WEz68tvjt2oPP z2U1SyC7k69uCZ9cBRk0eYnB/RQZpOAASoR43BDFqQLLgU4Q7d7hfnT+y1tdfyJvvX8s8/yRiFONcUfcVSM3um9/tKyrX6g9ajvaZT3SYWpotB7vEI70Wo45xIZW6/EOy5Fm6+Em29Fm8XCzeLzVckiyV6tw6m1Y+O8s/S8M9CsT/hUB/SNO/REbdjdlnZbacjRurCBiKlycYKx+q3nMEj5iss5EEqEE7NoCTMN NKsfPcFSAxUIUouNEiMZ0gtBJTMXpIE3oJGmQRJDAdJwKsphO4 QaJBwjcoHCdwVWSMihcRakgiWsErtN4gCaCFB6gEI0mAyyhEpT BYBpNhkQywCEKgRsCojP4HIMGMXQOR0MEEiDwIIsEbNbx9czaU/ZEVch025s2WULh0BUCvibCQQYOMIhB4QGKCJKYgRMBCtUJbJ6B QxgcwpF5ApmDsSsQEkSxYBg/WyAebYVi5uHoa+ZDbSYlG5un0RBGhyjcT+MKTRoMomFkkEJ1jA zRr+sCLIDhGkYFSUynwkZLyY1tcHZ/5m7Hzo4m9zm3y9nT3ev83YrgOxf4D9e/TwdlWZZk2SW5ZJfUJ7tlSXJKLqdHcrqdbsnVJzuafCfT/ZncGLlmyPRwMv1fBpf+rGXv7uI+a0kb17Q60bvFurcFjhzZuOO LwtU3kMSTUZ2nIvua0ZIJsCDAljgWjR5s/LO+sg/2xRiL639Rl/dWbs7l4rF/euvUe8Mn7oxN/sXzAw+HF5xbIYzkxk6tOvV975qLZ8kth/HSFnpNM7m5qjIotT24uXDjOZDQYjp02Da7DNYI2MAxP4mpFBxA kCAMGyQ/kyvWt4AF7hr5rvdPb1e9s/v0Ry3yFw7pF47WL7v2/fhYrJFKTZhYzcLOW9nLYYghYpes2BUrNWemAyIbMPOGmddMYsD CGSbaEFltQcR0KXfoFEi5gnF/jsJ/T0B/mZj+J8dcf+q88mLkh+90/Lgrz79kzeUdHZ/P9HwW6P2JcfKllHy2jG5dy0jrrGPFNu8Sq3epyVvIeAvYmQJup oCbzDfNLGcnlglTBdxUgcm33OorEsaXmrwFJm+B2VtoniiwTBR aJ5abxwus3gLL+LIwb4F1PN86nm/zFlgn8s3eAvPkcvN4gWWswOpdLnqXW2aKw6ZXWcaKrN41pokVp ql8cWqxOJknTi4zTRaYJvLNU+ui+xqEle2btn2+vPJ70Q2HY8f eELwF/HSBMJ1vnSkSJ/Jt3uVhUyssEwVhU0Wm8WVWb75pfIU4XmyZWiV6l1q8+baxdRFj e2wn26D0SRARFKp77JNFqCHAQRIOwHAAg1QUMwgqSCMKgusYpm HfdExrMKIhqIKhGoLoaNhoKbWhE8qQM3Z2fdM76Ozp/J2Zwl9/9Z0L/Mfr91zA6XS6XC7Z7XZJkluS+yRZcrlcsuRwy07Z5Xa5ZZd8yn8 y3Z8CKRg+iRw4x/3VxfTf9JfcbW9PKd5JnFoTNrlObG4AmUOM8A7OGmB5U5hn34Ke UyDXgS3yxDrq7b6o3BvxERMLzBMJa9/ZU6oeS3ed2Dh4ddHut3N2PEiuuJK9N8iuc+DrO6i1jirH5+WH/iAy50F87ovY3GfxK28dcv2oruVzKGyEKJYizr0hGmGYwkIKhag UrFFwEEN1DFUoYSpTPHAMxPZE7nItMqpJL0tOoslXbEtuxUaHY rAJMz5NYgoKaxAexMgAiflRVIVRDYJ0GOgIoqGojr8GbEAGDgw MhBBMN0Wd32SrHAKmm6z5pyj9aO2Oj87fflH3ZnflO/tOfHz69Ps97Tcu75TurNx5Y/upl32X/mdciZ9aOEOnaNzyKX7jBLtxgl0/y66b4srHuPUXufUXhLIRbt0FoWyEW3/BtHHcvMXLlo2wGy6y5SPshovM+gts+UW2/CJbdoEtH+HKRtj1F9h157nyEXb9BbZ8hN1wgdt4gd8wwq0fFja Oshsv8lvGxS3jfNlFfv2EUD7Gb7zAlZ9jy4bZsvNc+Xm+fFhYP 2VeeY1NvJuZ/xeZRV9EFM7b1o7x6y6wZSPs2mFh/Qi77oJYPmbZNMGuHebKR9j15/jys+y6IXb9Ra58lC07z5eN8qU+YfVlPPFtYNOpTXL4uS20LxKd NRN+EVMIWMUgP0wESDJAwX4EUVBEQRAVgTUUUQGkwrAfRTUU1p Cw0VKqvBOky6nVHa8rgm9mCr9zgW9Tv2UNvXz5sru7W5Ikt9vt lJwej+yWJI9L8rjdLrfs6uuTZLcs9Tn7+hunmpdM5PLTDBPk04 fQ69MZvxrO+quh9XW7l9jbl7BTWcz5lULDSSRDppb2c6d3WicK IjrrQXInXdq/4HwVp4vUFDBNW8Iml9iPHsQyB+Ho66j9fUB+BOjPAfOhuOD9+K yPIlMfx+Z+kpj3x/FpfxIT94N1G/+wtOIX0TkvU5d8xsVchwvPWl1HzGoaaVCYTpMhAVZxbJ6Bgxgb ZBmFE6dTLKcOgMSz3OrJqI5dC3zRpI4BlYB8DDHDCKpABFBiDk aCEB5A6QBBKShrYKQG0UEE0wAZQIggihoIHsQhHUbncCSE4iEy bDYlufMEkywvXXI3OSNUtH/u1EMjy8g1j4qxw9mnb1zb1vhDQIcAdokJv3qs9ZfJaVeWLfkoP uExwObQsEdAfB+xPEGEJ4B+jorfB+xTzPICcO/D4geAewrxzyDTC8B/AFs+AsIzID5/fSDTh4B/ClleAP4D2PwC8E8h04eQ+CEwfQiZnwPTE8TyHHCPYdMzYHoGWT 8E5ueAewKbngPuCWr9EPBPAfcB4D4AwhPM8hRwjwH7AcDeLSz9 6/TFfwLQh4B/DsyPgeUxoB+jwnNIeAaEZ7D5BeAeI5ZnQHgfMn0AhA8g8SPE/H0gPIPNzwH3DBI+BsJtonjc1l/HGAsxgyZVltYp0kDoIEEoBKERhEGiKoYbJKygZJBCVJQMYniQR BSCmKMRHY+YLKc2dCPZZ9N3dtW0N3qGPY6ezu4e55PnH7569er V11999V1F8C3o30jkv+ULSLLz9eri3h7Z4ZRcUq9Ldro9Dpfb5 ZRdnp6Ts42Zk8uoCRLTEWwa3Tgo/mg859d9WS8HCuvOLkpXsyyzceEjBeFylb2vIi5QEhPMi5PqLOu HqPJ2c18J67fAszhhLDQPbYcLjzHWoIn/OQr+DIH/F8D+lqD/asnSX+fl/HNa/N+kLfpv2Zs/sxbMUmk9VFoPkdGLZfXwq3upHUcJZwXpz2EMkQvgmIJhOo6qCG SgQIdolaBnKG4yJqxrH5F3DkROkZv67Oe2MX4brGCIQkM+BtN4 VEVRAwcKRhg8ZZhQH4f4SVjFUQ2HFRRSEFjDYA2DNRz4EUjDEY XAVZSeIW3nl4pHd1Cbt1Bl5WvHPA0vXLaLFttkhr3zEJ57AVgC 7FJD3CzH73W0zn+QtseNlTYSm1uYytNiZbNY2cVXdrMVvUyFTF fKVKWD2eEkq7qpbb1UZTe73cVvl5mtDrbSyW118JUOtqKH29oj VPYyW3u4KieztZevdLIVvXyVi610MJUOtsrJVfXylb1cRQ9f2c ts7RF2SKYdbu6NHq6yi6vq4rc72EoHU+FiK51cVTdX1cZVdNg2 nF2yUxua+4Pj5x/HbzsvVHiobU5mm4vd2sNvczJVPcw2h1Aj0Vu72KoutqqT3t5FV XXRVQ5mm4vc2ktXOajKHrKqm9h9lJW20loWpLOogqF+ABsA1mF CJbEZjFRJOsAgfhRWUVhFEQVFFBRRYUiBoVkM0lCgopbRUnJDN 5TuTq3u2H7mlHPA5ezt6uzu/S2D+DsX+Db09e8Rx2TZ7Xa73W5ZltwuV58ky26P09Pn7OtzeQY kecDZLx3XTqUZizGFxEMYNEdFjhHnLi781dCi/7cv6SMlf+STk2vurVl9M3vdoxX8hFj+8fZdH7VWzY2c1j9e6fG GDZYx03YsQAjBpPDuwyCtc8X655vX/w8O/0MU+xWK/5NJ+N85af83gvtJUvjPSJuefnw6fbgtzFFv626wO+rsnooFY6W iP5UOCkQQZecJNkhTAY4IUlQIowIYZbCURtE6wvvN4eOlYSd60 LQZEKtYap1hE+spn51RSErjMMNEGgRpUJjOECEeDVCIgaMBAgt QhM4QBo0GcDSA4QGc0EnKoAiDxHUc13EsQOG6jfFlilN54vnMD Y8OVH1Ux42GR1zYypQNggUKvXo01tm4YLQwTS06+YWco1XR54q 4mZUmLdekxJr0GCawkAukCGo6r6YKWhqnJPNKkklP4ZQESyDNO pcuGsm8miDoSYKWwKvxvJYgaomiliyqySY9VVCSzHqqSU/htSROS+L0JFZPZNQ40UgStURBTbDNpZtDqbyeyOkJnJHEqMmcl iHo2aKRxakpvJYoeuO2vld38a/8nZ9IA1+Oy/99POvKan461qamWIwkVountEQ2mGaez+S1JE5L4I1EQU8StERR SxDVBFFJFpQUk57KawlcKIoI8kiIROdJPETgAZIwKCJA4TqJKx gbZIVLAq7hhE4QBonrBGGQpE4QBkEECFTH0ABtG1/DbO0FWQPpO50725tdg7JHdnZ09zx59vou8JvvXODb0L/tKXz5sqenx/M7cktyn+x2e/ql/n5Xf7/LM+BxD7j7HG1KY4FWKCgcN48Tl0hOt6e4E0a6C/9pcOn/6c+5ra/L8y4sf7bp8Ke7F47Zd3xaW3Jtb911r3T9x7t8oaih1eaZCFYXb VrOgt5msHQkPPVeQuInnPklHfsDOPY5l/JJesnPTQnBvLKrppLGxaNnEoNrzUqcWV9guxQlzEcwlyz0HMOG CMHARZ0RdJHRLHzQzuq0KUQzOkfqPHOFJudJKhgW7ttsO9SHJA XhZC3sRHeMss6iLzTNxfDBGIseZ9bizHqcJRQnBqLEQJQpmCDq SYIaLwZiuVA0PxcthmJMxkJzMI7VIwVjoWik8nOJrBFtVZMWat lR3pz179dXfVwbN5Ib2dSCpk+S+ePRzpN2Xy6nmqNDKUe+bF88 VxI5nR1hLBHVVM6w8SFCCCHcHEVf4qgQw8yzdIhh5xlmnmHmaP 4qz18V6EsMc5ml5mlyjqIvMeQcRcxRzCWGnaeFeZYL0fwcw4Qo do5i5kl6nqIuMWSIouZoZo5mgpTpqsBd5th5lpnj6SDHzvHcHM +GOC4kcCGRCQiCz1zxonL9rbUWWUwZTz7weUPeu0v4WcGimcUQ T4dYep7nrpjEK2Y2yPIhjg0w/BzPzTH8PMmGMOESzc7R9BxFzeOMTog6xwd5JshyIZE3zLxu5gI mJsAyAVqY54UrIhmgqCD9zdOg2CDDhBg2RNMhhp43LZhcz1Y64 EVDWXuknR3N7mHPQJ/c1eN8+vzFq1evvv76q6++ywW+Bf1uOtjR0fGv00SSJMuSS5Zds kuSeyW5R5YdkluSJGd/Z6OvccnUEsZLkCpEajAxG054SrPKln/es/PXnvy/OZc8OGDPm41b+Wxd9Fx8yjuZkVPJyy4eWdd2JeGgxyav4cbDsC mMV822sUKm+hiImACChuZPckdcbMueqM69S872iLsOIqUV5uMb sy+Xi4oNm0UJg4AUgBoIoiO4hmOzGD1DmVRRNKzoLIv7OEalCS 9kUc2CGoZMvx6GRzCds40XCVVnQPgcnHLdfmDA3rvLIm81OSot PdssXVWWnspweVu4e5vZ8Yapp8rSW2Pq2mHu2SY6t4mu7ULvNr F7h9mxQ3BsFV2VvLSVdVVYHPusx04SG/eR5bvfMDx7X+y3nctkDjSD1AF+j1OcKEdnzcgUGmXEnfp0MKf5 OFm6l9u10+JeRU4vRBUT4WdIBSc0BJ0FmA/gfgj3Q7gPEH6INjAqQGAKjPoh1A9jfhj1w5gCIz4IVWFUhXAVx hUI8wHMD3AFQhWA+AGiIogCf/P0Q6RB0AECU1DYjyEKhukopkGoAlA/jCkY5iMsF+3V9/fserBn3Y21WdPpWx5uyHg7FfGi1AzN+EjcTyAKRhokH2KJWQSf RQgfhvtJTMEwBSIUCFdgXEFxFUM1BJ9FyWkc9cGIgqAKhvsJzE/CCoaoCOZHaZ2kDRr1o6+3FaMqhvgRzIegfgSdRRA/iqi05UIxUX4GpLtTd3RVt51yDUqyy9He0fv46evJ4l//5negeN+y/iu6wMuXL193EHvcbqcky+5+WfLIksft6etxSQ632yV73E635HY e8zVnT2cxkxim06iB87P22MFKrmj/hqK9P+vf8sqT8quhpcMDseH9FDe9QBg3Cb5Iu6MCZDfCJa32/krrTCI5zbE+VpiNMJ8vsHbuF08dtLurbGNLLbPhdi084+3lUZO rUmc2R3tzEq5nmANh5CyGqjhicKjCoAaNGDiu4bSPtKqWkpfrw vXYRbdzCu8UJPiS6n++f+uPtpoVCzpDEgEaNnBas0YMlrHlgyD sLmx7isffAAlXoeQbSPJVNOlNJP4qkfo2nvYmnDAPJ1+GEi5hc dfhmCtoyptIylsg7joc9xYUfw1JuYokXkeSboCkt5CEq+iC0SU lwcjc/oJj3v0Ph03Dy+l9bSDTwR06wmuLEQNFZ0G0vrjhZnBBQc+ylZe il/RQVWtt3uXwbDih0biGICqKB0hYQREdhxUE03FEQXCDIEM0rKCo TkB+BNFwyI9gOoFoOKQgqI7DKobrOKKguEbiGoGqBKriiIJgBg 6pCKJjkIoQAZIKkIgPwnUYVQGmQ7iOYCpM6iiuwoQKW7zc3uc7 Tn1xbOfzbbvfrzr544ZF38sCXozWeGaWpVUOVSlUI+gQiykYpp KwSqAqiSgobsBkAMX9CKlQuJ8mdZb0U5RKYBqCGQimY7iKkTqB qDBhYKQfoxSc1SnCj9Eaic8itEYSfoxUcFzFMB+KqxSiMOGja6 nyM1CGnLmrp6b9tGtQcrtcHZ2ux0+/SQe/o4z8h+v36KOviWNut1tyy7Lb45Zlj+yW3G7HN9sLX/9bIDVONy6aziGnEcQgIB1fEIpteHLuwMTL7OrhkdEjX44v+soT 94/n0vznUk7e313/xcnsueURHdVQZhtR4NqonW35ee/W9zctvZKX8XYOPi7kPVmz909PpGoZu19Urrmz2DqJJF5JS5jIP fhxXZKxcOGllChtoXmapHUMCeKIzhAhHtFRKogyPjLMH7n3Fw2 pelbF/S3b722vub+794+7tz3eZJ0yYT6KComowlMBE6fG2Pu2kBvOoGl TaNwlPPYKm3gTi3gfFf8IQf+GJH6Fk38BCy/J+HeRxCtE0mUsIYSnzGHJc0jiPJZ8GU0OYekBNFnHUi7BqVew9 Hkirj+1cDAyr7245cKhRxfCB0up/V0gWzLvPx0+W0z4GF5lk7Q1J+/eXbh6Ii3nXmTmnK2mM3q6itaSBCNBVNJof4ag53BKpqBm8v50U c3kfGkmPcukZXGzqSYti/OlCUqGoGSIaiavpPP+dEHN4PxpJi2T96fz/gzBnyEqmaKSyc2kWbUcfibN4s82+7Ms/myTL0uYTTMbmYKSJvqyBH8Or+byWi6npAtqqn0m4+AXpzfc2bJ gcEH8UGzDR4dKH2xExghSZzCFY1WGURlMF/CgiGkoHSRgg0BCJGzghEGRGkloBGHQiErgOourNKFTuE4QAYIM kLiGkwaJ6xgZIAmNJHWSDtK4ipMGiakEFWBxjSINAgvgqEHgQZ w08JjRUqasA87tS6/tqmk75Rn0uN3O7h7HB08/fPXq1W++/s3XX//6P2uQ4L+KC/yunj9/3t7eLkmSS5JckuSUXC6nS3a6nC5Xryw5ZMkluySn5JJ7m2ZOLJ rKxacRVMPBNBoVSpL/6Hql9HbanrONj8abJ3J+PJz+yp34jwNJn156I/RZ04Z3NpvaK6ElbfDSjn23dPmPBjZeL95w/42NH28nh5jV7y2r/3Rz4Uz89D+4HX98Ink8LHcub8f9+rN/IW/5oDztzcXh0xH0GIb5UCSAIjqOaQw0DcMTAL9ARE4l1n5+OGkit exqRc27Bw+/39jzg66jL/YmBWLQWQRSYMKPEwqGGiSpLKQHl/HuzZSjgnZWWHr2Rh4exDOvA/IXBPWPiO3HdIm+4Ey70FstOKtE53a2u5JzVjO9NWzPTt5RIzi3 i91VfEeV6KrmnTVC2358Xy25b/Mbb5/e9bzePriEb+gE2ZJw4JjoLeCmkkzOovhjjZ2hv0xb8wyQt9Do+ xFbLot1XezBY1TtCba2hd93hq9t4fY2c3sahdomds9ptrbRfLD NdrBDqG3i9zaJdc1CbbNQ2/T6JV/XzOw5zdU2cbVNXG0jX9fM7m3kapuEfS1cbQtf2yLUtvB7m/m9TeYD7bbDXdSe0/SeZn5vu7C7g9/Vydf2sHUdbG0bu6fJWnfi+H1967sH8q4sLgwtPvmDYyV3NoBxE tEJVCcQHcFVhNEZLsCiCoz6YTABwAQMT2DwOIZO4ogPhzUMNhB YgyAVhjQM1lBIQ6HXY4IqCikoohGwH8N1ggzRsIoiGgarGKwSi ErgCoa+3lkYAEgAsY2uo8tkKGk4bYdjZ0tjX/+ALDk7OlqfPXn66tWrr37z6je/+eo/6xfxX8UFfvcu8OLFi56enm/6BVwu2eOWJckju90ej9MtO92y5Jbdkix7uk/PHs+ZzqFmCUqjsVk65kr6xnd6qdWN/Kq2Iw+MzTd3HBxM+HIs75Un8f/ISX/ozZNn82Pa9oOMc6BgfI0+UPTuSvoinvZ2bvkPtsYHslbf3brk8 rpl10tL75Vter9s2Xzm4vnFle/tqrpdUf54Xc7NZTYjElcpLMBQOolPQcwks0CPWHRjUbqRFTmUc ODTo2veKjnw/YObb22rvrNn/4N9x394IPt6OjJDECGOVmHGgOAghoR4wjATgTDyciR2KZycj+S ni8IbPWjSDdj6lC7WI6QjFi2XDIYJoXDKL9AhEzFnwkIW4lIUE YikQgsZdaFZT+YDC6lgBBPMEdTSMF9h2bOtO35QbR/KFfY1gyyX0HAyYna3ydGAFPWYU+abOv5PUvoXKP7npPi3kOlT2 P4ImO8j5geI+T3Y9B5qfQSL9zHbI1i8C1vfg633Yet9xPoAMt3 D7I9h8z3E+gC23EesDxDrA9h8D7U9hM33UdtD2PIeYn0Psb73+ l3I/B5iewjMd7Hwh8ByF7a+B8z3gHAHDb8HzDdRy20g3kTsd+EFd6H wO5D1Fhal7R/64XbDu+XuseLQmpMfHV1zZz3wEsQciRkYepnCQpio4naVJ7006 TWlX89ZcaOo6PrSVTeXZV1NYb0s4WdQHcUuIVgAogIkaeC4hpI GQeoEZdC4StEGR6okrZGsQZMqzhgkoWC0QeEKzmgU6acpH84Ga FpLDBs6AReew9PGMmu697Q39g8Myi5XT0/H8w8ev3r16qvffP3dZPG3qhcvXnR1dUnf4EcllyxJLpdbll2S1 Cu5HLLklFyyU5LcPSdnT6RP5+AzGKnguJ+gVavpbBmy1k0kXlq wImjd22Hv2bR9OOvBVNa/DKW9csT/cjDrlnt9+9ZDK1fuLurcYPFGgEsEpRORRnzM0Ca27iBec9Ts2s +N5hMTNpPPsvha7qEXh11/3F3/ac2Sd5byqggHEThA0hNk7HTU3h/Wnf7j5jP/raPx5937X7RUP2o4/eWJA1/WRPsi42YTD//B4cpPKphpFtVIQqdJH45rJBSk0CBKqSjpIzBVgAwCmkdRzRrTV 4/nDeMZvujWHvNsKhbAEY0lVBpXEcwASACgGkP7F7Jji2wX11mHV 1vHCpmJQm6yhB/aiJ/aTB3dXPZ2S83Hx+wDRaa6VpDZZ647G+0cxlZ4gRCKWHSnY/h/p+V9DkE/xsM+p5feIkr8aOkkVjpGrBnBS8aJ0gmyZIwunSBXj5Kl40TJGL lmglk7RZaMU6UT5OpxqtRLrB6jSieokgl89Si5xkuUjpNrvd98 dq2XWDNOrPVipeP42nGsdIRcP0GUjtGlXnKlN2f/vbL2D7J2hSp7P0qtDhDL++nV56ni89TKC5b84UPuX2Tvm4k/1bDkXEn7TxtX310DxlB8Dkc0DNNZXCc5DTOP44lT8Ts/OlD/i8YNH+3a/GLbjpeVh76o2/FxdaSSgIxRlEFhOooZOKZjiIpgGobrOGGQqEriOo0qOGlQr8ki hI7j2uueDow0SMygMQUR/WFhQxXUVhlEjxOFZ1MON2xvr5MH3bKnr6Or+4Onj169evXr3/zfr7+7C3wL+r1c4BsTcMsOl1OW5D63xyVJr3MBlyzJkux0956e bcyeXozPEriGYH4IVTh+rEiscUC2y4C8DywqWea2t51e2lQ50V vxy+GSV0PJr/oivu7P/XN3wYeja/a41pl7K6L6a+K7G9nyHhA1CGxeZJksdNRwM9GMRqdfScybzW3+ orFgbkleqDB2ZrFtJl0cT8yYWSH93Nv+Ul3iaFl44EBaz76K28 dOftlS/OZyyzhOTaHENCf4bJyfQVWAGBjqxzAfCWkM0EhcRXE/wBWKUHloFsAK4KasttYdIKsNy3eEe/agUzTwA8iP4SqN6CQSRGlFtJ1fQezfB69xEflT7NIxJn+YLpol VxhY9kV7tiwmNK7rmN73qD9soISvbwU5jqhdimnzPFgQQFLH8k 9PSm//IiE/FBZ2U4gNhtW4Y4YOmy+ss19cHjZaIIyvFCdWieMrzROrTOMrzG MrzGMrbZMlVu8q8/gK68Qq09gK89gK8/gKy8RKy8RKk7dY8K7ix1eYp2XGrWgAACAASURBVIr5iSJ+YiXn Xcl6V4oTq8WRFbbJYtP4cnG80DxaZBlesTi4d+cTR6FRvTxQWf P+qbxghWV4Sdh4kXWkKGyoOKl3z/GZx+VHbpV1GB33fI6fufJuLwVehPC/JoUzuJ9hJrDFl7NP/fzUtidbIicjMF84rQvCJBbjs1d9uPnol4dTghnoRRxXUViHYAM AAyBzADIAEgCw8bp3CBABQM9DqAGQIAAGgAMA1gFkANQAtA+Lv FjMVTtB1CycMhJ1qjXJUVbRWdU31OdyeVq7Op5+8OTVq1e//vr/+errr77+Lhf4j9b/L3dQdrvdfR632/26InB53FKfR3LLHtnt9DiaZ5pzp/PwWYoM4qSB0EGzMLvYcrgRiTm/ct1P8/JfYrzBZjyGM79nyZpet8ztLuv6/snjvxlc9Woo/tVoVeumbjIqQKXepZMeo5a3Vq54sX7Vp1iYj9zWap9aZDPY1Gu pyROl+x9N5Q41ZXS3LzzkEna3c7sOH7t+v27ivZj1Xi7Ri0T3k Jv22KTCJdcLD/64Nl6PQCcBHaQwP0bqAA8COISiQRgzIOISjuqYGLTSARHWTYxq CQ8sSHozJc6XlT1wOmrzQOQWV/bIkVg9I/V6XLgm2lSGVs1MKDliptJc70ZSrgPhHmm5h1reQsLfRRa8B9nv Q8L1ktKnmblqwR7l8OOpiPMlTF0TyO6N237Vsuo+iNPDDrqXTZ 46ceVK5KLu0vKnCUtVrGx3xGQZpYWxQZo1aEKjmSBPaBRlMKRG MwGO0GgmwHFzIqHStMERGk0bHGWwtMHRAZ7UGTbAkQrJGgylkX SAJgI0EWDpAE+pHKeLpJ+mDY4NiPQMm3Mzd/OLTRnzGSveLSx/uU6cZimVJEIkFqSpoMnmjd9/bXhXz5s1HfcOjV45+LZz8Y1CaBIyaSyp4lSIJabZhUrMkT85UX h3FXORsVxICnOvpVrywwaLbGOFwrnsjXfrT/3Ume5fZRvLsM1mm/1ZgprBq2m8ki7qWYyayek5gj/d5Eu3qhkmf4pJT2P8SSYjnfcnm5VkUc2wj28Jr+8D0XNQyhx/qDXGW7SwL26ro3Jg6Kwsu9sdHU+fPXn16tVXX//LV9/9U/gt6N+7gCRJTpdTcsuSS3I5nJIsO2TJKUsuWXJLskN2NE035kzl YtM4pmG4CmMaw/pS2UMH4ZjBktLPFy/6DMc+wKkf4Zb3oQW3geU+wG/FmKfa1vaPbutqXN8fHX4etd5GIp/hkT+E8aer8n5cVvh9hJ+kKztto/nidMxifad9zxF78awp5834wodk1DXA6+lrHx+T/ycZqwPiEitcy14zz2zat3CgNnKoZOfD41XPT9CjcYwvTlSShdl 4Rk3GtRRcj6a1ONafzU0sJV15ZP8SYiQ1Yib18I+bGr90tP7ML X94+/i599unvt/23uWWz5xdX5459dmBuIlodiCd66y27B5CEueg8HeE1ZfNe/rYfW3s/i6mvslS38WVO7iiXrzwRNnIUO2zZvHsMq6hHSwejK64wS67BuW cD2s7Eq+UHn8xFl93kiw8Saw/bGrdxM0kIEECmoMRA0E1CNUgRAOoBhANIBoACiCCCD1PQCpANA Br//ZEdYBoANchRAGoChAVoPo3hALMgDADRhUE8WGETuIqSiu0VbHn 31m54fm2wlubM9/MJ8dQ2o/iKo4FMMTAiQl6z4NTju/d3XhcOzpy/cJPri29vgKZQAiFgBUcVWF2mt/0ccXS+4XQRcB7F1gd1djSbjh6mCmYCN89ItZ1M1WHy895d6tXL buaLLVdpn29pnqXUOsy1bpMdU5hX6+4r1fc6zLvd1sOykJ9r3m/Q6ztFvc7+Ppe+97esNp+a4WBL3wTCjPEaskyto72m2391k29W9 yDHpdLau1qf/r06atXr77+jjLy7ejfdxB/wyCWXJLL5ZHdkiz3SC6nLDkll+SSnbKzefpU7lQONkOiGoEqMK ZjjD/G2roTTe2DyWuAuY2mhmLqRiOaTtga94WdbOSrxkHEVYA/BcS7YLFXPO0WW0/aW4/HHunHs2Zg5k2MuoXGecXje6yT8RHTSzM7u6mkXjH8CiHezFj9J LpUI5b17ex7vr33Br6ijV47RK7s40odQsX/196bBkdxJHze3VWVdfR96T4AAepTEocBHxiPby4JcQkJhABz2G AbG6mlPqsqq7olpJa4Beqzqg9JgDkNGF8ztrHHM/Y8M+N55pmZx+qDed/YjdjY2I19vu4aSb0fGmzssXd3dnfseF/0i390ZFRnVWZlVf2rKjMrk9G2+7RtroaDfS9f+UX163b5rlf0u zwlL3jUu12yPbR6P63a59Tt6Veu6UfrPIpnHBXdLcvF5zp/273pStuLH3XvHQut2hfezV3dGvU7fs9tvdzW/blzRWRL0d4OYpGPMIyhhqRslb/4yHZlfKk8Nl8Vq5bFqtRhc9HJR9SHH5f1Pfzs+x0tn+8sOfy4d o9LsmCgovmm+pGL0gbW0LmlKvLoni8Z2+kWLVypHlwhG5mDxih ElOIigsdQLIpiURTEMFzA0KgUFRBUkOIJjEhhiCBBRak0JsHiU lS8K2lMgoqINCbFEkAqolIBkQpSNI4CEQFRKS4SkhgmSSJIXKI QNKUj8xeLq544/WJ9/8sNwtbq5HxFUCYPK0EIw0WCGJY///am3n+6wp771P/WR+7fnTCnbEQQxwQCFUjstNR83tL06426kUpwRqEPzqP2rKKMg 0sfTWs0HyKqtySGqxLdJXnZ5U0v/ofqxb+QqK9gJe+ixe9gRTcx9RVCexXXXMY1b6KKm5jhPazs54j +JtC+DRQ3MO27qOF9RPMhqv5QqvhIUnpd3tRXMbRKGTXIEipdb 8kaupHv9zFe2O1yfvzRx/l8fnr6q8npqRkX+Ifzvd8RcDwP+XttBH4fw3PQxxfaCCAHO88c XHimngjjRILAooBMyamYSndqqebAXuJJHn8Gqg62GQQbfk4hG5 eXJWrn9r+kevSkRHdO/lRIz2zXiAvJRJU6UjRrxGpwbEHW0MhT/doXDxafXKyMUeWxJSaXX2YMzF10XdZwqt512DbcWh14cv/n/c9e3CkL1Cmjj8hPPFMM92laPYrFR9Q1Eap0+GXPf6pZdhktOYu V/Bw3/AIzvIuVfIhVfISUvgNKf4mi7z268M+rW3+9cL+b+eehV3790or RZ1/8gj1w9axpVWDtofGt49yBLw6uObu261Om9w/n6nccXtny5yWPf44vcc4OtFOCjhiXkgmUSpBESqcQy0ti84uG6 7WnFq78aMuezw/U0NvkawckxlOz1r5d/Ph1ST0s9eysjC3f/Wd6UXRj2ZFHiqINVLyCGC0CiSJqzECOasi4Tp4qIhJa+Zgej6v JpJZMauRjBmrMgCW15LgBJLXEmB4ktcSonhjV43G1bFRHJDXy8 WI8qSPH9ERSSybV8qReLhqoVBE6psLOqcBZtVworRt95rGjL5U tP6BYZK/zOJecf14bUcoEEo9L8ZScjCmKhivmu9fsj7y1emC4uu9p7ZkSW RRQozgeJbTDymffefbR60+QwzokpFCH56icP5Mv36+vG1A0nJA tHyafiCoe/rlE9u6TT//n5Stz2Jyk4hFRtjykWBEkHz1FPjGCLR+mnoqQy4NgRYx4UiAfD aoei5LLRmRPiGC5gD8exZ+MSp48ibW5dIEmRaoUSUiUCWXF4cp GbxPf3wsZ3uXxFFoK7+T/60y9wI/Bd1ygMMoIAzmG4yCEHAtZDjLf1A4yLO84NHJgcWghGJEiUYk0r JBE1agApDGSiOl1oUrtmVlkqEQalUnPYPVX6l/6y+ttb/nqXz5Vs06oenn/C785tP6DJl1/6ebPO1b8fDU4WUZGbLKgRRacRUQ1qICohNoFZ1jNwydklWeqW/yPnt2nDVfpj5Xv/ecDS648jJzEkZhCHjRVH9tJbjxUvCxSbUuoamHX8F8smwXJgoD 0YRFZlAQNCXyRgCwJo0vCSH0cqQnOWTa0sJ1Z4tm/7x376786+Ejk+VWX97ZGTs1fOfDwzpNbhK6On7euGX3e/Wvn/ve8C14+uKwlMm+tV7tnZdHJhXhYBkSCDM1SDDwu79qsf+0V7Y4 D2DMt6NObmk7GXh27WvLMkKRmDDUPz2lLKpeFJItdKvfm+eJjB 391yrbvZWz587INmzQvv6jq2kcdeoHseYHs3iHv3Kmw75R3dcj t2xX27fKu7crODl3Pbq1zt9y+XWbfTnW1y7s7qM5tss52eWe7v HO7smu7vHO7omuHrLNDYd8hs7fL7FuVXR2qQzvknR0q+0515x5 5125114sLmCM1a4/rqmLl9ecVKw8sjK3WRpVAlKIJqTQqkwga2fDc4gNtpo0js17o1 Qz8jIhocAGXChgaJvUjRc98tKZmtE4X0j90w2QZrasVni/3tOj27qkdeqX02MPFxx4q5w8Sjw5XWT5+6qXPS17dXTT0lPLEQ 5qTD6lPLqVOLZGPLKWGF1PDdcrQo5rQMu2JOu2pxeRIAwiaZWf q9Wes6tM26nSdfKRGHtEgMUQqoERYUeorX+tphAO9POt3dPd8/OGtfD7/Vf6/Tv10ExI8iC7wdUshz/OQ5yF/t3YQ8pwXsqyPZ1gWQpr2Ow8GX1pwZhE2IsdECghykFRjAiWLyf TxCm14vj5WS0X0clFBHMPXfNjs/ne9ay+8/vRA6CnPBbN738B/PNn9L68tji7p/y+D7L+nKyIlQCBRUS6LlZAjGkWEUJ8uXnrcbtv0xryV8ZUn/ItTT2qC5dqT+h1ftC+7shQckxvOLFO+vA59cp/y6WPEYyfkq1z17CuH/ni8LtakGlqmPvmY4dSK4mOPG44+oh9+RHt8aenJZwz+dcRLz1A 9S/XHam3RhZ4JbtfP92260LFzdGS19+KzDmHP2NBL776676Odnuwr 9YK12L+I2v+E8uBjRccayKgBFRXa6EJdz4vkIyO44Sau/xAxXDI9dqXCdvq5Tb/d/tJfJcSIpDxYvIWd5+kDPxuULO4pcrVbTq8/eO6NygX91iVXyk0XpPoLSOX7SMVVtOoGWvEeVvwOKH0PK30bVL yDlb4Fyt7BSt4hyt4jy97Bim6Asrexkrew0ptY6dug5CYofgsr ugZKb2LFb4GSt7Hit/DSt0HpTbTkOih7Eys5Byqu4sUfkIZbeOkNUH6jzPqHqnmflc1+ q2xJuGL33oWjT6uiajKhxERApXA8aig6+YSiaVfD81eNLaEiZr U6XIbHSDQhxyKqCqFi7a/WVo3MX3Fj5aZPWtfcXNX6WdtjV1c/cmFT4xf71DGtIkqVjDyp3ubSLDy9+fhb5pE18kgxSKmwhBLENX hSj4lKRVxDxigyIZeNkUQcgIRCkpKR4zqdML8oaFWLNVhcQyRV eIQi4iQmoEpBXuEva6bX+QK9kOFcLtcvP/o4n89/Nf3fpn6i14H8g+wCd0ci5woDDXIcCyHP0TzH8jwDWY7laJ57Lf hq3amFYERNJGRARPFRCkQUhpEGvaNDstKObXpdzT6nilahI8B2 o3bZW0u13NLaV7lVzg+W9fa1/OLVdR9tXHR50VPvPdJ863HbpWoiDDARI8cwEJcog9SCWOOC14f ldYL6Kb+Fb7HFl2gjxbJTWNOtn63/fJ0qWFU0sIp6eqvlGV/RM3tn2/eUck2Lz7a0/ukFTUQHkiR6FgXjACRxNI6iYwiaQsmzCkzQKqNzZYkKSRiUCZW tv9zW+l7r3nfcr53/xd6hf30t9Af6gyvb3j6w8ZPG5z5ZZgjrQUgHxEp5vJwQKCyFK4 XZZfQufMlxRH9NVv0L0noFmxepe/zNmobR57f/0w73F0jtQXXLoTkDW8sP7yKe5hATV/Xy60uOdxx880LFEwPmFVcqFl9BasaIuou4LQHqU5htHFjP4XXn Uds4WHBeah3F6s9idWcx2zmy4TxiSeELziN142jDWdQ2htWN4/XnEEsKNJxDrGP4gvOodQzUncXrz2K2UbIhjtYHscVjUts5WcM5 okGU1If0z10oWylgyw7K1220HVlrPb9AEVWQgoJIKMgULguXlA 48TjyxaVXbJ/VbBMXrTxaHK2UhhBojJFFZTXz2ug+enzMyp/E3bdbRR+cPz2t6/4kVFx+2Rk3P/+ZJlYiBiEQXXSx/4SXNCl/zmXBtZAkZQ7GEhEhgWBSAhBwRgCwuI2MEmSBkowAXMZBQEEKJ4 fjTsva9yLOHVIc6FMF6kFChcRxP4iBGqCL6Kr56g6fJN+DjWN7 tdn9y65N8Pn8n/9X0T/chwYPoAl+PMsKyLAs5BkKWZXnIMRDSHKQ5lmYZyEAvpF8LvbQo VIedIdAoikWl0jAui9RovG3IMoir4rh+mGrcoz6xHBGKQEhBnV aWHFuma+rCy4d1Kwcq/S3aEZMsqlfHFMo4RSZkRNwgT5ZjCTUQtdbRVS2RxGM7P52/+p21R8Z/Ft/Z8vku2416/Lh0Xqhq35/3zw7blM4nqWdftqwd0W7aXty7rPLUnB2/a338xmP4EQIXCGkClcQwJEIgUUIiYlIBQ2MEiBFyUQ7ilESUka c0pUPldceXWzt36xY7dbPhQ82uJ7kttYPW4pOViuMGxWkdKhDI eRmRUmBhmTxSVdq3XvZoQKIaI5aOGOy0tn+PtqtNtnkNsWnlqs jxo3/+o/P9q12/iR78I/P6ZwP7T13b5/rjvuAnrt9dYdLnTK6d5PomzQu7S537i5lNRWyTwdek5dZpmFYt t1Xra1PBzVpfqwq2qOAWnW9r0eF2Nb9FCTcr+RaVv1XFtaj5Fj XXovG1qflWFbdF69uq5ttUsEUDWzTcZh23ScVulfv2Knq3ano3 qPlNmr5Ns0+31RzdWDu0+aHkuorTc+eemy8LyrERHBUJiSDBo3 L9sUWKlm3A4kKf2qv0PURF5FgUoAKOBvHScNWqW6srR0ofur54/e82Pv7+40vfXVJ3afFcof7hjxrJaKU0TCiCJsXeXdQj7sZQvCr 4KHIGoAJCRBA8jCIxVJqUIKJUGkHwJCEflYMoCiKEarhe8cI+a dUwUInoIoeebSRDVdKYEhFIEAOyCFXOFa93reYOszzkHU7nxx/dyufzX03fmXGBH4Pv1AvcfSPgIOcrVBJyHM97OZbxsQykORZCj ns5vL8+aCKDJC5SREyiEAl5uJZ6fZeklm167jerV78jWdqmGlh DJeaQcTkZI/QhU1X3y1JTWDL7ArV6sLi7W+7YTXRtV3bvo9xtcqaV6mlXeTrw Qx1PnrqxdMcHZPWxht1nOt4aXCQ8vvbWusXXl8lPqipDszt+t6 P9k47HzuzWNTolhk7s6e0VgytX/Wpr2xdris6Q1BmMEmWISOBJChcJTABYgpSKiCKu15yyaIZWKAe fUpyor4rVvvh7p/0Xb27xf7Cp69bOgbdfvXlmz69eav1o4+sZ55bf7i8eMVPHahWB xzSDT+hPP1w91EE9H5BUvoEuPFnCvKaIPwLGDYqkSpGQy+Oq2n FT28837bi5tfWd5i03N3W8tXvPOb75tUTzzlvrPFcaz/XaEk9UhGdVJKzq2HzNaIUqVaROVagTVapElWp0ljxRqR2rkcUq tKk5ini1anSOZnSOTKxQj82RJaqUo7MVyWpVapYqOUser1SP1c jj1eqxOZRQrkpWq1PViniFOjVHIdZqUjZSrJSNVisS83XC3Pnj 1jpxaeO1rXt/e9AmLLWMLi8KWdTRWbJIqTJZQ8Sqi6LLyvp2aF950eDdUhpcpo xXEYli+WixLFg6K7Z4/cdbGhK2yjNzLRdX1IyvKDvzM0PXSrDp4RL4vDpkloyQRcHFyq0 vlT57tEkYKw0+jMZkaIrARUDEMJAASEqKpyg0RuKiXCaW4FEZm VKpjq9EVzuKTSPrm3+rNPapX9xiiNdI4wg5BnARkSVUZYcr1nt XcwEvzUCnx/txoddQfjI//dX0T1Q18AC5wNcU5ia6Vy/AQR/HQeiDPAc5hoOMj/VCL8uyDMe+En2tPthAnCGBQFECqhAJZbRG5domXWC3LBw1LYqi T+w1DKyUJ4pxEUGSEmQc10UWGF61I5aYRH6T0n6BFX8uqfg5Vv oxaniLKLoBVG/L9L+UKj+qtv1T8+4/NXoST53ueuZq6zMfPL/tX7dXR+cp+3Wbb7X4J9jBvxw+8f+O7x+9vHz76AYm8epnwxt+v 08bKqGCOB7CyDiJiTgeJ3ABECIgEjgmUPqRxaoDWyXLXpE/zla3dz3MvuZ+99aC9kvWlbd+dlBccfLA0qtr556zLb+ytOnS09 1/cC4701K6a79sEQuWdFXuhqWNKUnRVcQUKurcq4lY0bgcEQlKUJ GCnEzKybBUPizBTknAaUJ2SguOaTSnFhhefF1SdVqijlKrT5ba HTrHZq13k9zVonBvVTh3KR37lI6dKuc2uXMr5diqdG1XOrapXd vljm1y13a1t4NytCrc2yhHm8K9TebcKndtVbi2UY6tCvd2uatd 5e5QOLYVJO/ZqnJtUzjaVI52haNN6WpXOXfq7DvnuF966mjfa29c6rl2bd3p4/WMu7jzRW1Ph8q1Te7aRbrbFJ4Wbc+eYntPUc9BpaNdTW+XOVvV 3ja1fZv+1fY1Anzq9MHSgy3a/S+VHmLV7X1y6+nqhWHiqd3VgbV1NxbOii4lW9rM7cPPDh8zHDW RAoHEUTKB4zECxGVInAKiHI8BPK7ARQMaw/Ek0JxZQmw9IDcN1S+7TNY7DF3r1UKlJIFgSYIUZPKopsJXtcGz 1h9gOOhzud0FF5jKT+en78y4wI9HYW6iwqwkkOcZDrIs6yuMSQ 5ZL8+4WQ+EDM27X4l0LQgtJUYoLI7jMZSKATyiU514SP5Ch6T+ Rcmy7drOjZqQDcRINCbFYjiWkOGCRnfycfnOl7FFJ6ja86RtjF gaJR+KEaYgVRunjOO4KUlZRbSut7LDuyT0QvGIRR2rKL9Ubbpp 0osl4Ijy4esr7NnOJacXLI8/9+K14CvDn+w5eW7NG9u1Ybk0LAFJgAgAjSGYgCCCVCJKEVGCiR JZRFPS9zS2fJttebhp0636x2Iv+/+0B/5x3vJEs+OTLWPHm29ubXm3ZeUbjfv+cOAx8VH7pw74eXzJHt/qLdcfevy8pHhEUvKOtDpStP21klMrQFiJxzA8jJFREhcoJKrAQ kpqRLbs/SU1iar6N2oXXXvooSvPO/8QO3j6lqrynET5Dlr2Jlp5XlJ+Ea28hlRcxyreRiuvYZVXsPLr aOUNtPIGUnEdK7uBlV1HSq9jVW8Tc95DK64j5dex8hto+Q204g ZSfgOtuIFVXEfLrmLlb2IV17DyN9GKa2j5NaT8TVBxFS87D0rG 8fLLaMUladUoVj2qt157uPHzxo5frd5x/dkdb9Y+eR6rHEMrroGq69KKS1jFTbT8Kqi8gFVcAhXnQeU4Wn6 BqLpMzLoIqq5JikaNT1xfv/9PyjlJVH8RK35bon1bUfH+8jW38EU7l/kP+v7j6aXCSu32dY85BJPrdcNgLSWSElEKRAzECFSgkCiOhUks ioKEjIyrsAiGC5g8XK2FzchzL0jq96m2tZUOLSIiFBInpFEdHt HIo1Q5X9rsauT6GchyPY6eW7c+yBe+KJ6acYF/PH87QxnP84WmQZ7nfYUpCXiO9UMvz/j8kPO5Xg6+Xnf6ISpEkaM4iGPyFIEKFB4vVw8/YvA/ox98gjjdgCfL0DgqS5GyOImLOEgCIOhUoaWawbUlfa0lfFsx31 7U11rKry/ra9Ud3qYf3Krj15f2N6uGHqFOVVFRAxqRyQSMGJGo4zgVIZVBZ VHMgI/oNCP1mle3SG1d5Iquyr61inAJHpWDcZU0TlFJBRmXgSQlTZHSF IGlCJWgm3P8Ker5zQtWhZp33nqoMbr/yAe7+q5bmr3dl8+9esv7aHTR+stN2292HPhs76qzz7z+aY/rl8ceeu3Ayn1jjz1zg5oVJB8+pmzbP/dYoyJUSiRxmYDK4yQ5SqJxjEgpkahcGVW2/6l14fllK95cue2fd886Vd327jb42Tl9ixNZOgQWnEHrYuSCN1B LlFwkYnUJvH6UqBfxuii+UEDrovgCEbNGiDoBrxPAAhE0RDFbi Fog4HURoj6K10WIhhioj2LWKFkfB1aBakhg1hheFyfqk6A+jjc kUWuIbIhgxri8fpywBYH5VMmyxCOt11858RfP2O0W7tb8xrOkT SBso8AsKBaME9aUbOEoZo0SdaNkXRy3hsi6lNSSJBedJerGiIU iumig0fP7hs0fSapHqPoEZhsmlh5GFu9Utq6xDq97/uNNs44++kzg2GrnNXXbtsrTD1NxFZIksQQJEgSZorAYIk/IgUihIpAlZIqIXCmq0ZBKE7boAk9r+VVFJxargxUyUY2KOIjLs CimSCjL/LPWe5r5QY5moMvr/uSTwhtBfnpqcqbX0I/H/d8RsBDSkGEghJBnWQ5yPMtDmqN5HkLe80r4gO1MHTECQEIKBAQ XcGkMSEUKTSiIURVIyFFRhokyJIphAoZFMDxM4DGAiSiWwECSp EaVeFxJxXWqhJ4U5XiSQMdw7CwBUoCKUzJRDuIUEsexqFQWQ2Q xFERRLIZhAooIEklSClLV2t5W6UJaMmu4aJe/6sxaebAMi+FARAkBwQUpISJoTIoIEiyBogmEipQp+SfQ9tX6Pe 013e3L+rczn0YPXhvquuXv/uzVPe+1vPzhK/vef835h+5Dv9nn+ktP/cjyMu5J/IVGsn1LiaNd639cM2ymwqVYlMDjCIhJ8RiGR3EQxokwhYUoRVD R8S8bFyYaHr+4YttvWgx9yg2frXroymL5wBz1wJMK/1q1f6PGv0XNb1ZzG1TsRh3fpmE3a9gNGn6jituo821WM806uEE N1+v7WvSHW1XcRjW/ScVvVPs2KfmN6t4WtX+zgr8rVe8WObdR1dui8G2W8RuVIooBMQ AAHBBJREFUfZsVvU1K/1ol16zm27R8axG/0Xb0hfn81keCr22+cXwOs6v+yKEqtqOI3lTMbzD4m9X+jUrfZi W/Ue3frOQ2KrlNar5VybVp+DYdu1ELN6i9q+uP7uj67OyKEx5953 oNu0YJ11De5ZqhBtVpA+lXrTh5aN/IF/rHfPKdrbrTC/GYQiqQqCDDowgRk6AxKRYn0CiBxUliVIbHKCoiw0MULsqwlBxP KoFIgTiFCgATUFwAeARQUVmxv6zZ08QFOBr6nU7HR7c+yOfzk/n8VH6mB/GPwt+MRA5ZCCFfaCaAkOMhW/jWmOEgy0DPK5FX6oMN+AjARCkuIiCGSWMYFseBiGMijoskiOF4 jMDCKB4FRBTgURJEAB5FSRElBISIoSCMykRSPoojgkQqSKUJBI ziaBxFY1I8JsXiAE0QQECJKAoiGBGXYQKBChgex1BRSogK7Ynl qm0eSaWIGhNlBxn9yBNUrJIUS6hYMRHRywQDGdMTMR0hFuFiuT wxRxmr0cTm6SLzNCfnzjvz6Au3PK7fnfb+/mTfn4ePpU8H/uX44L+MnPzrmOufBnZ+8HJJuFYWqtGEF+oiy3ThxZrwfFWkVBX TygUtFS8hYsVkrISMllKxcoVQRUUr1CNz9n7RtfrS5tb3W3f98 oUFp3+250/OOQmr4rRWJZYoxXK1OFsZnaURatSxanWsWivUaCJzNaG5mlitO jpfE5uvCdfoovNVkRpt3KRPWRWxWpVoVETnq0SjUjTKY/PVcbMyNk8p1MhjNUpxnjxWoxDmKmJz5LHZ8ngNKVYrElUKYbYy ZlJGTPqo2Xr+aYuwxnp8w5Lg7vnH1i4Yf6okOFsfrtVE6pSCiR JqZOJ8WXyeIj5fJsyTCfOUcZMiZpYJNbJEmVqsMgQrK46VPX9p lfv2wIYPXqoYbtCM1GoiRsWZ8srT8zre9DlSE1VPxrCnDxYfbs aDJaiIShOIVABYDMVjKBIDWExGhHBCwMkxCk0SiIhLIwiWwMAo ApIEliClIiqNo4iIAhHHowQZlZX4SzZ4GvkBjmH9Lofzk48/yOfzP12PoXz+QXOBAvf3GuJ4nvf38oWOQzwPIctxkIUsz/Gcj301crAhuJAMkngSIxKYLEkhIgZSJEhSqEjgSbk0hhMpOZ4g QYIASRJJkliCwOOELCkjBUKeoPAYTiYoMikHopwU1YSgkiW0eF Qhi6uouBwTcCJJghimSMmxGEGlNECUkyKhSKnImFyVwKmgsnK4 Wb6ekVSFwKKI4cXeYnq/zrOjyLtb79plcO/Su3Ya3DsNnl367t2lzv1qx3Yd3K6CrSq2Te/tKO7ZWdm9r6b71QaaXeB2L2V7lrKu2i7H7Ndfq7DvLGf2aFxtB naLjm1Vu9v1zF61a2cRvV3rbtV723WebXrvdr13u87dXuTdofe 0F/W0rzjS3/nux4fe/nAZwz/Ecs3noqX0dqVzo5Zp07Fb1d5tWrpD5WnTw20aerOWadV62rXuH Tp6l9q7Q0vvVLu2Gzw7Nd5dGnqXjt6h9XbovDvU7nYdvUNP79B 5Ogz0Dq2nQ0/v0HradXSH2r1NR3fo2R1ab7uGaVfSrXrYrnG3670v6D0dOsdWY 2+PzTtEPcZI6p3zXzqxdJAv827Q01tU7g4Ns13laTGwrWr3BgO 7Rc+06JnNRcwWjWtTEd2md2/Ve3ZpXB0G7/biro56pmf/5cvdb13cd2mg/dLAritR19XPXmIylQ0XJUud1b3bVJFZWJLEUhiWkuBJAESSSFK ISBIJjSyqksVkspQcS5DYmAJJyPAERYq4LCEjEiQSB1iKRJMEn qSAQMgS8rL+so10oz8AWbaXdns//fijfL7wJDA1/RN9VvggukBhfAGWZQsPACzLQ8hzPAdZhmW8DONlGIZjOY7nXg0 frB9ZSI6QeAIFghTEMETE0DiOxoA0it4bXgogMQwTARJHJXEpK iCEAIgIwEMoGQNoVIInAJlQYBGciAAijJJRDI+gaBQgAoUJOIh J8YgERDE0ikvDBC5QRBSTRXF5GKciCBEh5COziv0t+PN+SeVZt OQqMvucZPaopHpcUnUWmXUBqb4orb4onXVRWnEOq7yIVFxFK98 EVefx6gRaLUqqUpKqc5Ly85LSC5KyS0j1JUnVBUnpOUnFuLRqD Jl9UVp9Aal6A626iFVfkVZellRfQuZclM66jFRfl1Zfk1ZdlVZ dkVZdRqovS6ovolWXQPHVstovSmq/wHRvEWU3ieqrSNU5pPpNMOsqVn0Jq3oTVF9Dqy6hVeeQyjFs1l m06ixaeQ6d9QYy+yI26xJa+QZWcQGtugDmXAFzrkgr3kAqLxSE VlzAKi+AqotY1UW0+qK06g1k1kWk+oK06ry06jxSfR6ZdQGddR mrvIqV30TLb6BV55HKWMWCn1eaPy0ruTav5n1t5dW5j34Casal s8eR6oug+hpa8SZSeQWpvIRWXcKqL2FVl0D1ZbTiElZ1AZ31hr T6TcmsKxLjBcT4hqQohRnO1S/5/Llnvnz4Z39cvuq2bUFaCt6VzB/W2/fqzswDIiKJS1EBA6IEiIg0SkhEVCJIpAIhjZGkSCgTOIghmIAj URxEABUG8jAgwigoDLsax5E4gQoEEaeK+oqa3Cu5AZZh/c4e58cff5DP5/PTd9sIZlzgH8j9hfv1GwHP8wwLIe+DHAdZxsezkGW4wlsC66d5/kD41YWhejKIowkMixOYQCAChsZREAdYHOCJwqC6BBoDeJzCRAA SOC7iIAJkIklGACmQIIaTcYqMU4SAkyKGx6RUHAUxKS4CXCRwk cTjOBCkeBxBYwgQcTSKESIgBRzEEGJUgogYGlOoo3NK4DbiycP YXJGyjgKTQJiTuDEFasdw4zhRO0bWjhHGOGlO4rUpwnSWMI4St QmyNk7WJinTKFGbwE1JzJwirGcp2zhpSpCWOG6OE5ZxMD+JmxK 4KU6YEqQlBYwibhYIU5I0nSOM44RxjDCN4rUJwpTATXHSlMDnx 8HcOG5M4cYkXpvEauOkOQWMSbx2DDeexY3juHEM1I6RpvOg9ix uHsdNo5gxCSxjwDwKzKNYbRIYU1htkrSOU9azuDFFmMdwY4owj RKmUdx4T6YxrDZFmMeAaRQzjgLTODCNg9pxvPYsYT6L1SZxcxy YgmTdSNUTF8qWjcnnntKaBLV5dN7T71JWATOKoHYUN44CYwI3x YFJwM0CbhZxk0haU8CUAOZR1DiGmUYJcwo3iaQtBUyjmPm8ZE4 KmSUgs05JZp2QzD2NPNyre21vyenFioiOjFF4jMQFEhMwLI4hc QxL4lIRReMAjWN4AshSOC4ghIDhUVQm4kQEIUWMFAEeI3BBhgg EliAwEciSZHFfSaO3kQ1wXtrncnsKLjCZn5rOTxbaCn58I3hQX KBAoXzv70EMIcf7/BzPcRD6OA4yLISQ530c5Gm/55XYS4uCNioIQBwlRCATASlIQAIFSRxP4kQKRwWESOKYiII4hi dxalRGJElMwKgEQYiAjONAxIkEQSRwPA6IBAAigscxTEDIBE4k AEhQaEKGxgFIAqmIYHECFXE0jhEJnEhgslGACSpEVKFxRJWYpT m+QsU/q+lrUvCNav8GFb9JzW1U8xvV3AYt16zjmwy9zWpurdq3Tu1vVv ubtf51Wl+Tztek4teqetcp/Ot0fRsNvRu1cJ3Bv0Hta9b6Nqu4Zo2vSe1rVHHrNL6NKm69xlf QBjW/Xtu7UeNfr+KbNf4NKr5Z7WvWcE363g36w5vUvmaNf72Sa9L41y thk5pr0vqbNL61Gn6tGq7T+Vs0/CaNb6PGt17NrdP61mu4dRp+nRqu03LNGrhO79tQ1LtBA5t0/DoNbNLxzTp+nY5fp4GNar5R09uk4teq/Y0af6PK36j0r1P2Nqv59Rpuk47frGHXFfk3GuD6Em6z6djuRae 6SvZ2KVtfa+jrX3zaUeJr1vublfwmhW+z2r9e19us5tdq/Y1af5OaX6v1r1NzTVpfs4Zv1PFNerjOwK4v8bVo4UYtv1nFb9b 0btbwqw2+NTpfk6J/hS5mJOMkMU6AOEGKBJkgMBEDSRxNFFwAw5MkLgI8TpBJEhNQIg FAHCOSOIhjyCguTeFoikRThDSB4CmAx4BCUFQcnt3IbKCP8B7e Z3c779UOTk9NT/5EnxQ+YC5Q4Fe/+lV3dzdzD5qhaZpmGch4WYZmWZZjWdZLe9z+7leiBxacWCQ7ri PCGjCiwEMKEJHjERIP4SAE8AiOR3AQwQrzaoAIABEKRCgQJkEY BxECD+PYCCoXZYqECgvheITEIxQWIkGYxCMkFsZBmABhHAujRA TgYQBCOBEhiDCCR1BCIEAQJUZkZEgBIgQpKBViCRXRU2GdIqKX hQyKUIkyVKIIFilG9KqQVhHWyCIaKqIjwlo8pKWiejKilYU1io hWHtLKI3oypNGKpXqhTHVGrw4WKYIGdahYHdYrgyp1WKsK6pUj RepgiTpYrAjqlGGdMqJThHSKoF4VKVKGDIqgXhEyKEJ6TaxEJ5 YrQnpFUK8I6RUhvTJkUIUNypBGEVarIzplSK8IFitDpYpQkSKk V4X0ijNaVVCvDhlUQZ0qpFcGddposV4sUYW0yoKCWsWIRhXSqk JadUinDuo0QZ0mqNcG9ZqQXh3Sq4J6ZcggjxjkYb0yXKQKFqlO lxiC1ZXRWtvZRxamVi5IrasbW1UtNihPFyuDJfKRElnIoAjrVW GDIqhTBPWqsKEQlo/olBG9IqJRhfTKYIk2XFUUq1GMlMmDJfJIGRGskIVLFCGtLKQhI zo0JpfECIkgR8IUESLxIImNEEREBsIUFqHQMImFKRAiqIhMHpN jQQAiBIjgIIJjEVwaJZEIiUUJPApAGKHCmGyY0pzUVrvnruvZ7 BmATp593dV166NCf4Hp6ek7M20EPx6fffYZx3H9/f2BQGDgLoGhwNHBgaOB/qHA4NDhgYH+/v7BQB894n2OX21yWs1eU53HZGPMJtZkYa0Wus7stZlpm4mxGRm rkbXWMpZaxmSkjSbWVMuYjKzJxFlMrKnWa2zwNdT3LpzvNRlpq 4mpMzI2I2MzstZa2mxkLEbGamTMZtZmoutN3gVmZqGFqa+lzfO huZattbDzTd75Rtpq8y1q8C8wuueZGYuFqTO6LRavzeKtM3usZ rfR6p1v9RotHpOVtpi9ZpPHbKEtZq/J6jHbvBaz22ymLUbG2NBb3+Cvs9ImM2My0mYzbbUyZpN3rpmeZ 6FrTR6T2WuxMGYLbbR4aq1eo9lTa/EYrbTJ6jVbvWYrbTZ7TRbaWMdaLB6j1Wuy0WYrbbLR5jqPrc5l qfMYG2iLzWOxemw2j83qMVo9RpvXYnEbbV6LjbaY3UYrbTF7TF babIUWM2M00UYTbTTTRqNnfiFg8pqMHqOZsZhos9FrNjM2M2M1 ei0mxmJizbW0ycyaTR6jxWNuoOsb3A11PXULeurr7YsaHEvqvD aLd66ZNpo9FjNtNHtqrR6z1W22eax1tM3msdo8Zqun1kqbTLTZ 4rVYvWYbY61n600es9FrNtJWk7fO7DHb6HkWpsbM1s71GE1svY k2mbxGE2sxMRaT12KmrSbabGLNtazRyBpNjMnK2+r9DUbGZGTM RsZsYs1m1mJiTBbaYqOtFtpsoo0W2mTz2Ba4Fi59ZdmL9L4jJw Z7B/vYXvrzX/4yn89P5acn8/9tOj/Ta+gfT8FrP//8c7/fPzQ0NDQ0NDg4ODg4NDg4NBg4Mjh49MjQsSNHjgwODQ4NDQ0NH D0+fII7yjr7D7kOv0b3dzIDXc6+g67DdveAwz3Q7Q7YXQNdjv4 uZ8DuHLA7DttdgW5noNvR3+Uc6HYOdLsDDtdADz3kpo86HYc7H f1djv4u54DdOWB3BbqdA3bHQKcz0OkY6HQO2J0D3Y7+Hkd/t3PA7gx0OgZedwW63IPdzgGHo9/tDLg9Qw5Hf6c94OgadHUOOO0BT8+gt3vQbQ847QPd3YMOe8DRP ei0Dzq6Bp32obvqHnTZA67OgKNr0NFz1O045u4M9HQOOg4NOuw Bd3fAbQ847QFn14DTHnB3DTh7Bt09g277gLM74OoOuHoG3d0BV 0/A1RNwdQ+6ugZd9oDrbqL3IvQMuu0Dru4BZ/eAs2fQ1dnf0z3o6h502gM99oCjK9DTFejpGXLZB51dAUf3kMs+ 6LAPOrsHXfYBR3fA2TXgsA847AOO7kGnPeC0DxR2pJCK2x5w2w fc9oCnK+DpDLi7Bt2HBh1dRxxdg87Ovh7XIOPs87p6ne7DLme/wx441H30UOeRzkNHug8d6T4U6LYPuu0DLnvA3T3otgdc9oDLPu i0Dzo7Az3dQ077YHfPoN15tMc+1GU/2tU51NU1aLcH7N2B7p4Bh6Pf7TjscfY5Pf097v4eT7+bHvC4+5 yuw07XYae73+Hs73b1dzsHujxDPfRRp6O/8+7BHbC7Buzu/kPew12ewz2uw86ewz2OgMMesHcFOl39PQOD/LHB/iNDAb+f//UvC7OSTE9OfzUzysiPxyeffNLV1eXxeNxuN03TXq/X6/XSNOv1MjTN0LTH63V5vbTLxff1Dh7u7YMsw7Isw0AIfQzNsgzL Qw4yDAdpyHo41gtZL2RolqUhy0CWgQzDsQzHMHzhF7I+jmMZBt 6vQgtFIT7LQIZlaZZjIGQZyNCQ9ULWzUEvx9KQYSHD+jifD/KQZgsvMAzDsizHMBzDQIZhaZpmaIZjOEhDjoGQgZCGkOHYQpiB kIYcw/Es74M+SHN3Y7I8V5ijneEgy0OWZ2hYCEDGx7F+yPgg42NpnmV4 luEZmvcyEHI+n6+XZXmG4QrxWYZj6MLbFcuykPbS9162WJaBjL cweIsfMjxkfCzDQ8bHQT/P+VgGQpa7V2YQQh6yHENzhbQg2wvZPpbpZZnDkD3M0r0szTEs9 LKMF3q9rJeDnJ/zQzfLeSHPMCzjZlkPC70MSzMsy7A842UhzbD3xHhplmZYmoYsR 3shQ3MMDXnI+X0+hqEZjqYhTbNumvXSDMt4eUj7ecYPacbHMj6 W4WmWoxnooTkvw9H3xNAsQ/s4jucgZBiOZTmW4ViGZWjI0ixDszTLsT7I+hiG9bAeJ9vDsC7e 44UeL+Oh7Z3dH37wUT6fn85Pz4wv8GPwdWPsp59+6vF4mEKPQQ g5joOwMGuhnyvUE0IGcqwX8r0D/b5+nxt6aD90Q9bL816e80KO5vxeyHuhz8PyDO9jOJ7mOJrjad7 P8r0M52c4P83yLOdnWJ5heYbjPCzrhdALIfT5aY5jeJ7mOBpCG vI056M5Pw39LN/nZXma8zE8pHkPwzNeyNAcpDme4XnWx3tZxs9zPMv4WMgxLPQyk GY4muYYL+9l/IyP80A/w/cyPj/N97G+XsbnZ3ie4XmG97G+gr4O+/lejuU4luehj2N5yHCQ4Xjo4xiOh5yP432cz8f5OAZyLORYyDGQ Y1gechwLfZDzc7yPgb2Q97OQY1iOhTwLechB5u5HGZBmIcNCFv IQcizr43jubhjykCukWHCiQgZ46OOhj2ehj7vXfstyHMPxrM/H+XnWz7Gcj+dZli589sVBhvF6OYblWY5jIM9zkIWQ5XxcL8/4/fCwj/H5WcgzrJ/leIblaaYXcjzN+lieY/0c4+doH8/4fWwvx/o41g8hz3IMAxmaZVnog6yfg34IOZ7nIAcZCGmWYSDDcgzL0ZBn aUhDHnogpDmOhpwXQob3eSFkON4Locfv8/h8bo6jOZ7lfCzHMZBhfQzHQZ7leNYHWZ/LyXzw4Sf5fH4qn//J6gYfHBeYvo9/+7d/S6fT6XQ6l8tls9nbt2/ncrls9q+3b/8/2Wwum81msxPZbDqTzeRup7O3v0zn/pK+PTGRTadz6YnslxOZdCabS2dz6exfJ9K5TO6vmWw2m8tMZDP pXC6bu50u/JvJZjK5dDqbzmTS2XQ6O5HOpdPZdPZ2ZiL7ZSaXzuTS6exEOju RzqbT2Wwml83kshOZdDo7kbmdTme/zOTS6Wwmk8ums7mJTCaTy05kJrK5TCaTyWSzmcztTDqXyWSz2W w2m0lnMpls7st0JpPN5QrrZG7nChvN5bLZbDZ3O5vLZbKFVXKZ TDab++tEOpvJ5jLZXDpzV5ns7XQ2m8lmsrlsNpfL5rLpTCaTza QzmXQmM5HNTmSyE5lsOpPNZm+n07ls9nY2e7sQJ5PNZrLZu1nI ZjPZbCabyWTT6Wx6IjORyWXS2XThdyKTTmcy6czd1DPZu/GzuVw6O5HJTaSz/5rJTRTWzeSy2VyucDAyt29/mcmkc9l0LjuRnfgy8+VEdiKTzUxk0pnbuYls9stsLpP7azqTy2 ZuZ7PZbC6XyWSyua8zls1ks5lMNp3NZrK5TDqXSWcz6duZ7F8z 2b9OZG+nc4WDlkkXToJsbiKbTeeyX2Yz/5rNfJlJZ7LZ9N1cpdOZL7O5TDqbTWey6UKxZHMT6Uzh9JjIZSd ymYlsurBH945mLp3NTWRz6dztdCb35UTuP/3n/zI1NTU1PT05NVM7+A/mawuY+gkngpphhu9jcnJyenpq5muiH4OCBUx/H19H+HpBwTEKfbmm7mN6ampqanJqaurev9/SVCH+9NTX+noj9/H96/4PdHc7+el8fjo/NZ0vLC5MbTd1b8l31pqa/EaTk9OTk1OTk1OT34TvZvBu5G/Hn5q8bw++s9n7Fk59R3+z4t2Fd6am7kxPT+anJ6en7kxP31vy3 Zjf6F453yvze/Y9NT15r0Amp+7P1eQ3+qZ87pbc5NQ93Ze9yampO1OTXxUy9i3d TXPymx2c/jpX3znu0/n89LefMr97nKem85P3aerueTU9lZ8uZGUyPzWZ/yZbMy7wD+c71/z9jpD/voN592jnp6emp+9dTHfuTN/5nlPnnqby3698/m6ErwP/U/3Apu5M5ae/0f0X6A8kfW+t71n+dVp3q6i/0Z379MM5/Fa0O1N3r/bvaDKfn/pOieXzU/n81N/E/Frf79RT01M/vIPT36uCWX57vwqBqa+9/ds3g+mp/OTU9J3Je5qavnNfWf1AaeS/+n4VHLewnfzkZMEKCqfS1Nc7Vdivuxn+qS6NB8gF/m7utdtM5/OFU+FO/s5X+a++viN9j/I/oL///v+925nKT03lp6fv6dsuMPVD+qFNfbPq/14O/1f1nSeg/+kz0Q/fW3+oeO8rk++o4Dj3fOdbSdw9yN9ygfx95Tz1rfD/aAd/yMenJqcn7+Qn7+Sn7t0Mpu/2D/rJrvfv58Fygb+v+AtPfHeD04VzYnL6ztTf37Xjh07S/1Pu29b0vfz+rX5w1R9e5TtX0v9StB+8EH8gbz984f5NzG89xP0 dxfP36/8i0/n85PT0nempyfz03bED/iaZuzv1j0j+7+HBcoH/H/Cde9cMM/yfM+MCM8zwoDPjAjPM8KAz4wL/H2PmjWCG/+vMuMAMMzzozLjADDM86My4wAwzPOjMuMAMMzzozLjADDM86My 4wAwzPOjMuMAMMzzozLjADDM86My4wAwzPOjMuMAMMzzozLjAD DM86My4wAwzPOjMuMAMMzzozLjADDM86My4wAwzPOj8d19+g3l BrWQwAAAAAElFTkSuQmCC
mahinda
04-01-2015, 11:44 AM
please give me totem PD circuit diagram .please ,,,
my email mkmahinda@yahoo.com
thank you this mahinda
Saiman
05-15-2015, 07:09 AM
Next, I will build the casing, so that I can connect the Switches, Beeper, Potis und the 250 uA Meter on the PCB.
With a CAD program I have constructed a 3D model of the body, so I can make patterns for the cutouts and drill holes.
The casing itself is constructed as described in the book, only the handle I have been slightly modified.
I have from the 3D model made a 3D pdf. You can it download below.
You can open it with the normal Acrobat reader and it with the left mouse button rotate in all directions and turn as you like.
You can also hide and show parts, and zoom the model in and out.
Here are some pictures
:):):)hello Goldmaxx
happy reading, My totem project, you.
I really appreciate it. Thank you, with all the intimation you share
I am interested in this project, and the project was designed make my own totem.
Goldmaxx friend,
I have a little problem, please help me. I saw CASING TOTEM.PDF beautiful, and I've tried looking for a fail / CATIA 5, which should open the case totem 3d.pdf
You can order it at PRINT. But until today I still fail to open files that you 3d.pdf totem casing.
Goldmaxx friend, please give me your size of the casing, as I paint this picture
I really hope you help. "PLEASE"
-------------------------------------------------------------
Saiman - this is not the way to attach an image in your posts. Please select the Go Advanced button, and then use Manage Attachments.
All you have done is include a long list of gobbledygook, which I have just deleted.
-------------------------------------------------------------
Goldmaxx
05-15-2015, 11:14 PM
Hello Saiman,
Thank you that you like my "Totem Project".
You can open the 3D pdf, only with Adobe Reader.
Then you must one time click the left mouse button on the window with the casing and then you can rotate, measure, hide parts, and make it visible again.
That's easy.
You don`t need Catia 5
Here you can download a drawing. That are my size, but that does not mean that you must have the same size. Particularly the distance of the coil.
For all other questions, I can only quote Qiaozhi. "See page 241 of ITMD"
That applies for everyone else too. And please send my no more PN´s obout questions, there answer are in Qiaozhi's and Karl`s book.
I respect Qiaozhi's and Karl`s work and bought the book too.
Regards
elvoney
11-16-2016, 11:33 PM
Hi Goldmaxx. I really enjoyed the project and congratulations for the excellent work. I would like to know if after the implementation of the project it has achieved some success in the field and if TOTeM has fulfilled its purpose. Do you have any videos working with the device? Thank you.:)
HaFar2010
11-26-2016, 10:00 AM
Hi Goldmaxx. I really enjoyed the project and congratulations for the excellent work. I would like to know if after the implementation of the project it has achieved some success in the field and if TOTeM has fulfilled its purpose. Do you have any videos working with the device? Thank you.:)
Hello,
Dear All.
Finally, i was able to build a correct PD. In the following, you can see their videos, which has sent by my clients from a ancient grave.
https://www.youtube.com/watch?v=HYhp1b8LqP4
https://www.youtube.com/watch?v=glYeB84xJkM
pigeon
11-26-2016, 01:28 PM
Hello,
Dear All.
Finally, i was able to build a correct PD. In the following, you can see their videos, which has sent by my clients from a ancient grave.
https://www.youtube.com/watch?v=HYhp1b8LqP4
https://www.youtube.com/watch?v=glYeB84xJkM
hi HAFAR:):)
please your projet it is free
thank you
best time
AurumKid
11-26-2016, 04:00 PM
hafar,
please post actual recoveries using your pd.
do you have modified circuit to show us?
:)
HaFar2010
12-26-2016, 09:18 PM
Hello
Dear all.
Some time that several questions have engaged my mind and i haven't a clear answer for them.
So i decided to share the questions in the forum, and ask you to consult together.
the questions is as follows:
1- What is the quickest trick for producing magnetic field of gold? How long does the trick take?
2- As you know, PD has reaction than power flow, TV and low-power light.
So question that rises here is that which of them is the best test for PD?
Other words, which of the tests has most similar to gold?
3- Why does all LRL, which work base on ferrite, has reaction than low-power light?
HaFar2010
12-30-2016, 08:50 AM
Hello
Dear all
we have done a test for detection of a freshly ring. In the text, the machine is able to detect the gold in 20 cm distance.
You can download the video from the follow link.
Please share your opinion.
http://s000.tinyupload.com/index.php...68664812190874
elvoney
12-30-2016, 11:56 AM
I'm doing my TOTeM and I used this PCB but it gave an error, by verifying the original scheme I realized this. I would like to know if someone uses this PCB. Thank you all.
19924
HaFar2010
12-30-2016, 04:58 PM
I'm doing my TOTeM and I used this PCB but it gave an error, by verifying the original scheme I realized this. I would like to know if someone uses this PCB. Thank you all.
19924
My friend, the PCB doesn't have any problem. You should check other issues.
aress
06-08-2017, 02:39 PM
Hello friends I want to make the project complex I would like to thank you how I can find the printing circuit and schematic
Arionas
06-17-2017, 04:15 PM
http://www.longrangelocators.com/forums/showthread.php?t=19245&highlight=TOTeM
https://s17.postimg.org/jr2adbxdr/image.jpg
https://s12.postimg.org/6qxh73f2l/image.jpg
https://s14.postimg.org/5ajo5x8xd/image.jpg
Qiaozhi
06-17-2017, 10:58 PM
One improvement you can make to the TOTeM design is to use a 12V power source with a 9V regulator. This will stop the settings from drifting due to temperature or time.
aress
07-08-2017, 08:10 AM
Thank you arionas print circuit pcb drawing i have a friend who will send me drawing pcb drawing i dont know respects
VECTROUM
11-10-2017, 06:14 AM
Hello i finaly made the Totem, but i can not detect metal only battery spark and magnets.Can anyone help?
Thank you.
sakher
02-11-2018, 11:22 AM
hello my frind
i need a help plz..
can i replace CA3240 with tl071?
if not what is the all Alternatives?
thank you...
GOLDEN LILLY
02-19-2018, 03:51 AM
Why is my totem never stops beeping? I check everything but same thing happens. Please help....
hello my frind
i need a help plz..
can i replace CA3240 with tl071?
if not what is the all Alternatives?
thank you...
Try TL072.
It is a dual Opamp. Maybe to works...
Why is my totem never stops beeping? I check everything but same thing happens. Please help....
I never constructed the Totem but your problem seems to me as an oscillation. Check the wires (don't have long wires).
Sometimes is happening an oscillation when the buzzer start to beep. If so, put the coil or the buzzer at longer distance. I had same problem with Andy Flind's MFD.
jokoboko
02-20-2018, 06:33 PM
is the ferrite antenna at 65 khz?
Or 100 khz ??
Anwar2
02-12-2024, 03:19 PM
:frown:Hello i finaly made the Totem, but i can not detect metal only battery spark and magnets.Can anyone help?
Thank you.
yes i made this tetom also my one detect electronc sparks only nothing else
Pahom
02-13-2024, 02:27 PM
:frown:
yes i made this tetom also my one detect electronc sparks only nothing elseThis means it wasn't configured properly.
https://www.youtube.com/watch?v=DLJmP62wMQM
ERDOGAN37
03-22-2024, 05:09 PM
https://youtu.be/4yy0H9s2SaE?si=xfFpb_9X0B3BDMpY
vBulletin® v3.8.11, Copyright ©2000-2024, vBulletin Solutions Inc.